Skip to main content
Log in

A cluster-based networking approach for large-scale and wide-area quantum key agreement

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum key distribution (QKD), a cryptographic technology developed to generate random secure keys, can realize unconditional secure remote classical communication in theory. However, QKD technology is currently confronted with two core problems: the extension of key distribution distance and the implementation of concurrent key agreements between multiple pairs of QKD nodes. To overcome these problems, in this paper, we present an innovative design—a cluster-based QKD network structure—which is composed of QKD nodes grouped into clusters interconnected by a backbone. A cluster serves as an access network in a master-slave structure to enable effective intra-cluster key agreements. To expand the key distribution over a longer distance and support concurrent key agreements, quantum repeaters are interconnected to form a mesh network as the QKD backbone. In our design, long-range QKD could be achieved by entanglement swapping performed in the backbone network, and the master-slave structure of the clusters is beneficial to the performance of the cluster-based QKD network. The simulation results show that the distance between two neighboring quantum repeaters, the size of quantum memory, quantum memory life-time, the success probability of entanglement distribution, and the success probability of entanglement swapping are essential factors affecting the key generation rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Biham, E., Huttner, B., Mor, T.: Quantum cryptographic network based on quantum memories. Phys. Rev. A 54(4), 2651 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  2. Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical bob. Phys. Rev. Lett. 99, 140501 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  3. Briegel, H.J., Dür, W., Cirac, J.I., Zoller, P.: Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81(26), 5932 (1998)

    Article  ADS  Google Scholar 

  4. Castelvecchi, D.: The quantum internet has arrived (and it hasn’t). Nature 554, 7692 (2018)

    Article  Google Scholar 

  5. Chen, T.Y., Liang, H., Liu, Y., Cai, W.Q., Ju, L., Liu, W.Y., Wang, J., Yin, H., Chen, K., Chen, Z.B., et al.: Field test of a practical secure communication network with decoy-state quantum cryptography. Opt. Express 17(8), 6540–6549 (2009)

    Article  ADS  Google Scholar 

  6. Dahlberg, A., Skrzypczyk, M., Coopmans, T., Wubben, L., Rozpędek, F., Pompili, M., Stolk, A., Pawełczak, P., Knegjens, R., de Oliveira Filho, J., et al.: A link layer protocol for quantum networks. In: Proceedings of the ACM Special Interest Group on Data Communication, pp. 159–173 (2019)

  7. Dai, W., Peng, T., Win, M.Z.: Optimal remote entanglement distribution. IEEE J. Sel. Areas Commun. 38(3), 540–556 (2020)

    Article  Google Scholar 

  8. Diamanti, E., Lo, H.K., Qi, B., Yuan, Z.: Practical challenges in quantum key distribution. npj Quantum Inf 2(1), 1–12 (2016)

    Article  Google Scholar 

  9. Duan, L.M., Lukin, M.D., Cirac, J.I., Zoller, P.: Long-distance quantum communication with atomic ensembles and linear optics. Nature 414(6862), 413–418 (2001)

    Article  ADS  Google Scholar 

  10. Dür, W., Briegel, H.J., Cirac, J.I., Zoller, P.: Quantum repeaters based on entanglement purification. Phys. Rev. A 59(1), 169 (1999)

    Article  ADS  Google Scholar 

  11. Dynes, J.F., Takesue, H., Yuan, Z.L., Sharpe, A.W., Harada, K., Honjo, T., Kamada, H., Tadanaga, O., Nishida, Y., Asobe, M., et al.: Efficient entanglement distribution over 200 kilometers. Opt. Express 17(14), 11440–11449 (2009)

    Article  ADS  Google Scholar 

  12. Ekert, A.K.: Quantum cryptography based on bell’s theorem. Phys. Rev. Lett. 67(6), 661 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  13. Elliott, C.: Building the quantum network. New J. Phys. 4(1), 46 (2002)

    Article  ADS  Google Scholar 

  14. Elliott, C., Colvin, A., Pearson, D., Pikalo, O., Schlafer, J., Yeh, H.: Current status of the darpa quantum network. In: Quantum Information and Computation III, vol. 5815, pp. 138–149. International Society for Optics and Photonics (2005)

  15. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81(2), 865 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  16. Inagaki, T., Matsuda, N., Tadanaga, O., Asobe, M., Takesue, H.: Entanglement distribution over 300 km of fiber. Opt. Express 21(20), 23241–23249 (2013)

    Article  ADS  Google Scholar 

  17. Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Breaking symmetric cryptosystems using quantum period finding. In: Annual international cryptology conference, pp. 207–237. Springer (2016)

  18. Kurz, C., Schug, M., Eich, P., Huwer, J., Müller, P., Eschner, J.: Experimental protocol for high-fidelity heralded photon-to-atom quantum state transfer. Nat. Commun. 5(1), 1–5 (2014)

    Article  Google Scholar 

  19. Ladd, T.D., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C., O’Brien, J.L.: Quantum computers. Nature 464(7285), 45–53 (2010)

    Article  ADS  Google Scholar 

  20. Lin, J., Lütkenhaus, N.: Simple security analysis of phase-matching measurement-device-independent quantum key distribution. Phys. Rev. A 98, 042332 (2018)

