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Abstract
To date, the surface code has become a promising candidate for quantum error correct-
ing codes because it achieves a high threshold and is composed of only the nearest gate
operations and low-weight stabilizers. Here, we have exhibited that the logical failure
rate can be enhanced by manipulating the lattice size of surface codes that they can
show an enormous improvement in the number of physical qubits for a noise model
where dephasing errors dominate over relaxation errors.We estimated the logical error
rate in terms of the lattice size and physical error rate. When the physical error rate
was high, the parameter estimation method was applied, and when it was low, the
most frequently occurring logical error cases were considered. By using the minimum
weight perfect matching decoding algorithm, we obtained the optimal lattice size by
minimizing the number of qubits to achieve the required failure rates when physical
error rates and bias are provided .

Keywords Biased noise channel · Rectangular surface code · Quantum error
correcting code

1 Introduction

For the realization of quantum computing, errors that are inducedwhen interactedwith
the environment should be detected using quantum error correction (QEC) codes. Two
types of QEC codes such as circuit-based codes (Shor code, Steane code, RM codes,
etc.) [1–3] and topological codes have been developed to protect the quantum states.
In particular, because of the lower stabilizer weight than circuit-based codes and the
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nearest stabilizer measurement operation of topological codes, surface codes such as
toric codes and color codes have become the main topics in several researches.

The earlier topological codes of Kitaev called toric codes have periodic boundaries
and qubits that are located on the torus [4]. Surface codeswith non-periodic boundaries
which allowplanar qubit location have been developed [5,6]. The toric code can encode
two logical qubits, and surface codes with non-periodic boundaries can encode one
logical qubit using physical qubits. In both cases, the number of physical qubits scales
as O(L2).

Recent QEC research focuses on the implementation and construction of the QEC
codes [7,8] by considering a biased noise error channel and other channels [9], by
designing the efficient decoder using the machine learning [10,11] techniques, and
by improving the threshold below which the logical failure rate can be decreased. A
framework that applies machine learning techniques for decoding and improves the
logical error rate in the depolarizing noise channel is also proposed in [12]. Previous
work by Panos et al. proposed a concatenated phase flip QEC code [13]. By employing
the phase flip code as an inner code, the number of Z errors that induce logical Z error
increases, and the logical operation can be performed with an outer code, such as an
RM code or a topological code [14–16]. Tuckett et al. proposed an effective machine
learning decoder in the surface code under a biased noise error channel by using X,
Y stabilizer instead of X, Z stabilizer and thus obtained more information regarding
Z errors [17–19]. This kind of biased error arises in superconducting qubits, quantum
dots, and trapped-ion qubit systems.

In this study, we first explored a method for reducing the logical failure rate of the
surface code with a non-periodic boundary when the noise was biased. In other words,
Pauli Z errors occurred at a higher rate than Pauli X errors. We have proposed a larger
weight of logical Z operator than logical X operator because logical Z(X) error occurs
only due to Z(X) physical error. Thereafter, we analyzed the impact of the large weight
of the logical Z operator on logical X error. We scaled the reduced logical failure rate
using the lattice size and the physical error rate as parameters.

Secondly, we analyzed an overhead as a function of the single-qubit physical error
rate and the logical failure rate. The number of qubits for rectangular surface code was
calculated tominimize the overhead.As a result, the optimal lattice size for the required
logical error rate could be derived.We simulated the performance of the optimal lattice
size surface code to verify whether the code has achieved a given logical failure.

We applied the Edmonds’ minimum weight perfect matching (MWPM) algorithm
[20,21] to decode the surface codes; however, the expected alternative algorithms such
as the machine learning (ML) decoder could be applied. Edmonds’ MWPM algorithm
counts the weight of noise that causes the observed syndrome and performs error
correction using the minimum weight error chain.

