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Abstract
We develop a method to quantify the superposition state of two different Laguerre–
Gaussianmodes. By analyzing the characteristics of the intensity distribution obtained
in a single measurement, including the petal number, the position and value of the
extremum intensity, one can quantify the angular momentum index, the radial node
index and the superposition coefficient simultaneously. Experimentally, we measure
a series of superposition states, whose angular momentum index ranges from −47
to 53, radial node index from 0 to 3 and superposition weight from 0.1 to 0.9. The
average trace distance and the mean fidelity of these states are lower than 0.053 ±
0.001 and higher than 0.982 ± 0.002, respectively. Our method can further obtain
the superposition coefficient compared with previous mode verification ones and can
reduce the number of measurement settings compared with the traditional quantum
state tomography, thus more applicable in practice.
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1 Introduction

Orbital angular momentum (OAM), a new fundamental degree of freedom of photons,
has attracted increasing attention since it was discovered [1]. Its orthogonal eigen-
state is theoretically infinite, and each eigenstate can be employed to encode different
information. Thus, high-dimensional OAMs, especially their superposition states, can
greatly improve the capacity and speed of optical communication [2–4], enhance the
security of quantum information processing [5–8] and realize super-resolution imag-
ing [9–11] as well as high-precision measurement [12–14]. Vortex beams carrying
OAMs, which have special spiral phase structure and hollow intensity distribution,
can be also used for particle manipulation [15–19]. As the most typical representative
of vortex beam, Laguerre–Gaussian (LG) beam is characterized both by the angular
momentum index l and the radial node index p, which can further increase the dimen-
sion. In addition, LG beam is robust against environmental disturbance and easy to
prepare, making it more practical and widely used in laboratories.

To realize the applications of theLGbeammentioned above, oneof the crucial issues
is how to accurately quantify the parameters of the superposition state encoded in the
vortex beam. These parameters include angular momentum index, radial node index,
superposition coefficient and relative phase. Numerous methods have been developed
to detect the mode indices of vortex beams, such as interference [20, 21], diffraction
[22, 23], mapping OAM into transverse momentum [24, 25] and weak measurement
[26]. However, these methods cannot simultaneously quantify all the parameters of
the superposition state.

In principle, one can obtain all the parameters of the superposition state of LGbeams
with quantum state tomography (QST). It is a powerful method that can reconstruct
the full quantum state from suitable measurements, which is mainly adopted in the n
qubits and n qutrits systems [27, 28]. Nevertheless, scaling QST to high-dimensional
LG beam system is challenging due to the following reasons. First, with the increase
in the dimension d, the number of measurement settings required by QST grows as
d2n−1, where n is the size of quantum system. Second, it is not clear how to find the
appropriate measurements in a large d-dimensional system to reconstruct its state.
Third, during the state tomography procedure, one needs to convert the LG mode into
the fundamental mode of the single-mode fiber efficiently. This is difficult to achieve
in the long distance communication process because of environmental disturbance.
Thus, it is necessary to find an efficient and reliable method to fully quantify the
high-dimensional superposition state of LG beams.

In this paper, we propose a method to directly quantify the superposition states of
two different LG modes. Based on the analysis of the characteristics of the intensity
distribution, including the petal number, the position and the value of the extremum
intensity, we establish a theoretical relationship between the above characteristics and
the state parameters wewant to obtain then demonstrate it experimentally. Our paper is
organized as follows. In Sect. 2, we present the theoretical analysis and concrete steps
used to quantify the superposition state. It is divided into two situations: in one case,
the absolute values of angular momentum indices are different and the radial node
indices are equal to zero; in another case, the absolute values of angular momentum
indices are equal and the radial node indices are unequal. In Sect. 3, we demonstrate
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the practicability of our method. The average trace distance and mean fidelity of the
quantified quantum states are lower than 0.053± 0.001 and higher than 0.982± 0.002,
respectively. In Sect. 4, we discuss our results and point out future directions.

