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Abstract
Quantum steering, a type of quantum correlation with unique asymmetry, has impor-
tant applications in asymmetric quantum information tasks. We consider a new
quantum steering scenario in which one half of a two-qubit Werner state is sequen-
tially measured by multiple Alices and the other half by multiple Bobs. We find that
the maximum number of Alices who can share steering with a single Bob increases
from 2 to 5 when the number of measurement settings N increases from 2 to 16. Fur-
thermore, we find a counterintuitive phenomenon that for a fixed N , at most 2 Alices
can share steering with 2 Bobs, while 4 or more Alices are allowed to share steering
with a single Bob. We further analyze the robustness of the steering sharing by calcu-
lating the required purity of the initial Werner state, the lower bound of which varies
from 0.503(1) to 0.979(5). Finally, we show that our both-sides sequential steering
sharing scheme can be applied to control the steering ability, even the steering direc-
tion, if an initial asymmetric state or asymmetric measurement is adopted. Our work
gives insights into the diversity of steering sharing and can be extended to study the
problems such as genuine multipartite quantum steering when the sequential unsharp
measurement is applied.
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1 Introduction

Quantum steeringwas first proposed by Schrödinger in 1936 [1] in response to the EPR
paradox [2]. However, it did not attract much attentions until 2007, when Wiseman et
al. reinterpreted quantum steering strictly from the operational view and even proposed
some experimental criteria [3]. Ever since, the research of quantum steering has made
great progress both in theory [4,5] and experiment [6–10]. In Wiseman’s definition,
quantum steering that logically intermediates between quantum entanglement andBell
nonlocality, describes the ability of one party, Alice, to nonlocally control the state
of another party, Bob, even when Bob does not trust Alice’s measurement apparatus,
exhibiting unique asymmetric behavior [11–14]. As an essential type of quantum
correlations, quantum steering has great applications in quantum key distribution [15,
16], subchannel discrimination [17], asymmetric quantum network [18], randomness
generation [19,20] and randomness certification [21]. In the standard EPR steering
tasks, N entangled particles are separately distributed to N different observers and each
observer performs some projective (sharp) measurements to demonstrate her or his
steerability. Since each observer is spatially separated, the non-signaling condition is
strictly satisfied between different observers, i.e., the marginal probability distribution
of each observer does not depend on themeasurements of any other observers [22].Due
to the monogamy constraints, the number of observers who share quantum correlation
via sharp measurement is limited [23–26]. Recently, a surprising result was reported
by Silva et al. that the number of observers sharing non-locality can be increased if
the sequential weak (unsharp) measurement was employed, where the non-signaling
condition is dropped [27]. Their result later is confirmed by theoretical [28–30] as well
as experimental works [31,32], and the sequential unsharp measurement strategy has
been extended to study other types of quantum correlation [33–35]. It has shown that
the maximum number of Alices who can simultaneously share steering with a single
Bob can also beat the steering monogamy limits [36–38].

However, all the steering sharing scenarios [36,38] investigated till now have the
following commonalities: the initial shared state is restricted to be the maximum
entangled state, the sequential unsharp measurement is only adopted by one side,
and the number of measurement settings is not more than 3. Thus, some interesting
questions raise:whether or not the steering correlation canbekeptwhen the shared state
is not pure anymore? If there existmultiple observers on both sides, canmultipleAlices
steer multiple Bobs simultaneously? Compared to the single Bob case, do multiple
Bobs make a difference? And how many observers can share steering simultaneously
if the number of measurement settings increases?