The remainder of this paper is organized as follows: In Sect. 2, we review some
backgrounds of the surface code and introduce the noise model. In Sect. 3, we present
the rectangular surface codes. Section 4 describes the simulation results, and we con-
clude in Sect. 5.
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Fig. 1 Representation of a d = 5 surface code with boundaries, where d is the code distance. The edges
represent data qubits. Vertexes(Av) and plaquettes(Bp) represent the measurement qubits. Each vertex and
plaquettes stabilizers are composed of X and Z operators, respectively. Rough boundaries are the upper and
lower boundaries, and smooth boundaries are the right and left boundaries, respectively. a L × L square
surface code, b (L + 1) × L square surface code

2 Surface code and biased noise

2.1 Surface code

The surface code with boundaries is defined on the L× L square lattice or (L+1)× L
square lattice having the data qubits on the edges, the Z-stabilizers on the vertexes,
and the X stabilizers on the plaquettes as shown in Fig. 1. The (L + 1) × L lattice
can be interpreted as the square lattice because it has the same number of qubits
between boundaries. We consider L × L square lattice as the square lattice in this
paper. Stabilizers that are located at the boundaries operate on the three nearest data
qubits, but otherwise on the four qubits, and detect X, Z errors, respectively,

Av = ⊗i∈vXi , Bp = ⊗ j∈p Zi . (1)

Boundaries adjacent to the X-stabilizers (Z-stabilizers) are defined as smooth (rough)
boundaries. We denote the logical state of the surface code by

∣
∣Ψ

〉

L and stabilizers by
S = {Av, Bp}.

Si
∣
∣Ψ

〉

L = ∣
∣Ψ

〉

L . (2)

Logical operators that are homologically non-trivial chains are operators that connect
smooth or rough boundaries. Logical X (Logical Z) connects smooth (rough) bound-
aries. By applying physical X(Z) operation on the edges in logical operators, logical
operators can be performed. Let us denote Logical X by XL and Logical Z by ZL .
The minimum weight of the logical operator defines the code distance (d), and d = 5
surface code with boundaries is shown in Fig. 1.

X(Z) physical errors were detected via Z(X) stabilizer measurement, and the mea-
surement outcome is referred to as syndromes. If an even number of errors occur at
the qubits around certain stabilizers, then the measurement outcome is zero; else, the
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Fig. 2 E is the error chain, and E ′ is the minimum weight error chain that is obtained from the decoder.
a chain C = E + E ′ is homologically trivial, and errors are properly corrected. b chain C = E + E ′ is
homologically non-trivial, and the physical error causes logical Z error

measurement outcome is one. The set of all errors on the lattice is called chain E,
and the MWPM algorithm searches for the minimum weight error chain E ′, where
C = E + E ′ is a cycle. Decoding is successful if C is homologically trivial (Fig. 2a),
and it fails if C is homologically non-trivial (Fig. 2b).

2.2 Biased noise

One of the commonly used single-qubit noise models supposes the probability of X
error, and that of Z error is equal.Y error occurswhenX,Z errors occur simultaneously.
However, in many qubit systems, the dephasing error arises more frequently than the
relaxation error [22–24]. Therefore, this study considers the Z error biased noise
channel. Let us denote the Z(X) error probability by pZ (pX ). For a biased channel,

pZ > pX .

The physical error probability is the sum of both Z and X error probabilities,

pphy = pZ + pX , (3)

and Bias(η) is the ratio of pZ to pX

η = pZ
pX

. (4)

This paper presents the logical error and overhead reduction in the biased error
channel schemes without any ML decoders or concatenation.
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Fig. 3 7 × 5 rectangular surface
code. Logical Z(X) operator is
defined by connecting rough
(smooth) boundaries. The
weight of logical Z is 7, and the
weight of logical X is 5

3 Rectangular surface code

The rectangular surface code is defined on the L1 × L2 lattice with data qubits on
edges and the stabilizers on vertexes and plaquettes. Figure 3 is an example of a
7× 5 rectangular surface code. Similar to the square surface code (Fig. 1), the logical
operator is a chain that connects the same boundaries. However, the weight of the
logical Z operator that connects the rough boundaries differs from that of the logical
X operator that connects the smooth boundaries. In other words, the minimum weight
of the logical Z relies on the vertical length of the lattice and is L1, and the minimum
weight of the logical X relies on the horizontal length of the lattice and is L2.