2 Theoretical model andmethods

The superposition state of two different LG modes with the same waist radius can be
represented as

|ψsp〉 = sinθ |l1, p1〉 + cosθeiφ |l2, p2〉,
θ ∈ [0, π/2], φ ∈ [0, 2π ], (1)

where |l, p〉 =
√

2p!
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)|l|exp(−r2
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ilϕ − iξz) is the normalized complex amplitude of a single LG mode [1] with angular

momentum index l and radial node index p, ωz = ω0

√
1 + z2/z2R is the radius of the

beam at an arbitrary propagation distance z, k = 2π/λ is thewave vector, zR = πω2
0/λ

is the Rayleigh range, ξz = (2p + |l| + 1)arctan(z/zR) is the Gouy phase. And the
intensity distribution of the superposition state can be expressed as

I = sin2θ I1 + cos2θ I2 + sin2θRe(eiφ〈l1, p1|l2, p2〉), (2)

where I1 = 〈l1, p1|l1, p1〉, I2 = 〈l2, p2|l2, p2〉, 〈l1, p1|l2, p2〉 = √
I1 I2 exp(i(l1 −

l2)ϕ + i�ξz), �ξz = (2p1 − 2p2 + |l1| − |l2|)arctan(z/zR), and Re(u) indicates the
real part of u. Obviously, the intensity distribution of the superposition state is petal
shaped, which arises from the Re(eiφ〈l1, p1|l2, p2〉) term. The azimuthal position of
the extremum intensity is located at ϕn = (nπ −�ξz−φ)/(l1−l2), n = 0, 1 . . . 2|l1−
l2|−1. And the information of the angular momentum index, the radial node index, the
superposition coefficient, as well as the relative phase we want to obtain is included
in the petal number, the position and value of the extremum intensity. Thus, we can
fully quantify the superposition state of two different LG modes presented in Eq. (1)
by analyzing these main characteristics. For simplicity, we concentrate on the case of
φ = 0. The steps to quantify the superposition state are divided into the following two
cases.

Case 1 |l1| �= |l2|.
First, we can obtain the possible combinations of (l1, l2) according to the observed
number of interference petals N located on the same circle.With the azimuthal position
of the extremum intensity, it is easy to demonstrate N = |l1 − l2|. When l1l2 < 0,
the number of the possible combinations of (l1, l2) is equal to N − 1 if N is odd,
otherwise it is equal to N − 2. The minimum angular momentum index min(|l1|, |l2|)
lies in [1,Round(N/2)], i.e., min(|l1|, |l2|) ∈ [1,Round(N/2)], where Round(u)

means rounding u down to the nearest integer. On the other hand, if l1l2 > 0, the
number of the possible combinations of (l1, l2) is infinite; thus, we need to limit it with
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the radial position of the maximum intensity rm . Since rm ∈ [ωz
√|l1|/2, ωz

√|l2|/2],
2r2m/ω2

z − N < min(|l1|, |l2|) < 2r2m/ω2
z , see Appendix A for more details. Thus,

combining the azimuthal and radial position of the maximum intensity, we can obtain
the number of the possible combinations of (l1, l2), which is equal to 3N − 1 if N is
odd; otherwise, it equals to 3N − 2.

Second, in order to find the closest combination of (l1, l2) to the actual prepared
value from above 3N − 1 (or 3N − 2) possible combinations, we define an evaluation
function γ with the experimental extremum intensity (I emax , I

e
min) and the theoretical

intensity (I1, I2) of the selected combination of (l1, l2), which is shown as follows

γ =
∣∣∣∣∣∣
(√

I emax + √
I emin

2
√
I1

)2

+
(√

I emax − √
I emin

2
√
I2

)2

− 1

∣∣∣∣∣∣ . (3)

Theoretically, γ = 0 when the selected combination is consistent with the actual one,
see Appendix B for more details.