In this work, we consider a more general sequential steering scenario featuring
that unsharp measurements are sequentially performed on both sides. We investigate
how many pairs of Alice and Bob can sequentially demonstrate steering in the above
scenario when each party performs N -setting equal sharpness measurements. With
the N -setting linear steering criterion [39], we find no more than 5 Alices can steer
a single Bob for a Werner state when N increases from 2 to 16. Then, we show
how such sequential steering sharing scenarios tolerate the environmental noise and
experimental imperfections by analyzing the useful sharpness measurement range of
each observer and the minimum purity bound of the initial state. Furthermore, we
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Fig. 1 The scenario of steering sharing with multiple observers on both sides. A two-qubit entangled state is
initially shared between a sequence of Alices and Bobs. Multiple Alices implement unsharp measurements
on one part of the state successively, and multiple Bobs do similar operations on the other part

explore the case when multiple Bobs involved in, reporting a counterintuitive result
that at most 2 Alices can steer 2 Bobs even the number of steering sharing observers
larger than 4 in the single Bob case. Finally, we show that our scenario can be used to
simulate quantum decoherence channels to effectively change the ability and direction
of quantum steering. Our results not only reveal the rich structure of steering sharing
but also can be applied to more general scenarios involving high dimension or genuine
multipartite quantum steering [12].

2 The both-sides sequential steering sharing scenario

A schematic of steering sharing scenario with both sides sequential unsharp measure-
ments is shown in Fig. 1. A pair of two-qubit entangled state ρAB is sent to multiple
pairs of spatially separated observers. One of the qubits is accessed by m Alices, say,
A1, A2,…, Am , while the other qubit is possessed by n Bobs, say, B1, B2,…, Bn .
To demonstrate the steering between multiple Alices and Bobs at the same time, all
observers except the last Alice and Bob should perform unsharp measurements; other-
wise, the steerability will be completely destroyed. For convenience, we assume that
the sharpness of the N -setting measurements that each observer used is equal, which
is denoted as λi and ηp for the i-th Alice and the p-th Bob, respectively. Thus, their

corresponding N -setting measurements can be represented by {�̂λi
m1 , �̂

λi
m2 ,…, �̂λi

mN }
and {�̂ηp

n1 , �̂
ηp
n2 ,…, �̂

ηp
nN }, where mk and nk represent the measurement directions

with k ∈ {1, . . . , N }, i ∈ {1, . . . , m}, p ∈ {1, . . . , n}, λi ∈ [0, 1] and ηp ∈ [0, 1].
λi (ηp) = 0 corresponds to no measurement, λi (ηp) = 1 implies the measurement
is sharp, and λi (ηp) ∈ (0, 1) means it is unsharp. It has been demonstrated that an
unsharp measurement is optimal when quality factor F and the precision G of the
measurement satisfy the trade-off relation F2 + G2 = 1 [27]. Here, each observer
adopts the optimal measurement strategy.

In the first step, suppose A1 wants to convince B1 that she can remotely affect his
state through local measurements. However, B1 does not trust her, so he asks A1 to
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perform a measurement along mk . After each run of experiment, A1 sends B1 the
corresponding outcome ak ∈ {0, 1} and sends A2 the post-measurement state, which
can be described by the Lüders ruler [40]

ρAB → (K λ1
ak |mk

⊗ IB)ρAB(K λ1†
ak |mk

⊗ IB), (1)

where K λ1
ak |mk

K λ1†
ak |mk

= �̂
λ1
ak |mk

= (IA + (−1)akλ1mk · σ )/2, σ = {σx , σy, σz} is the
Pauli matrix, and IA (IB) is the identity matrix. Repeating the process many times,
when A1 finishes all the N -setting measurements, B1 will obtain 2N conditional
states. Then, B1 performs some measurements along {n1,n2, . . . ,nN } to analyze
whether these conditional states can be described by a local hidden variable state
(LHS) model. If they cannot, B1 is convinced that A1 can steer his state, and vice
versa. Here, we certify the steering sharing by violating themostwidely used N -setting
linear steering inequality [39], which is defined as S1,1N ≤ CN for A1 and B1, where

S1,1N ≡ 1
N

∑N
k=1〈�̂λ1

mk �̂
η1
nk 〉 = Tr[ρAB (�̂

λ1
ak |mk

⊗ �̂
η1
bk |nk )], bk is B1’s measurement

result, CN is the maximum value of SN , which can have if the LHS model exists. On
the other hand, as A1 is assumed to act independently, thus the state shared between
A2 and B1 should be averaged over A1’s outputs, i.e.,