The higher weight of the logical Z operator than that of the logical X operator
contributes to the robustness of a logical Z error because the number of the physical
Z errors that cause the logical error increases, while this code is weaker to the logical
X error than the square L2 × L2 surface code. For 5 × 5 square surface codes, the
minimum number of the Z errors, which leads to a logical Z error, is three. For 7 × 5
rectangular surface codes, three physical Z errors can be corrected, and four physical
Z errors are required to introduce logical Z errors.

Figure 4 depicts a 1 × 3 surface code which is equivalent to 3 qubit bit-flip code
and 2 × 3 surface codes. Although the 1 × 3 code cannot correct any two physical X
errors, and the 2 × 3 code can correct some of them, more paths for logical X error
exist in a 2 × 3 rectangular code. Because any X errors with a weight two introduce
the logical error in 1 × 3 surface code, the logical X error rate for the 1 × 3 surface
code can be estimated as

PLx,1×3 =3 C2 p
2(1 − p) +3 C3 p

3.

For the 2 × 3 surface code, Fig. 4b depicts all two physical X error patterns and
the first two patterns conclusively lead to logical errors after decoding. The number
of paths includes the symmetry of error cases. The logical X error rate for a 2 × 3
surface code is larger than the rate estimated by considering only two physical X
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Fig. 4 a Error pattern that a 1 × 3 rectangular surface code can have from two physical X errors and the
number of error path. b Error pattern that a 2 × 3 rectangular surface code can have from two physical X
errors. By considering symmetry, each pattern includes at most four different error paths. The total number
of paths is 8C2, and six paths lead to logical X errors

errors: PLx,2×3 > 6p2(1 − p)6. For pX < 0.12,

PLX ,1×3 < PLX ,2×3

which means that below the threshold, PLX worsens as L2 increases. Thus, under a
biased error channel, manipulation of the lattice size can decrease the logical failure
rate using the same number of data and measurement qubits. When an error is biased
to dephasing, the probability of the logical X error is considerably smaller than that of
the logical Z error, and the rectangular surface code that has a longer vertical length
than the horizontal length can perform better than a square surface code.

The number of qubits required to encode information depends on the lattice size.
L×L square surface codes require 4L2−4L+1 qubits, where there exist 2L2−2L+1
data qubits and 2L2 − 2L stabilizer measurement qubits, and L1 × L2 rectangular
surface codes require 4L1L2 − 2L1 − 2L2 + 1 qubits, where there exist 2L1L2 −
L1− L2 +1 data qubits and 2L1L2 − L1− L2 stabilizer measurement qubits. In some
lattice sizes, the number of physical qubits comprising square and rectangular lattices
is equal or similar. For example, both 5 × 25 rectangular surface code and 11 × 11
square surface code require 441 physical qubits.

We determined the value of L1 and L2 by considering the total logical failure rate
and bias in this study.

3.1 Failure rate estimation

Let us denote the logical Z error rate as PLZ , logical X error rate as PLX , and failure
rate as Pf ail . The failure rate contains cases that have any logical error. Because we
consider physical X errors and physical Z errors as independently occurring errors,
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PLZ and PLX are also independent. Therefore, Pf ail can be written as

Pfail = 1 − (1 − PLZ )(1 − PLX )

= PLZ + PLX − PLZ PLX .
(5)

3.2 Logical error rate estimation

The logical error rate for square surface code is known to be affected by the lattice
size and the physical qubit error rate. Similarly, the logical error rate of rectangular
surface code can be represented as a function of lattice sizes L1, L2, and the physical
error rate, pphy .

As in [25], we estimated the logical error rate in the two regions. The first
is the region where the physical X(Z) error rate is significantly low, (pX (pZ ) <

pX ,low(pZ ,low)), so that most of the logical X(Z) error is caused by �L1/2�(�L2/2�)
errors. As a result, the logical error rate can be approximated as

PLX = L2
L1!

�L1/2�!�L1/2�! p
�L1/2�
X

PLZ = L1
L2!

�L2/2�!�L2/2�! p
�L2/2�
Z .

