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Abstract
In contrast to the standard quantum state tomography, the direct tomography seeks
a direct access to the complex values of the wave function at particular positions.
Originally put forward as a special case of weak measurement, it has been extended to
arbitrary measurement setup. We generalize the idea of “quantum metrology,” where
a real-valued phase is estimated, to the estimation of complex-valued phase. We show
that it enables to identify the optimal measurements and investigate the fundamental
precision limit of the direct tomography. We propose a few experimentally feasible
examples of direct tomography schemes and, based on the complex phase estimation
formalism, demonstrate that direct tomography can reach the Heisenberg limit.

Keywords Tomography · Quantum metrology · Heisenberg limit

1 Introduction

Reconstruction of the quantum state of a system is of vital importance not only in
fundamental studies of quantum mechanics but also in many practical applications
of quantum information technology. The standard way to do it, the so-called quan-
tum state tomography, requires an indirect computational reconstruction based on the
measurement outcomes of a complete set of non-commuting observables on identi-
cally prepared systems [1]. Recently, an alternative method has been put forward and
demonstrated experimentally [2,3]. It has attractedmuch interest because it enables the
complex-valuedwave functions to be extracted directly and, frommany points of view,
in an experimentally less challenging manner. We call this method the direct tomog-
raphy of wave functions. The direct tomography was originally proposed as a special
case of weakmeasurement [2,3]. Later it was extended to arbitrary measurement setup
working regardless of the system-pointer coupling strength [4,5]. More recently, the
direct tomography has been reinterpreted in the so-called probe-controlled system
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framework. The latter allows experimenters for even wider variations of setup such
as scan-free method of direct tomography [6], and in many cases leads to a higher
efficiency. However, the metrological aspects of direct tomography have not been
examined at all.

The statistical nature sets the standard quantum limit on the precision of standard
measurement techniques [7,8]. To reduce the statistical error, one needs to perform
a large number N of repeated measurements. When it comes to direct tomography,
it seems even worse as the post-selection procedure demands even more repetitions.
Recent efforts in quantum metrology have shown new insights to overcome the stan-
dard quantum limit and achieve a higher precision by exploiting quantum resources,
especially, quantum entanglement [7–10]. A great number of measurement strategies
along the line have been proposed and demonstrated experimentally so far [11]. It is
known that a genuine multi-particle entanglement is necessary to achieve the maxi-
mum precision, the so-called Heisenberg limit [10,12].

In this paper, we investigate the ultimate precision of the direct tomography of
wave functions. For the purpose, we generalize the idea of quantum metrology to the
estimation of complex-valued phase. We show that the reformulation enables to iden-
tify the optimal measurements for efficient estimation and investigate the fundamental
precision limit of direct tomography. We further propose two different measurement
schemes that eventually approach theHeisenberg limit. In the firstmethod, the pointers
are prepared in special entangled states, either GHZ-like maximally entangled state or
the symmetric Dicke state. In the other scheme, the ensemble of the measured systems
is duplicated and the replica ensemble is time-reversal transformed before the start of
the measurement.

Note that here we are concerned with the precision of statistical origin concerning
measurement on an ensemble of systems.Anotable exception is the so-called protected
measurement [13,14], where the expectation value of an observable is obtained from
measurement on a single system as demonstrated in a recent experiment [15]. In this
case, a higher precision may be achieved by preparing the pointer in a special state of
minimum uncertainty such as a squeezed state [16].

2 Direct tomography as a phase estimation

In order to investigate the precision limit of the direct tomography of wave functions,
it is convenient to reformulate it as a phase estimation. It allows a clearer picture of
the optimal initial states and measurements and hence more convenient investigation
of the precision limit.