Third, due to the symmetry of the intensity distribution, for arbitrary l, the intensity
distribution of |l, 0〉 equals to that of | − l, 0〉. Thus, the γ ’s values of (l1, l2) and
(−l1,−l2) are the same and only the value of (|l1|, |l2|) can be obtained by Eq. (3).
However, noting that the azimuthal position of the maximum intensity of (l1, l2) and
(−l1,−l2) is symmetrical with respect to the x axis, the mode of superposition state
can be further determined uniquely, since only one combination of (l1, l2) coincides
with the observed extremum position.

Finally, combining the determined (l1, l2) from above steps with the correspond-
ing theoretical extremum intensities I emax = (sinθ

√
I1 + cosθ

√
I2)2 and I emin =

(sinθ
√
I1 − cosθ

√
I2)2, we can also obtain the parameter of the superposition coeffi-

cient θ through the following formula

θe = arcsin

√
α(1 + √

β)√
α(1 + √

β)2 + (1 − √
β)2

, (4)

where α = I2/I1, β = I emin/I
e
max . Thus, we can fully quantify the superposition state

with the above four steps, which are shown in Fig. 1.

Case 2 |l1| = |l2|
In this case, l1, l2 can be quantified directly by the position of maximum intensity with
ωz

√|l1| if l1 = l2, or by the number of petals with N = |l2 − l1| if l1 �= l2. But it is
impossible to obtain the superposition parameter θ when p1 = p2 since the intensity
distribution of (l1,−l2) and (−l1, l2) is the same. On the other hand, if p1 �= p2, the
azimuthal positions of extremum intensity are symmetrical about x axis, see Appendix
C for more details. The maximum number of the possible combinations of (p1, p2)
can be obtained by the number of the interference ring along the radial direction
M , i.e., max(p1, p2) = M − 1. When p1 > p2, p1 = M − 1, p2 ∈ [0, M − 1);
otherwise p2 = M − 1, p1 ∈ [0, M − 1). Thus, the maximum number of the possible
combinations of (l1, p1) and (l2, p2) is 2M − 2 when |l1| = |l2| and p1 �= p2.

123



Accurately quantifying the superposition... Page 5 of 11 90
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Fig. 1 Method to quantify the superposition state of two different LG modes with a single intensity distri-
bution measurement. The light red boxes represent the characteristics of the intensity distribution used in
each step. The blue boxes represent the obtained information after each step (Color figure online)

Then, with the steps similar to case 1, the superposition state shown in Eq. (1) can be
obtained.

To quantify the accuracy of our method, we introduce the assemblage trace distance
D and fidelity F between the experimentally quantified state ρe and the theoretical
state ρt , which are defined as [29]

D = 1

2
Tr(|ρe − ρt |), F =

(
Tr

√√
ρeρt

√
ρe

)2

. (5)

3 Experimental setup and results

Figure 2 schematically depicts the experimental setup to generate and quantify the
superposition state of LG beam. A TEM00 mode 405-nm laser (Toptica DLC pro) is
focused on a 15mm long type-II periodically poledKTiPO4 (PPKTP) crystal through a
lens f1=75 mm to produce spontaneous parametric down-conversion (SPDC) photons
at the central wavelength of 810 nm. The down-converted photons are collimated with
another lens f2=75mmandfiltered by an interferencefilter (IF) centered at 810nmwith
a bandwidth of 3 nm (LL01-810, Semrock). In our experiment, the polarization of the
pump light is set to the horizontal direction and the power to 2mW. The corresponding
brightness of the SPDC photons reaches 100, 000 pairs/s. After separating them with
a polarization beam splitter (PBS), the idler photon is directly detected by a single-
photon avalanche detector (SPAD). The detected electronic signal is used as a trigger
for the camera that images the signal photon. To make sure the detection is made in
time, the signal photon is delayed by a 85 m long single-mode fiber. After passing
through lenses f3=50 mm and f4=100 mm, it is expanded to 3 mm and collimated
to a reflective phase-only SLM (X13138, Hamamatsu) with 1272×1024 pixels (12.5
μm pixel pitch) to generate any states given in Eq. (1). A pair of half-wave plates
before the fiber couplers is used to modify the polarization to optimize the diffraction
efficiency of SLM. The intensity distribution of the generated states is captured by a
time-resolved enhanced camera (TRC411-S-GS-F) of 1600×1088 pixels (9 μm pixel