ρ
2,1
N =

N∑

k=1

1∑

ak=0

(K λ1
ak |mk

⊗ IB)ρAB(K λ1†
ak |mk

⊗ IB). (2)

Similarly, the state shared between A1 and B2 can be described by

ρ
1,2
N =

N∑

k=1

1∑

bk=0

(IA ⊗ K η1
bk |nk )ρAB(IA ⊗ K η1†

bk |nk ). (3)

Suppose B1 wants to show steering with A2 in the next step. They can verify it
by calculating the steering parameter S2,1N ≡ 1

N

∑N
k=1〈�̂λ2

mk �̂
η1
nk 〉=Tr[ρ2,1 (�̂

λ2
ak |mk

⊗
�̂

η1
bk |nk )]. If it is larger than CN , then B1 succeeds; otherwise, he fails. Considering

the first pair Alice and Bob (A1 and B1) have implemented the matched measurement
(when A1 performs a measurement along mk , and B1 should measure along the nk),
the average state shared between A2 and B2 can be expressed as:

ρ
2,2
N =

N∑

k=1

1∑

ak=0
bk=0

(K λ1
ak |mk

⊗K η1
bk |nk )ρAB(K λ1†

ak |mk
⊗K η1†

bk |nk ). (4)

Acting in analogy with the above process, at any step the state ρ
i,p
N shared between

the i-th Alice and the p-th Bob can be obtained by averaging over the previous
observers’ measurements with the help of the Lüders transformation rule. The corre-
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sponding steering criterion can be written as:

Si,pN ≡ 1

N

N∑

k=1

〈�̂λi
mk

�̂
ηp
nk 〉 ≤ CN , (5)

where 〈�̂λi
mk �̂

ηp
nk 〉 = Tr[ρi,p (�̂

λi
ak |mk

⊗ �̂
ηp
bk |nk )]. Thus, we can investigate the behav-

ior of quantum steering under sequential measurements by comparing the steering
parameter with the classical bound in the same measurement setting.

3 Sharing the steering of an initial Werner state

Noting that the environmental effects may turn a pure state into a mixed one and con-
sidering the imperfection of the experimental device, one cannot prepare a maximum
entangled pure state. Here, we takeWerner state, the best-known class of mixed entan-
gled states, as an example to investigate the steering sharing among multiple Alices
and Bobs with the aid of steering criterion shown in Eq. (5). For qubits, the Werner
state is given by [41]

ρ (μ) = μ|ψ〉〈ψ | + (1 − μ)
I

4
, (6)

where |ψ〉= 1√
2
(|01〉−|10〉) is the singlet state, I is the identity matrix andμ ∈ [0, 1].

According to the symmetrical property of the state, it has been demonstrated that
the optimal measurement settings for any Alice and Bob are defined by the directions
through antipodal pairs of vertices of a regular polyhedron [42]. Thus, we can get
2, 3, 4, 6, 10 measurement settings from the square, octahedron, cube, icosahedron,
and dodecahedron, respectively. And it can be further increased by combining the
measurement directions from above five regular polyhedrons. In combination with the
measurement directions of the icosahedron and dodecahedron, the 16 measurement
settings can be obtained [43].

For the case of multiple Alices and a single Bob, the state sharing among the i-th
Alice and the single Bob in the case of N = 2 settings becomes

ρ
i,1
2 =

⎛

⎜
⎜
⎝

1−x
4 0 0 −x+z

4
0 1+x

4 − x+z
4 0

0 − x+z
4

1+x
4 0

−x+z
4 0 0 1−x

4

⎞

⎟
⎟
⎠ , (7)

where x = 1
2i−1 μ

∏
1≤ j≤i−1(1+

√
1−λ j

2) ∈ [0, 1] and z = μ
∏

1≤ j≤i−1(
√
1−λ j

2) ∈
[0, 1], i ∈ {1, 2, . . . ,m}. The j is positive integer, and its minimum value is 1, while
the shared state for N ≥ 3 settings keeps the Werner state’s form:

ρ
i,1
N = μ′|ψ〉〈ψ | + (1 − μ′) I

4
, (8)
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where μ′ = 1
3i−1 μ

∏
1≤ j≤i−1(1+ 2

√
1−λ j

2) ∈ [0, 1]. Obviously, the shared state of
each step remains symmetrical; thus, the N -setting steering inequality Eq. (5) is a
sufficient and necessary criterion, which can be rewritten as:

Si,12 = 1

2i−1
μλiη1

∏

1≤ j≤i−1
(1+Fλ j ), (9)

for N =2 settings and

Si,1N = 1

3i−1
μλiη1

∏

1≤ j≤i−1
(1+ 2Fλ j ), (10)

for N ≥ 3 settings. Fλ j=
√
1−λ j

2 represents the quality factors of related measure-
ments. Similarly, the case of a single Alice and multiple Bobs can also be calculated.

For the case of multiple Alices and Bobs, considering the previous pair of observers
adopting the matched measurements (if the Alice performs a measurement along
mk , the Bob should measure along the nk) to verify their state’s steering ability;
here, we choose the optimal method to calculate the state shared by the i-th Alice
and the p-th Bob, which can maximize the value of the steering parameter. We
take the case that i ≥ p > 1 for example, the shared state among the current i-
th Alice and p-th Bob for N = 2 settings is same as the form of Eq. (7), while
the values of x, z change to 1

2i−1 μ
∏

1≤ j≤p−1(1+ Fλ j+i−pFη j )
∏

1≤l≤i−p(1+ Fλl ) ∈
[0, 1],μ∏

1≤ j≤p−1 Fλ j+i−pFη j

∏
1≤l≤i−p Fλl ∈ [0, 1], respectively. Then, the steering

parameter can be written as:

Si,p2 = 1

2i−1
μλiηp

∏

1≤ j≤p−1
(1+Fλ j+i−pFη j )

∏

1≤l≤i−p

(1+Fλl ), (11)

where the l is positive integer.
When N ≥3, their shared state still follows theWerner state’s form of Eq. (8), where

μ′ = 1
3i−1 μ

∏
1≤ j≤p−1(1+2Fλ j+i−pFη j )

∏
1≤l≤i−p(1+2Fλl ) ∈ [0, 1]. And the steering

parameter becomes

Si,pN = 1

3i−1
μλiηp

∏

1≤ j≤p−1
(1+2Fλ j+i−pFη j )

∏

1≤l≤i−p

(1+2Fλl ). (12)

The other case that p ≥ i > 1 can be obtained with the same method.
Obviously, the unsharp measurement strategy used here is optimal. For Werner

state, the classical bound CN = {1/√2, 1/
√
3, 1/

√
3, 0.5393, 0.5236, 0.503, 0.5}

when N = {2, 3, 4, 6, 10, 16,∞}, respectively [42,44]. Since the classical bound of
N = 16 is very close to that of infinite measurement settings, we implement N =
{2, 3, 4, 6, 10, 16} to investigate the behavior of quantum steering in this work.
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Fig. 2 The relationship between the maximum number of Alices Nmax
A who can share steering with a single

Bob and the number of measurement settings N

3.1 Multiple Alices and a single Bob

Firstly, we take multiple Alices and a single Bob as an example to explore how many
observers in one part can simultaneously steer the state of a single observer in the other
part in different settings. It is obvious that the steering parameter increases with the
increase in current measurement sharpness and the decrease in previous measurement
sharpness. Since the previousmeasurementmay decrease the steerability of the current
shared state, the measurement sharpness of the latter Alices would be increased to
obtain enough information to show their steerability, i.e., λ1 < λ2 <, · · · ,< λm . And
the steering sharing process can continue, with each latter Alice and Bob being able
to violate steering inequality with the average shared state obtained from the previous
stage, as long as λi <1 and η1<1. From this condition, one can obtain the maximum
number of Alices Nmax

A who can share steering simultaneously with a single Bob.
The result is presented in Fig. 2. It is obvious that as the number of measurement
settings N increases, the overall tendency of Nmax

A rises. We find at most 5 Alices can
simultaneously steer Bob’s state when the number of measurement setting reaches
16. Interestingly, for some special case Nmax

A remains the same even if N increases
(such as N =3, 4, or N =6, 10). Note that it was conjectured in Ref. [36] that at most
N Alices can exhibit steering with a single Bob by the violation of N -setting linear
inequality. From our results, it seems that this conjecture is not true.