(6)

Thefirst factor L2(L1) is the number of theminimumweight logicalX(Z) operators.
The second factor is the binomial coefficient, which counts the number of weight
�L1/2�(�L2/2�) error patterns alongwith theminimumweight logicalX(Z) operators.
By using Stirling’s approximation, n! ≈ √

2πn( ne )
n , the logical error rate can be

modified to

PLX ≈ L2

√

2L1

π(L1 + 1)2
× (

4L2
1

L2
1 − 1

)L1 p�L1/2�
X

PLZ ≈ L1

√

2L2

π(L2 + 1)2
× (

4L2
2

L2
2 − 1

)L2 p�L2/2�
Z .

(7)

The second region is the highphysical error rate region (pX (pZ ) > pX ,high(pZ ,high),
but below the threshold that is between 0.1 and 0.11. The estimation is based on a
simulation using polynomial, exponential, and log functions. We estimated the logical
Z error rate first, and thereafter, analogously estimated logical X error rate. Below
the threshold, the logical error rate depends exponentially on the vertical lattice size
[25,26] and can be expressed as

ln(PLZ ) = αZ (L1, pZ ) × L2 + βZ (L1, pZ ) (8)

where αZ (L1, pZ ) and βZ (L1, pZ ) are the functions of L1 and pZ . At the same time,
the logical error rate linearly depends on the horizontal lattice size (Fig. 5). Therefore,
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Fig. 5 Dependence of the logical error rate PLZ on L1 for pZ = 0.05, 0.07, 0.09, 0.11. Color infers vertical
lattice sizes.a pZ = 0.05 b pZ = 0.07 c pZ = 0.09 d pZ = 0.11

we assume that

αZ (L1, pZ ) = αZ (pZ )

βZ (L1, pZ ) = log(βZ1(pZ ) × L1 + βZ2(pZ ))

ln(PLZ ) = αZ (pZ )L2 + log(βZ1(pZ ) × L1 + βZ2(pZ ))

(9)

where αZ (pZ ), βZ1(pZ ), and βZ2(pZ ) are functions of pZ .
αZ (pZ ), βZ1(pZ ), and βZ2(pZ ) can be acquired via a numerical fitting over a wide

range of L1, L2, and we assumed that

αZ (pZ ) = αZ11(pZ − αZ12)
2 + αZ13

βZ1(pZ ) = βZ11 pZ + βZ12

βZ2(pZ )) = βZ21(pZ − βZ22)
2 + βZ23

(10)

where αZ11, αZ12, αZ13, βZ11, βZ12, βZ21, βZ22, βZ23 are constants.
αZ11, αZ12, αZ13, βZ11, βZ12, βZ21, βZ22, βZ23 can be acquired via numerical

fitting over a wide range of L1, L2, and pZ . Consequently, the logical Z error rate can
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be approximated as

ln(PLZ ) = (c1(pZ − c2)
2 + c3)L2 + ln((c4 pZ + c5)L1

+ c6(pZ − c7)
2 + c8))

(11)

where ci , 1 ≤ i ≤ 8 are constants in Eq. (10) and are determined via parameter
estimation. The logical X error rate can be estimated analogously to the logical Z
error rate.

ln(PLX ) = (c1(pX − c2)
2 + c3)L1 + ln((c4 pX + c5)L2

+ c6(pX − c7)
2 + c8)).

(12)

We generated 0.05 ≤ pZ ≤ 0.11 at the intervals of 0.01, and odd lattice sizes in
the range of 9 ≤ L1, L2 ≤ 21 data set. Each data set is performed N = 105 times,
and the logical error rate is

N f
N ,

where N f is the number of trials that the logical error
occurs. These data sets are employed for the parameter ci , 1 ≤ i ≤ 8 estimation. The
detailed process is presented in Appendix 1.

Figure 6 shows the estimated PLZ plot. X-axis is the physical Z error rate, and Z-
axis is the logical Z error rate. The solid line is the estimated logical error rate function,
and each circle is the simulation data set. The color infers vertical lattice sizes.

Given pphy and η, the physical X and Z error rates can be written as

pX = 1

η + 1
pphy

pZ = η

η + 1
pphy

(13)

from Eq. (3-4). Substituting pX and pZ , given by Eq. (13) into Eq.(7,11-12), yields
an expression for PLX and PLZ in terms of lattice size, physical error rate, and bias.