123



90 Page 6 of 11 Y. Xiao et al.

Fig. 2 Experimental setup. A TEM00 mode 405-nm laser (Toptica DLC pro) is focused on a 15-mm-
long type-II PPKTP crystal to generate the SPDC photons. The polarization of the pump light is set to
the horizontal direction and the power to 2 mW. The SPDC photons are filtered by an interference filter
centered at 810 nmwith a bandwidth of 3 nm (LL01-810, Semrock). The brightness is about 100, 000 pairs/s
when the PPKTP crystal is operated at the degenerate temperature of 31.00± 0.01◦C. After separating the
SPDC photons with a polarization beam splitter, the idler photon is directly detected by a single-photon
avalanche detector. The detected electronic signal is used as a trigger for the camera that images the signal
photon. A 85-m-long single-mode fiber is utilized to delay the signal photon to meet the detecting time
in the time-resolved enhanced camera. The lenses systems f3 and f4 expand the beam to make full use
of the area of SLM to generate different perfect supposition states of LG beam. As SLM is polarization
sensitive, the half-wave plates located before the fiber couplers optimize the diffraction efficiency. The
intensity distribution of the generated LG beam is detected by a time-resolved enhanced camera

pitch) which is located at the focal plane of lens f5=500 mm. The captured intensity
image is used to quantify the prepared superposition state.

Here, we take (| − 3, 0〉 + |4, 0〉)/√2 as an example to present the concrete steps
to quantify the prepared state with the experimentally observed intensity distribution,
as shown in Fig. 3a. First, we binarize the intensity distribution by employing the
maximum inter class variance method [30] to get the petal number. Tomore accurately
determine the position and value of the extremum intensity, we take each pixel as
the center and divide the intensity distribution into many subregions with a size of
5 × 5 pixels. For a given petal, the position of maximum intensity is considered to
be the center of its maximum average intensity subregion, which is marked as a red
square in Fig. 3a. Theoretically, these squares are on the same circle. Using the least
square method to minimize the algebraic distance, we get a fitting circle with radius
of r = 49.5 pixels. The relative residual of the fitting circle is 0.073. The maximum
and minimum intensities I emax and I emin can also be determined from multipeak fitting
analysis, see Fig. 3b.With these extremum intensities andEq. (3),we then can calculate
the values of evaluation function of all possible combinations of (|l1|, |l2|), which
are shown in Fig. 3c. Obviously, the smallest difference between experimental and
theoretical intensity distribution is achieved at |l1| = 3 and |l2| = 4. It means the
combination of (l1, l2) of the prepared state is (−3, 4) or (3,−4). By comparing the
azimuthal position of the experimental extremum intensity with that of the theoretical
extremum intensity, we can further obtain l1 = −3 and l2 = 4. Submitting them into
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Fig. 3 Experimental results obtained after each quantification step for the prepared supposition state (| −
3, 0〉 + |4, 0〉)/√2. a The experimentally observed normalized intensity distribution. The white circle
represents thefittedpositionof themaximum intensitywhose radius is equal to 49.5 pixels.bThe relationship
between the normalized intensity and the azimuthal angle on the fitted circle. c and d The corresponding
values of evaluation function γ under different combinations of |l1|, |l2|. Error bars are estimated by the
Poissonian statistics of two-photon coincidences, which are about 0.001 in our experiment

Eq. (4), we finally get θe = 0.784, which is very close to the theoretical value π/4.
The fidelity of our quantified state is 0.991 ± 0.007.