We further calculate the useful sharpness parameter regions for all possible sharing
scenarios with the maximally entangled initial state. The results are summarized in
Table 1. Here, we assume Bob performs sharp measurements when NA ≥ 3 and the
final Alice also performs sharp measurements when NA ≥ 2, while in other cases, the
observer’s measurements are unsharp. It clearly indicates that the useful measurement
sharpness interval of these observers decreases with the number of Alices increasing
and the number of the measurement settings decreasing. For the case of 2 Alices and
a single Bob, we find the ranges of the first Alice’s sharpness λ1 and the first Bob’s
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sharpness η1 are, respectively, expanded about 2.3 and 2.9 times, as the number of
measurement settings increases from 2 to 16, making it easier to apply directly to
experiments.

It should be noted that all the above results are restricted to a pure initial shared state.
Considering the decoherence effect of environmental noise and the imperfection of
the experimental device, we further investigate whether or not the steering correlation
can be kept when the shared state is not pure any more. We find that it can be kept
indeed. The minimum purity bound of the initial state μmin is presented in the last
column of Table 1. Obviously, for any possible steering sharing scenarios, there exist
a finite continuous range of purity such that these Alices can share steering with Bob.
And for a fixed number of observers, the more measurement settings, the greater the
purity range and the stronger the robustness.

3.2 Multiple Alices and Bobs

In the previous section, we get the number limitation of Alice who can demonstrate
steering with a single Bob. Now, we address the question of whether these Alices can
further share steering with more Bobs. We find that it is not possible to increase the
number of Bobs when the number of Alices reaches the maximum value in the single
Bob scenario. However, we can reduce the number of observers on the one side to
increase that on the other side and then make it possible that multiple Alices show
steering with multiple Bobs. Counterintuitively, we find that at most 2 Alices can be
simultaneously steered by 2 Bobs in the multiple Alices and Bobs scenario even if the
total number of steering shared observers in the single Bob scenario is greater than 4
(see “Appendix” for more details).

Taking the first two Alices and Bobs as an example, the 2 Alices and 2 Bobs
successful steering sharing scenario is depicted Fig. 3a and the relationship between
the steering parameters and sharpness parameters in the case of 3-settingmeasurements
and 16-setting measurements is presented Fig. 3b and c. The yellow region represents
the valid ranges of λ1 and η1 where 2 Alices and 2 Bobs share steering at the same
time. Due to the symmetrical property of the state, λ1 and η1 have the same ranges.
For the 3-setting measurements, they both are [0.756(1), 0.802(5)] which is much
smaller than the valid ranges of λ1 and λ2 in the case of 3 Alices and a single Bob
with the samemeasurement settings, indicating it is harder to sharing quantum steering
betweenmultiple Alices and Bobs. However, one can improve its robustness by adding
the measurement settings. Figure 3b and c shows that the useful ranges of λ1 and λ2
can be expanded more than 10 times as the measurement settings increase from 3 to
16.

4 Application

Note that if the disturbance caused by the former observer’s measurement is regarded
as noise, our steering sharing protocol can also be applied to investigate the dynamic of
steering in the presence of decoherence [44], such as steering sudden death and revival
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(a)

(b) (c)

Fig. 3 a The schematic diagram for the 2Alices and 2Bobs is displayed via 3 ormore settingsmeasurement.