PLX =

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

L2

√

2L1
π(L1+1)2

× (
4L2

1
L2
1−1

)L1( 1
η+1 pphy)

�L1/2� f or pX < pX ,low,

exp[(c1( 1
η+1 pphy − c2)2 + c3)L1]

×[( c4
η+1 pphy + c5)L2 + c6(

1
η+1 pphy − c7)2 + c8)] f or pX > pX ,high .

PLZ =

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

L1

√

2L2
π(L2+1)2

× (
4L2

2
L2
2−1

)L2(
η

η+1 pphy)
�L2/2� f or pZ < pZ ,low,

exp[(c1( η
η+1 pphy − c2)2 + c3)L2]

×[( c4η
η+1 pphy + c5)L1 + c6(

η
η+1 pphy − c7)2 + c8)] f or pZ > pZ ,high .

(14)
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3.3 The validity of the two regimes

The logical error rate is estimated in two regions: a low error rate region and a high
error rate region. The dividing physical error rate can be calculated by considering the
distribution of the number of errors [25]. Let us denote the weight of the error chains
as |E |. μ and σ denote the expected value and deviation of |E |, respectively,

μ = 2L1L2 − L1 − L2 ≈ 2L1L2,

σ 2 = μp(1 − p) ≈ 2L1L2 p(1 − p)
(15)

where p is pz and px for PLZ and PLX region validation, respectively. Assuming
that the mean number of errors on the lattice must be two standard deviations below
�L2/2�(�L1/2�) leads to a low error rate region.

μ + σ < � L2

2
�

μ + σ < � L1

2
�.

(16)

pZ ,low is extracted from the first formula in Eq.(16), and pX ,low is extracted from the
second formula in Eq.(17). By substituting Eq.(15) into Eq.(16), the low error region
pZ < pZ ,low, pX < pX ,low can be defined as

pZ ,low =
2L1L2 + 4L1 −

√

8L2
1L2 − 2L1L2

8L2
1L2

pX ,low =
2L1L2 + 4L2 −

√

8L1L2
2 − 2L1L2

8L1L2
2

.

(17)

Similar to the low error rate regime, the high error rate regime can be defined by
μ − σ > � L2

2 �, μ − σ > � L1
2 � which leads to

pZ ,high =
2L1L2 + 4L1 +

√

8L2
1L2 − 2L1L2

8L2
1L2

pX ,high =
2L1L2 + 4L2 +

√

8L1L2
2 − 2L1L2

8L1L2
2

.

(18)

By identifying which region the physical X, Z error rates are included, the logical
error rate is to be estimated.
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Fig. 6 Estimated logical error rate PLz plot for the high error rate region. The circles are N = 105 simulation
data set. Solid line is estimated logical Z error rate. Color infers vertical lattice sizes. a L1 = 15 b L1 = 17
c L1 = 19 d L1 = 21

3.4 Optimal lattice size based on logical failure rate

To obtain the optimal lattice size(L1,opt , L2,opt ) when the target logical failure
rate(Pf ,target ) and the physical error rate have been provided, we solve the following
optimizing problem:

argmin
L1,L2

4L1L2 − 2L1 − 2L2 + 1

s.t. Pf ail ≤ Pf ,target

(19)

where Pf ail can be formulated fromEq. (5, 14). The optimizing function is the number
of total qubits, and the constraint is to ensure that the estimated failure rate of the surface
code is below the target failure rate. For diverse Pf ,target , η, and pphy , the optimal
lattice sizes, L1,opt and L2,opt , are listed in Table 1. For 10−2 target failure rate, px
and pz are in the high error rate region. For 10−16 target failure rate, px and pz are in
the low error rate region.
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Table 1 Estimated optimal
lattice sizes for the various target
failure rate, bias, and physical
error rates. The optimal lattice
size is obtained from solving
optimization problem Eq. (19).
Pf ,target is the target logical
failure rate. L1,opt and L2,opt
are the optimal horizontal and
vertical lattice size