Before the reformulation, we briefly summarize the procedure of direct tomography
[2–4]. Here we follow Ref. [4] and examine the direct tomography beyond weak-
coupling approximation. Consider an unknown pure state |ψS〉 in a d dimensional
Hilbert space and expand it in a given basis {|x〉 |x = 1, · · · , d} as

|ψS〉 =
d∑

x=1

ψx |x〉 . (1)
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A qubit is taken as the pointer and prepared in the state |φin〉. The total wave function
of the system plus the pointer is thus |Ψin〉 = |ψS〉⊗ |φin〉. The direct measurement of
wave function ψx starts by coupling the system with the pointer. The system-pointer
interaction can be described by a unitary operator of the form

Ûx = e−iθ |x 〉〈x |⊗K̂/2 = ( ÎS − |x〉 〈x |) ⊗ ÎP + |x〉 〈x | ⊗ e−iθ K̂/2, (2)

where θ is the system-pointer coupling constant, K̂/2 is a traceless “angular momen-

tum” operator (i.e., e−iθ K̂/2 is a “rotation” operator) on the pointer, and ÎS ( ÎP) is
the identity operator on the system (pointer). The initial state |φin〉 and the coupling
operator K̂ of the pointer are chosen such that 〈φin| K̂ |φin〉 = 0.Metrologically, it cor-
responds to the requirement that the pointer rotates as much as possible in response to
the system-pointer coupling and enables a higher precision [20]. After the interaction,
the system is post-selected on to the state

|p0〉 = 1√
d

d∑

x=1

|x〉 , (3)

which leaves the pointer in the state

|φf〉 = 1√|α|2 + |β|2
(
α ÎP − iβ K̂

)
|φin〉 , (4)

where

α = ψ̃ − ψx + ψx cos(θ/2) , β = ψx sin(θ/2) , ψ̃ =
∑

x

ψx . (5)

Without loss of generality, ψ̃ is assumed to be real and positive as a global phase
factor is physically irrelevant (if ψ̃ = 0, then one can choose a post-selection to a dif-
ferent state). Now, extracting ψx is essentially equivalent to the single-qubit quantum
state tomography. Accordingly, we choose three observables to measure, K̂/2 in the
system-pointer coupling and two other angular momentum operators, K̂1/2 and K̂2/2,
perpendicular to K̂/2. Through a number of independent measurements, the proba-
bilities PM for the measurements M = K , K1, K2 to yield the outcome 1 (contrary
to −1) are inferred, and then the wave function is extracted from the relation

ψx ∝ (1 − PK1) tan
θ

4
+

(
PK2 − 1

2

)
+ i

(
PK − 1

2

)
. (6)

Therefore, in principle, the wave function ψx is estimated exactly as long as the
probabilities PM are inferred out of an infinite number of repeated measurements. In
practice, however, the number of repetitions is finite and the accuracy is subject to the
standard quantum limit.
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Now let us reformulate the direct tomography outlined above as a phase estimation
problem. To this end, we rewrite the normalized pointer state after post-selection into
the form

|φf〉 =
√

α2 + β2

|α2 + β2|
e−iϕ K̂/2|φin〉√

〈φin|ei(ϕ∗−ϕ)K̂/2|φin〉
, (7)

where we have introduced a complex-valued phase ϕ by the relations

cos
ϕ

2
= α√

α2 + β2
, sin

ϕ

2
= β√

α2 + β2
. (8)

Once the complex parameter ϕ is estimated through experiments, one can extract the
wave function ψx by

ψx = ψ̃ tan(ϕ/2)

sin(θ/2)[1 + tan(θ/4) tan(ϕ/2)] . (9)

Whereas the relation (7) between the final and initial state is formally the same
as the standard phase estimation in quantum metrology [10], it involves two real
parameters, ϕ1 := Re ϕ and ϕ2 := Im ϕ, and corresponds to multi-parameter quantum
metrology [17]. Naturally, it requires measurements of more than one observables.
Throughout this work, the estimation of complex parameter ϕ = ϕ1+ iϕ2 will be used
interchangeably with the multi-parameter estimation of real parameters ϕ1 and ϕ2.

To see how to estimate the complex phase ϕ in Eq. (7), we note that

[〈K̂1〉f
〈K̂2〉f

]
= 1

cosh(ϕ2) + sinh(ϕ2) 〈K̂ 〉in

[
cos(ϕ1) − sin(ϕ1)

sin(ϕ1) cos(ϕ1)