Here, the arrow indicates the steering direction. b Steering parameters Si,p3 (i = 1, 2, and p = 1, 2) are
presented for 3-setting measurements as a function of λ1 and η1. λ2 = 1 and η2 = 1 indicates that A2 and
B2 implement the sharp measurements. The green, blue, red, and purple lines correspond to S1,13 = C3,

S1,23 =C3, S
2,1
3 =C3, and S2,23 =C3, respectively. The regions where the corresponding colored arrows

point to indicate that the S1,13 , S1,23 , S2,13 , and S2,23 exceed C3, respectively. c Displaying the steering

parameters Si,p16 (i=1, 2, and p=1, 2) for 16-settingmeasurements versus λ1 and η1. Similarly, the regions
where the corresponding colored arrows point tomean that the violation of linear inequality between A1-B1,
A1-B2, A2-B1, A2-B2, respectively. The overlapping regions in b and c colored in yellow demonstrate the
steering sharing among 2 Alices and 2 Bobs (Color figure online)

[45]. Especially, our 3 settings unsharp measurement strategy is essentially equivalent
to the depolarizing channel. By changing the former observer’s measurement sharp-
ness, the steering ability and direction of the current observers can be controlled. For
example, in our 2 Alices and 2 Bobs steering sharing scenario, A2 and B2 can share
steering if {λ1, η1} locates in left side of purple line (S2,23 = C3 ) in Fig. 3b, otherwise
they cannot. If the initial Werner state is replaced by an asymmetric state [13] or A1
and B1 adopt some asymmetric measurements, a tunable {λ1, η1} further allows A2
and B2 to exhibit their steerabilities from both directions to only one direction.
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5 Conclusion and discussion

In thiswork,wediscuss a new steering sharing scenario,where half of an entangled pair
is accessed by a sequence of Alices, and the other half is distributed to multiple Bobs.
We address the question of howmany pairs of Alice andBob can demonstrate quantum
steering by violating the N -setting steering inequality where N = 2, 3, 4, 6, 10, 16.
Contrary to the conjectured proposed by Sasmal et al. [36], we find at most 5 Alices
can steer a single Bob and no more than 2 observers can be steered in the multiple
Alices and Bobs scenario when the sharpness of the N -setting measurements that each
Alice and Bob used is equal. We also provide the useful sharpness parameter ranges
and the minimum purity of the initial state for different steering sharing cases and give
evidence that they increase as the number of observers decreases and the number of
measurement settings increases. The noise robustness of our sharing scenario makes
our results applicable to the experimental demonstration. On the other hand, we show
that our protocol can also be applied to investigate the dynamic of steering in a noise
channel and even control the steering direction.

The shareable steering is a primary resource for some practical and commercial
quantum information processing tasks where the general consumers may not want to
trust their providers, such as, in the context of quantum internet [46], secret sharing
[47], and random number generation [48]. It is thus of importance to further increase
the shareable observers to utilize it for many times which could be realized by adopt-
ing multipartite entangled states [49] or allow the sequential observers in the above
scenario to share some classical information. We will carry out some researches in
these directions in the near future.
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Appendix steering sharing with three Alices and two Bobs

In the third part of themain text, we explore the steering sharing scenario withmultiple
Alices and Bobs. In this case, we find that only 2 Alices can detect steering with 2
Bobs at the same time. Here, we take the first three Alices (A1, A2, A3) and the first
two Bobs (B1, B2) as an example to illustrate why it is impossible to further increase
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(a) (b)

Fig. 4 a The schematic diagram of steering sharing with 3 Alices and 2 Bobs. The arrow indicates the
steering direction, and the lines of the same type (solid or dotted) indicate that the steering can demonstrate
simultaneously, and vice versa. b The region of the violation of 16-setting steering inequality for the
maximum entangled state (μ = 1) with λ3 = 1 and η2 = 1. The yellow region and dark purple area
represent that the three Alices can steer the state of the first Bob and the second Bob, respectively. There
is no overlap which indicates the first three Alices cannot share steering with the first two Bob at the same
time

the number of observers as the number of measurement settings increases to 16. As
shown in Fig. 4b, the yellow region represents the case of A1, A2, A3 can steer the
B1’s state. The dark purple region represents the case of A1, A2, A3 can steer the B2’s
state. It clearly shows that these Alices and Bobs cannot share steering at the same
time, because there is no overlap in the two regions even though they initially share
a maximum entangled state (μ=1) and the last observer at each side performs sharp
measurements (λ3 = 1 and η2 = 1). Thus, for other fewer measurement settings or
mixed initial state, it certainly does not exist steering sharing among 3 Alices and 2
Bobs.
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