Pf ,target η pphy L1,opt L2,opt Estimated Pf

10−2 5 0.15 11 57 8.83 × 10−3

0.14 11 55 7.10 × 10−3

0.13 9 47 5.53 × 10−3

0.12 9 35 7.10 × 10−3

0.11 9 27 7.10 × 10−3

0.1 7 19 5.50 × 10−3

2 0.15 15 47 5.47 × 10−3

0.14 15 37 5.35 × 10−3

0.13 13 29 5.18 × 10−3

0.12 11 23 4.51 × 10−3

0.11 9 17 4.76 × 10−3

0.1 9 13 6.30 × 10−3

10−16 5 10−2 15 23 1.13 × 10−17

10−3 11 13 5.50 × 10−18

10−4 7 9 4.69 × 10−17

2 10−2 17 21 3.33 × 10−17

10−3 11 13 9.56 × 10−18

10−4 9 9 1.58 × 10−18

4 Numerics

We first ran N = 106 simulation and compared the rectangular and square lattice
surface code’s failure rate using a similar number of qubits as shown in Table 2. We
set that the number of qubits used in square surface codes is slightly larger than that
used in rectangular surface codes for the η and pphy . Pf ,rect is the rectangular lattice
surface code’s failure rate when N = 106 trial is performed, and Pf ,square is the
square lattice surface code’s failure rate. The results show that the rectangular surface
codes perform better than square surface codes in terms of logical failure rate under the
biased noise channel, although the rectangular surface codes consumemore resources.
When η = 2.5 and pphy = 0.11, the ratio of the square surface code’s failure rate to
the rectangular code’s failure rate, Pf ,square/Pf ,rect , is 4.37. This ratio is larger than
6 when η = 2.5 and pphy = 0.08, which is the maximum value in Table 2.

Second, we compared the number of qubits to achieve the target error rate for rect-
angular and square lattice surface codes. The optimized lattice sizes of rectangular and
square surface codes are extracted fromEq.(19) to perform the simulation. It is verified
whether the optimal lattice size surface code achieves target error rate by performing
N = 106 simulations in Table 3. We set 10−2, 10−3 as target failure rates, 2.5, 2 as
bias, and 0.1, 0.08 as physical error rates. We ran N = 106 simulations for the esti-
mated optimal lattice size surface codes and verified that the failure rates of the optimal
lattice size surface codes are below the target failure rates. The physical error rates
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Table 2 N = 106

η pphy Rectangular lattice
size(# of qubits)

Pf ,rect Square lattice size (# of qubits) Pf ,square

2.5 0.11 9 × 19(629) 6.38 × 10−3 15 × 15(841) 2.79 × 10−2

0.1 9 × 15(493) 6.85 × 10−3 13 × 13(625) 1.90 × 10−2

0.08 11 × 19(777) 4.5 × 10−4 15 × 15(841) 2.84 × 10−3

2 0.11 9 × 17(561) 7.22 × 10−3 13 × 13(625) 2.23 × 10−2

0.1 9 × 13(425) 8.01 × 10−3 11 × 11(441) 1.75 × 10−2

0.08 11 × 17(693) 5.23 × 10−4 15 × 15(841) 1.59 × 10−3

Comparison of the logical failure rates between the rectangular and square lattice surface codes. Pf ,rect
indicates the failure rate of rectangular surface codes, and Pf ,square indicates the failure rate of square
surface codes. Square lattice surface codes use more qubits, whereas they show higher failure rates

Table 3 N = 106

Pf ,targetη pphy Optimal lattice
size
L1,opt × L2,opt
(# of qubits)

Pf ,rect Square lattice size
(# of qubits)

Pf ,square

10−2 2.5 0.1 9 × 15(493) 6.85 × 10−3 19 × 19(1369) 8.71 × 10−3

2 0.1 9 × 13(425) 8.01 × 10−3 15 × 15(841) 9.11 × 10−3

10−3 2.5 0.08 11 × 19(777) 4.50 × 10−4 21 × 21(1681) 6.54 × 10−4

2 0.08 11 × 17(693) 5.23 × 10−4 17 × 17(1089) 9.20 × 10−4

Optimal lattice size for the various target failure rates, bias, and physical error rates. Square lattice size
indicates the minimal square lattice surface code size to achieve the target error rate. Because the simulation
for the large lattices takes too much time, some simulations are performed

are within the high error rate region for the extracted optimal lattice size. By adopting
the rectangular surface codes, the number of total qubits decreases significantly. To
achieve 10−2 logical failure rate under η = 2 and pphy = 0.1, the rectangular surface
code requires 493 qubits, whereas the square surface code requires 1369 qubits, result-
ing in 64% resource reduction. In other cases, the rectangular surface codes decrease
qubit resources 36% to 54% times compared to square lattice surface codes.