] [〈K̂1〉in
〈K̂2〉in

]
(10)

and

〈K̂ 〉f = sinh(ϕ2) + cosh(ϕ2) 〈K̂ 〉in
cosh(ϕ2) + sinh(ϕ2) 〈K̂ 〉in

, (11)

where 〈...〉f denotes the statistical average 〈φf |... |φf 〉 and analogously 〈...〉in. It is
observed from Eqs. (10) and (11) that ϕ1 rotates the classical vector (〈K̂1〉, 〈K̂2〉)
around the axis along K̂ whereas ϕ2 shifts 〈K̂ 〉. Such a rotation angle ϕ1 can be
estimated by Ramsey-type interferometry whereas the estimation of ϕ2 requires an
amplitude measurement scheme. In particular, for a choice of |φin〉 consistent with the
optimal sensitivity such that 〈K̂2〉in = 〈K̂ 〉in = 0, one has

〈K̂1〉f = cos(ϕ1)

cosh(ϕ2)
〈K̂1〉in , 〈K̂ 〉f = tanh(ϕ2). (12)
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In short, the optimal estimation of the complex phase ϕ, one needs first to (i) prepare
the pointer in the initial state such that 〈K̂2〉 = 〈K̂ 〉 = 0, and then (ii) perform mea-
surements of two [rather than three as in Eq. (6)] observables K̂1 and K̂ . Therefore,
the reformulation of direct tomography in the form of complex phase estimation is
intuitively appealing and helps us find the optimal measurements for efficient estima-
tion.

In passing, we remark that any measurement scheme involving post-selection can
essentially be formulated as a complex phase estimation although the estimated phase
carries different information depending on the specific measurements. An interest-
ing example is sequential weak measurement [18], which has recently been realized
experimentally for two non-commuting observables [19]. In this case, the estimated
phase gives the sequential weak values.

3 Precision limits of the direct tomography

The estimation of a real-valued phase can reach the Heisenberg limit by exploiting
quantumentanglements in the pointers [10]. The question iswhether the same limit can
be achieved for the estimation of a complex phase involved in the direct tomography.
Here we demonstrate that it is indeed possible.

Using N00N state Consider an ensemble of N systems all in the same state |ψS〉. We
take a set of N qubits as the pointers and prepare them in the so-called NOON state
(or the N -qubit GHZ state),

|φin〉 = |0〉⊗N + |1〉⊗N

√
2

, (13)

which has proved particularly interesting in high-precision quantum metrology [11].
We couple each system in the ensemble to each corresponding pointer qubit so that
the overall unitary operator of the interaction is given by

Û⊗N
x =

[
exp

(
−iθ |x〉 〈x | ⊗ σ̂z

2

)]⊗N

. (14)

Here we have chosen K̂ = σ̂z to be concrete. After post-selecting every system on to
the state |p0〉 in Eq. (3), the (normalized) final state of the pointers is given by

|φf 〉N00N = (α − iβ)N |0〉⊗N + (α + iβ)N |1〉⊗N

√|α − iβ|2N + |α + iβ|2N (15)
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with α and β defined in Eq. (5). Equivalently, in accordance with the phase-estimation
formulation in Eq. (7), it can be rewritten as |φf 〉N00N as follows (up to a global phase):

|φf〉N00N = e−iNϕ/2|0〉⊗N + eiNϕ/2|1〉⊗N

√
2 cosh(Nϕ2)

. (16)

Now consider two measurements M̂1 := σ̂⊗N
x and M̂2 := σ̂⊗N

z . We note that

〈M̂1〉 := 〈σ̂⊗N
x 〉 = cos(Nϕ1)

cosh(Nϕ2)
, (17)

〈M̂2〉 := 〈σ̂⊗N
z 〉 = tanh(Nϕ2) (for odd N ). (18)

Assuming small variations of the measurements with the parameter ϕ = ϕ1 + iϕ2,
the covariance matrix Ci j (ϕ) := ΔϕiΔϕ j (i, j = 1, 2) of the estimators ϕ1 and ϕ2

is related to the covariance of the measurement 〈ΔM̂μΔM̂ν〉 (μ, ν = 1, 2) by the
error-propagation formula

〈ΔM̂μΔM̂ν〉 =
∑

i j

∂〈M̂μ〉
∂ϕi

Ci j (ϕ)
∂〈M̂ν〉
∂ϕ j

. (19)

Inverting the error propagation formula, we find that the precision is given by

(Δϕ1)
2 = (Δϕ2)

2 = cosh2(Nϕ2)

N 2 . (20)

It is concluded that M̂1 and M̂2 are indeed optimal measurements under the optimal
condition Nϕ2 → 0 for the Heisenberg limit. Here we have chosen specific measure-
ments M̂1 and M̂2, but more general argument in terms of the Fisher information and
the Cramer-Rao bound; see “Appendix A”.