We further analyze the second minimum value of the evaluation function and the
Gouy phase corresponding to the maximum intensity with 48 different superposition
states with l1 spanning from−3 to 3, l2 from−5 to 5 when p1 = p2 = 0 and θ = π/4.
Figure 4a and d presents the minimum value of the evaluation function γ and the ratio
of its minimum value to the sub minimum value κ . The smaller the value is, the more
accurately the angular momentum indices combination can be obtained. The ratio of

the Gouy phases of high-order mode to the zero-order mode η = �ξz/arctan(
z

zR
) is

shown in Fig. 4b and e. Obviously, the experimental results agree well with the theory,
which further confirms the feasibility of our method. Figure 4c and f presents the
trace distances between the quantified states and their corresponding theoretical states,
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Fig. 4 Experimental results of different combinations of (l1, l2) with θ = π/4. a, d The minimum value of
the evaluation function γ and the ratio of its minimumvalue to the subminimumvalue κ . b, eThe ratio of the

Gouy phases of high-order superposition mode to the zero-order superposition mode η = �ξz/arctan(
z

zR
).

c, f The trace distances between the quantified states and their corresponding theoretical states. The dashed
lines represent the corresponding average values. Error bars are estimated by the Poissonian statistics of
two-photon coincidences, which are about 0.001

whose average values are 0.059 ± 0.001 and 0.047± 0.001, respectively, indicating a
high accuracy of the quantified state.

In order to demonstrate the universality of our method, we increased the superposi-
tion weight sin2θ from 0.1 to 0.9 in steps of 0.2. As shown in Fig. 5a and b, the average
fidelity of these states is 0.987± 0.004. In addition, we also test a series of states with
large angular momentum index and non-zero radial node index. The experimental
results are shown in Fig. 5c and d, respectively. Due to the influence of environmental
noise, the interference visibility will decrease with the increase in the mode indices.
However, larger indices provide more petals, which can give more information about
the extreme intensity; thus, the average fidelity of these states quantified by ourmethod
is still remaining above 0.982± 0.002.

4 Discussion and conclusion

In this work, we theoretically develop and experimentally demonstrate that it is feasi-
ble to directly quantify the superposition state of two different LG modes by a single
intensity distribution measurement. By analyzing the characteristics of the intensity
distribution, including the petal number, the position and the value of the extremum
intensity, we present the concrete steps which quantify the superposition state. Exper-
imentally, we measure a series of superposition states with the angular momentum
index ranging from −47 to 53, the radial node index from 0 to 3 and the superposi-
tion weight from 0.1 to 0.9. The average trace distance of these states is lower than
0.053± 0.001 and their mean fidelity is higher than 0.982± 0.002, demonstrating the
reliability of our method in different high-dimension space.
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(a) (b)

(c) (d)

Fig. 5 a Fidelities of different superposition states with four petals and l1l2 > 0 (a), with seven petals
and l1l2 < 0 (b), with large angular momentum index (c), as well as non-zero radial node index d All the
fidelities of these states are above 0.974. Error bars are estimated by the Poissonian statistics of two-photon
coincidences, which are about 0.001

Compared with the previous mode quantification methods, our method can further
quantify the superposition weight of various modes present in the vortex beam, which
has potential application in mode demultiplexing [31]. In addition, our method just
needs to record the intensity distribution, which can mitigate the difficulties appearing
in the traditional QST, such as finding the appropriate measurement operator, con-
ducting exponential growth measurements in high dimension as well as converting
the LG mode into the fundamental mode of the single-mode fiber. In summary, our
method is more practicable.

What’s more, with the help of machine learning, our method can be extended to
more general scenarios involving more modes or mixed states. We will carry out these
researches in the near future.
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