    Article  ADS  Google Scholar 

  21. Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283(5410), 2050–2056 (1999)

    Article  ADS  Google Scholar 

  22. Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108(13), 130503 (2012)

    Article  ADS  Google Scholar 

  23. Lo, H.K., Curty, M., Tamaki, K.: Secure quantum key distribution. Nat. Photonics 8(8), 595–604 (2014)

    Article  ADS  Google Scholar 

  24. Pant, M., Krovi, H., Towsley, D., Tassiulas, L., Jiang, L., Basu, P., Englund, D., Guha, S.: Routing entanglement in the quantum internet. npj Quantum Inf. 5(1), 1–9 (2019)

    Article  Google Scholar 

  25. Peev, M., Pacher, C., Alléaume, R., Barreiro, C., Bouda, J., Boxleitner, W., Debuisschert, T., Diamanti, E., Dianati, M., Dynes, J., et al.: The secoqc quantum key distribution network in Vienna. New J. Phys. 11(7), 075001 (2009)

    Article  ADS  Google Scholar 

  26. Pfaff, W., Hensen, B.J., Bernien, H., van Dam, S.B., Blok, M.S., Taminiau, T.H., Tiggelman, M.J., Schouten, R.N., Markham, M., Twitchen, D.J., et al.: Unconditional quantum teleportation between distant solid-state quantum bits. Science 345(6196), 532–535 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  27. Pirandola, S., Laurenza, R., Ottaviani, C., Banchi, L.: Fundamental limits of repeaterless quantum communications. Nat. Commun. 8(1), 1–15 (2017)

    Article  Google Scholar 

  28. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

    Article  MathSciNet  Google Scholar 

  29. Robertson, H.P.: The uncertainty principle. Phys. Rev. 34(1), 163 (1929)

    Article  ADS  Google Scholar 

  30. Salvail, L., Peev, M., Diamanti, E., Alléaume, R., Lütkenhaus, N., Länger, T.: Security of trusted repeater quantum key distribution networks. J. Comput. Secur. 18(1), 61–87 (2010)

    Article  Google Scholar 

  31. Sasaki, M., Fujiwara, M., Ishizuka, H., Klaus, W., Wakui, K., Takeoka, M., Miki, S., Yamashita, T., Wang, Z., Tanaka, A., et al.: Field test of quantum key distribution in the tokyo qkd network. Opt. Express 19(11), 10387–10409 (2011)

    Article  ADS  Google Scholar 

  32. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81(3), 1301 (2009)

    Article  ADS  Google Scholar 

  33. Shi, S., Qian, C.: Concurrent entanglement routing for quantum networks: Model and designs. In: Proceedings of the Annual conference of the ACM Special Interest Group on Data Communication on the applications, technologies, architectures, and protocols for computer communication, pp. 62–75 (2020)

  34. Simon, C., Afzelius, M., Appel, J., de La Giroday, A.B., Dewhurst, S., Gisin, N., Hu, C., Jelezko, F., Kröll, S., Müller, J., et al.: Quantum memories. The Eur. Phys. J. D 58(1), 1–22 (2010)

    Article  ADS  Google Scholar 

  35. Stacey, W., Annabestani, R., Ma, X., Lütkenhaus, N.: Security of quantum key distribution using a simplified trusted relay. Phys. Rev. A 91(1), 012338 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  36. Wang, H., Zhao, Y., Li, Y., Yu, X., Zhang, J., Liu, C., Shao, Q.: A flexible key-updating method for software-defined optical networks secured by quantum key distribution. Opt. Fiber Technol. 45, 195–200 (2018)

    Article  ADS  Google Scholar 

  37. Wehner, S., Elkouss, D., Hanson, R.: Quantum internet: a vision for the road ahead. Science. 362, 6412 (2018)

    Article  MathSciNet  Google Scholar 

  38. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299(5886), 802–803 (1982)

    Article  ADS  Google Scholar 

  39. Xu, F., Curty, M., Qi, B., Lo, H.K.: Practical aspects of measurement-device-independent quantum key distribution. New J. Phys. 15(11), 113007 (2013)

    Article  ADS  Google Scholar 

  40. Zhao, Y., Cao, Y., Wang, W., Wang, H., Yu, X., Zhang, J., Tornatore, M., Wu, Y., Mukherjee, B.: Resource allocation in optical networks secured by quantum key distribution. IEEE Commun. Mag. 56(8), 130–137 (2018)

    Article  Google Scholar 

  41. Zou, X., Qiu, D., Li, L., Wu, L., Li, L.: Semiquantum-key distribution using less than four quantum states. Phys. Rev. A 79(5), 052312 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support by Anhui Initiative in Quantum Information Technologies under grant No. AHY150300 and Youth Innovation Promotion Association Chinese Academy of Sciences (CAS) under Grant No. Y202093. The datasets generated and analysed during the current study are available from the corresponding author on reasonable request.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaiping Xue.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Xue, K., Jia, Q. et al. A cluster-based networking approach for large-scale and wide-area quantum key agreement. Quantum Inf Process 21, 192 (2022). https://doi.org/10.1007/s11128-022-03528-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03528-3

Keywords

Navigation