Using Dicke state Thanks to their experimental relevance, the symmetric Dicke
states have also been widely used for quantum entanglement [11]. In particular, it
was illustrated that the entanglement in a Dicke state enables one to achieve the
Heisenberg-limited interferometry for the single-parameter quantum metrology [20].
Given N qubits, the symmetric Dicke state | j ≡ N/2,m〉withm = j, j −1, · · · ,− j
is defined by

| j,m〉 :=
√

( j − m)!( j + m)!
(2 j)!

∑

P

P̂| 11...︸︷︷︸
j−m

00...︸︷︷︸
j+m

〉, (21)

where the sum is over all possible permutations P and P̂ is the corresponding permu-
tation operator.
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Weproceed in a similarmanner aswith the initialNOONstate of pointers. Thepoint-
ers of N qubits are initially prepared in the particularDicke state |φin〉 = | j ≡ N/2, 0〉.
Each pointer is coupled with a system in the ensemble so that the unitary interaction
is given by

Û⊗N
x = [

exp(−iθ |x〉 〈x | ⊗ σ̂y/2)
]⊗N

. (22)

Here we have chosen K̂ = σ̂y to make the best use of the characteristic of the Dicke
state; namely, the sharp distribution along the equator of the generalized Bloch sphere
[11]. After post-selection, the final state (7) of the pointers becomes

|φf〉Dicke = e−iϕ Ĵy | j, 0〉√
〈 j, 0|ei(ϕ∗−ϕ) Ĵy | j, 0〉

, (23)

where

Ĵμ = 1

2

N∑

k=1

σ̂ (k)
μ (μ = x, y, z). (24)

For later use, we define the Wigner matrix element

W ( j)
mm′ := 〈 j,m| e−iϕ Ĵy | j,m′〉 . (25)

Here note that the phase ϕ is complex in general. For integer j , the expression for the
matrix element W ( j)

m0 is especially simple as

W ( j)
m0 (ϕ) = Pm

j (cosϕ)

√
( j − m)!
( j + m)! (ϕ1 > 0) , (26)

where Pm
j (z) denotes the associated Legendre polynomial of argument z.

Unlike theNOONstate, theDicke state does not allow for simple expressions for the
Fisher information and the corresponding Cramer-Rao bound. Instead, we choose the
optimal measurements based on the characteristics of the Dicke state and its behavior

under the collective rotation e−iϕ Ĵy by a complex angle ϕ. As mentioned above, the

Dicke state has a sharp distribution along the equator of the Bloch sphere. Then e−iϕ1 Ĵy

rotates this distribution off the equator. The resulting sharp contrast with the initial

state can be detected most efficiently by measuring Ĵ 2z . On the other hand, e
ϕ2 Ĵy tends

to pull the distribution along the positive y-axis. This deviation can be efficiently
detected by measuring Ĵy . Below we demonstrate that Ĵy and Ĵ 2z are indeed optimal
measurements to achieve the Heisenberg limit.
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We start with the analysis of the measurement of Ĵy : By virtue of the theory of
angular momentum, we acquire

〈 Ĵy〉 = iW ( j)
10 (2iϕ2)

W ( j)
00 (2iϕ2)

√
j( j + 1), (27)

〈 Ĵ 2y 〉 = j( j + 1) − iW ( j)
10 (2iϕ2)

W ( j)
00 (2iϕ2)

coth(2ϕ2)
√
j( j + 1). (28)

It then follows from the error-propagation formula that

1

(Δϕ2)2
= 1

(Δ Ĵy)2

(
∂ 〈 Ĵy〉
∂ϕ2

)2

= 4(Δ Ĵy)
2

= 4 j( j + 1)

⎡

⎣1 − iW ( j)
10 (2iϕ2)

W ( j)
00 (2iϕ2)

coth(2ϕ2)√
j( j + 1)

−
(
iW ( j)

10 (2iϕ2)

W ( j)
00 (2iϕ2)

)2
⎤

⎦ . (29)

Equation (29) implies that the larger (Δ Ĵy)2 is the more precise the estimation of ϕ2
gets, which leads to the optimal condition ϕ2 = 0. Putting the optimal condition into
Eq. (29) gives the Heisenberg limit

(Δϕ2)
2
opt = 2

N (N + 2)
(30)

for the estimation of ϕ2. It is interesting to note that the variance (Δϕ2)
2 in Eq. (29)

depends only on ϕ2 but not on ϕ1. This is another important feature that allows ϕ2 to
be estimated independently of ϕ1 through the measurement Ĵy .

To analyze the measurement Ĵ 2z as an estimator of ϕ1, we evaluate

〈 Ĵ 2z 〉 = iW ( j)
10 (2iϕ2)

W ( j)
00 (2iϕ2)

√
j( j + 1) sin(ϕ) [coth(2ϕ2) sin(ϕ) − i cos(ϕ)] , (31)

〈 Ĵ 4z 〉 = 1

W ( j)
00 (2iϕ2)

j∑

m=− j

m4|W ( j)
m0 (ϕ)|2. (32)

Unlike the case with the measurement Ĵy , the moments 〈 Ĵ 2z 〉 and 〈 Ĵ 4z 〉 depend on both
ϕ1 andϕ2. Therefore one has to use themulti-parameter error-propagation formula (19)
with M̂1 = Ĵ 2z and M̂2 = Ĵy , which leads to

(Δϕ1)
2 =

〈(Δ Ĵ 2z )2〉 +
(

∂〈 Ĵ 2z 〉
∂ϕ2

)2

(Δϕ2)
2 − ∂〈 Ĵ 2z 〉

∂ϕ2

(
∂〈 Ĵy〉
∂ϕ2

)−1

〈{Δ Ĵ 2z ,Δ Ĵy}〉
(

∂〈 Ĵ 2z 〉
∂ϕ1

)2 , (33)
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Fig. 1 The precision, (Δϕ1)
−2,

as a function ϕ1 for different
values of ϕ2 and N = 50 qubits
in the Dicke state

where we have defined Δ Â = Â − 〈 Â〉 for operator Â and noted that ∂〈 Ĵy〉/∂ϕ1 =
0. We refer the technical details of its calculations to “Appendix B”, and instead
summarize its behavior in Fig. 1 as a function of ϕ1 and ϕ2 for the pointers of N = 50
qubits. It is clear from Fig. 1 that the optimal condition is given by ϕ1 = ϕ2 = 0. At
this optimal condition, the precision of ϕ1 is given by the Heisenberg limit

(Δϕ1)
2
opt = 2

N (N + 2)
. (34)

Incidentally, by putting the optimal condition ϕ2 = 0 obtained independently through
the measurement Ĵy above, we get

(Δϕ1)
−2

∣∣∣
ϕ2=0

= 8 j( j + 1)

( j2 + j − 2) tan2(ϕ1) + 4
, (35)

which coincides with the single-parameter estimation in Ref. [20] as it should.

Using time-reversal ensemble The reformulation of the direct tomography as a
complex phase estimation in Eq. (7) inspires another interesting strategy based on
time-reversal (TR) transformation.Given an ensemble of systems in the state in Eq. (1),
we prepare another ensemble in the TR state

|ψ̄S〉 := T̂ |ψS〉 =
d∑

x=1

ψ∗
x |x〉 , (36)

where T̂ is the (anti-unitary) TR operator (here we assume for simplicity that the
basis state |x〉 is invariant under the TR transformation). The pointers of 2N qubits
are prepared, say, in the NOON state. The first N qubits interact with the systems
in the original ensemble whereas the other N qubits are coupled with ones in the
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time-reversal ensemble. After post-selection, the pointers get in the final state of the
form

|φf 〉TRS = [(α − iβ)(α∗ − iβ∗)]N |0〉⊗2N + [(α∗ + iβ∗)(α + iβ)]N |1〉⊗2N
√|(α − iβ)(α∗ − iβ∗)|2N + |(α∗ + iβ∗)(α + iβ)|2N . (37)

Now recall that for any complex variables α and β,

|(α − iβ)(α∗ − iβ∗)| = |(α∗ + iβ∗)(α + iβ)|. (38)

It recasts Eq. (37) to the quantum metrologically appealing form

|φf 〉TRS = |0〉⊗2N + ei2Nϕ1 |1〉⊗2N

√
2

. (39)

Namely, the above state is identical to the state with the amplified phase shift in
interferometries with the NOON state, one of the earliest experimental demonstrations
of the Heisenberg limit [21]. It is also worth noting that unlike the above two schemes,
in which the estimation of ϕ1 strictly depends on that of ϕ2, the scheme using the
TR ensemble enables the real part ϕ1 to be estimated independently. To estimate the
imaginary part ϕ2, we can apply the measurement strategy proposed in Sect. 3.

As the TR transformation is anti-unitary, it cannot be implemented physically in
isolated systems.However, it is achievable by embedding the system in a larger system.
Therefore, as long as the setup permits additional capability of controlling the system,
the TR ensemble provides an efficient strategy for direct precision measurement of
wave functions.

4 Conclusion

Generalizing the idea of quantum metrology of phase estimation, we have reformu-
lated the direct tomography of wave functions as the estimation of complex phase. It
has turned out that the new formulation is intuitively appealing and inspires the proper
choices of optimal measurements. We have further proposed two different measure-
ment schemes that eventually approach the Heisenberg limit. In the first method, the
pointers are prepared in special entangled states, either GHZ-likemaximally entangled
state or the symmetric Dicke state. In the other scheme, the ensemble of the measured
systems is duplicated and the replica ensemble is time-reversal transformed before
the start of the measurement. In both methods, the real part of the phase is estimated
with Ramsey-type interferometry while the imaginary part is estimated by amplitude
measurements. The optimal condition for the ultimate precision is achieved at small
values of the complex phases, which provides possible explanations why the previous
weak-measurement scheme was successful. The direct tomography relies inevitably
on post-selection, and the proposed schemes offer asymptotic gains as the number of
pointers in entanglement increases.
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A The Cramer-Rao bound for the NOON state

Here we analyze the precision limit of the complex-valued phase estimation based
on the multi-parameter estimation in terms of the Fisher information matrix and the
corresponding Cramer-Rao bounds [17,22].

We first briefly summarize the multi-parameter quantum metrology [17,23]. Sup-
pose that we want to estimate a set of unknown parameters {Xμ|μ = 1, · · · , L}
through the measurements of a positive-operator valued measure (POVM), {Π̂ j | j =
1, 2, ..., L ′}. The covariance matrix Cμν({Xλ}) = ΔXμ ΔXν satisfies the following
inequality [17]

C({Xμ}) ≥ F−1({Π̂ j }), (40)

where F({Π j }) is the Fisher information matrix (FIM) associated with the proba-
bility distribution {p j ({Xμ})} for the measurements {Π j }. The entries of the Fisher
information matrix are defined by [23]

Fμν =
L ′∑

j=1

∂μ p j∂ν p j

p j
(41)

with ∂μ denoting ∂/∂Xμ. In the case of complex parameters Zμ = Xμ + iYμ, one
can keep the complex structure in the covariance matrix and the Fisher information
matrix. In this case, one constructs the covariance matrix by replacing each element
by the 2 × 2 block

Cμν =
[
ΔZμ ΔZ∗

ν ΔZμ ΔZν

ΔZ∗
μ ΔZ∗

ν ΔZ∗
μ ΔZν

]
(42)

Similarly, the Fisher information matrix is defined with respect to two derivatives
∂/∂Z∗

μ and ∂/∂Zμ for each Zμ.
Now let us apply the multi-parameter Cramer-Rao bound (40) in our problem of

estimating the wave functionψx in Eq. (15). Calculating on the final pointer state (15)
we obtain the probabilities of the POVM elements as follows:

p j = 〈Π̂ j 〉f,N00N = A j |α − iβ|2N + Bj |α + iβ|2N + 2Re
[
C j (α

∗ + iβ∗)N (α + iβ)N
]

|α − iβ|2N + |α + iβ|2N , (43)
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where

A j = 〈00...|Π̂ j |00...〉, Bj = 〈11...|Π̂ j |11...〉, C j = 〈00...|Π̂ j |11...〉, (44)

and hence

∂ψx p j = N
A j − Bj − C j (γ

∗)N + C∗
j (γ

∗)−N

(|γ |N + |γ |−N )2
∂ψx log(γ ) (45)

with γ = (α − iβ)/(α + iβ). Assuming |γ | ≥ 1 without loss of generality, we see
that, as N → ∞, ∂ψx p j → N |γ |−N . As a result, for measurements such that A j = 0,
we find

(
F−1

)

μν
∝ |γ |N

N 2 . (46)

Therefore, as |γ | → 1, which conforms the optimal condition for the estimation of
ψx , the Heisenberg limit is saturated.

B Variance of the real part in the scheme using Dicke state

In this Appendix we provides the technical details involved in the calculation of
the moments 〈 Ĵ 2z 〉 and 〈 Ĵ 4z 〉 in Eqs. (31) and (32), respectively, which are required
in Eq. (33).

The terms 〈 Ĵy〉, ∂〈 Ĵy〉/∂ϕ2, and (Δϕ2)
2 are given byEqs. (27) and (29). To calculate

the remaining terms in Eq. (33), it is useful to recall the transformation rule

Ĵμ(ϕ) = eiϕ Ĵy Ĵμe
−iϕ Ĵy = cos(ϕ) Ĵμ + i[ Ĵy, Ĵμ] sin(ϕ). (47)

First, let us evaluate the average 〈 Ĵ 2z 〉 and its derivatives. By virtue of Eq. (47), one
can obtain

〈 Ĵ 2z 〉 = 1

W ( j)
00 (2iϕ2)

〈 j, 0|eiϕ∗ Ĵy Ĵ 2z e
−iϕ Ĵy | j, 0〉

= 1

W ( j)
00 (2iϕ2)

j∑

m=− j

〈 j, 0|ei2ϕ2 Ĵy | j,m〉〈 j,m|eiϕ Ĵy Ĵ 2z e−iϕ Ĵy | j, 0〉

=
j∑

m=− j

W ( j)
0m (2iϕ2)

W ( j)
00 (2iϕ2)

[
sin2 ϕ〈 j,m| Ĵ 2x | j, 0〉 − sin(2ϕ)

2
〈 j,m| Ĵz Ĵx | j, 0〉

]

= iW ( j)
10 (2iϕ2)

W ( j)
00 (2iϕ2)

√
j( j + 1) sin(ϕ) [coth(2ϕ2) sin(ϕ) − i cos(ϕ)] . (48)
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Noting that

[√
( j + 2)!
( j − 2)!

W ( j)
20 (2iϕ2)

W ( j)
00 (2iϕ2)

+ j( j + 1)

]
sin(i2ϕ2)

+2

√
( j + 1)!
( j − 1)!

W ( j)
10 (2iϕ2)

W ( j)
00 (2iϕ2)

cos(i2ϕ2) = 0, (49)

which is derived from the recurrence formula of the associated Legendre polynomial,
〈 Ĵ 2z 〉 can be reduced to Eq. (31). Taking the derivative of 〈 Ĵ 2z 〉 given by Eq. (31) with
respect to ϕ1 and ϕ2, respectively, we obtain

∂〈 Ĵ 2z 〉
∂ϕ1

= 2 sin(2ϕ1)

sinh(ϕ2)

iW ( j)
20 (2iϕ2)

W ( j)
00 (2iϕ2)

√
j( j + 1), (50)

∂〈 Ĵ 2z 〉
∂ϕ2

= j( j + 1)

[
coth(2ϕ2) − cos(2ϕ1)

sinh(2ϕ2)

] ⎡

⎣1 −
(
iW ( j)

20 (2iϕ2)

W ( j)
00 (2iϕ2)

)2
⎤

⎦

+ iW ( j)
20 (2iϕ2)

W ( j)
00 (2iϕ2)

√
j( j + 1)

[
2 cos(2ϕ1) cosh(2ϕ2) − 2

sinh2(2ϕ2)
− 1

]
. (51)

On the other hand, 〈 Ĵ 4z 〉 can be expressed in terms of the Wigner matrix elements
as following

〈 Ĵ 4z 〉 = 1

W ( j)
00 (2iϕ2)

〈 j, 0| eiϕ∗ Ĵy Ĵ 4z e
−iϕ Ĵy | j, 0〉

= 1

W ( j)
00 (2iϕ2)

∑

m,m′
W ( j)

m′0(ϕ
∗)W ( j)

m0 (ϕ)〈 j,m′| Ĵ 4z | j,m〉

= 1

W ( j)
00 (2iϕ2)

j∑

m=− j

m4|W ( j)
m0 (ϕ)|2. (52)
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