5 Conclusion

We have demonstrated a method for constructing a rectangular surface code when the
noise is biased. Enlarging theminimumweight of logical Z operator and shortening the
weight of logical X operator reduce the failure rate compared to the square structure for
the same or similar number of physical qubits by exploiting noise bias. The estimation
of the logical failure rates of rectangular surface codes was performed based on the
simulations when the physical error rate was high. When the physical error rate was
low, it was calculated by considering the most frequently occurring cases of logical
errors. This estimation is the upper bound for logical error rate because only parts of
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the logical error occurring cases are considered. Therefore, we expect that using the
larger lattice size achieves the target error rate under the low error rate region. Each
error rate region has been expressed in terms of the lattice sizes.

By N = 106 simulation data set, we have provided strong evidence for our proposal
that improves the failure rate using fewer number of qubits. In the case that pphy =
0.08 and η = 2.5, the failure rate of our proposal is 6.3 times lower than that of the
previous L × L square surface code. For the other cases, the failure rate of our scheme
is from 2.1 to 4.4 times lower than that of the square lattice surface codes.

Secondly, we have presented the optimal lattice size for given logical error rates
and the physical error rate by calculating the overhead to encode logical information.
The estimation was verified over a wide range of physical error rates in the high error
rate region and lattice sizes with N = 106 simulation data set. To obtain Pf ail = 10−2

under η = 2.5 and pphy = 0.1, 493 qubits are required for the rectangular surface
code, whereas 1369 qubits are used for the square surface codes. For other cases, our
scheme requires 36% to 54% number of qubits compared to the square surface codes
to achieve diverse target failure rates.

We have employed the MWPM decoder to obtain our failure rate; however, it is not
the most efficient decoder. We anticipate that using a different decoder [10,11] such
as the machine learning decoder can achieve the lower failure rate, and therefore, the
number of physical qubits can decrease further.

Acknowledgements This research was supported by the MSIT (Ministry of Science and ICT), Korea,
under the ITRC (Information Technology Research Center) support program (IITP-2021-2018-0-01402)
supervised by the IITP (Institute for Information and Communications Technology Planning and Evalua-
tion). This work was supported as part of Military Crypto Research Center funded by Defense Acquisition
Program Administration (DAPA) and Agency for Defense Development (ADD).

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix 1. Logical error rate estimation for high physical error rate

In Sect. 3.2, we estimated the logical error rate for the high physical error rate as in
Eq. (12,13). This appendix exhibits how these equations are obtained from N = 105

data set.
To determine the logical error rate PLZ , we numerically simulated the error correc-

tion protocol using the MWPM decoder for p in the range of 0.05 ≤ p ≤ 0.11, and
for L1 and L2 in the range of 9 ≤ L1, L2 ≤ 21. It is known that the logical error rate
depends exponentially on the vertical lattice size, and thus, Eq. (8) has been formu-
lated. Figure 7 shows dependence of αZ (L1, pZ ) on L1 for various pZ . Considering
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Fig. 7 Dependence of
αZ (L1, pZ ) on L1. αZ (L1, pZ )

was assumed to be independent
on L1

Fig. 8 Dependence of
αZ (pZ ), βz1 (pz), βz2 (pz) on
pz . αZ (pZ ) and βz2 (pz) were
assumed to be quadratic
functions, and βz1 (pz) was
assumed to be a linear function

linear dependence of PLZ on L1, we assumed that αZ (L1, pZ ) is independent on L1.

ln(PLZ ) = αZ (pZ )L2 + βZ (L1, pZ )

= αZ (pZ )L2 + log(βZ1(pZ )L1 + βZ2(pZ ))
(20)

Figure 8 shows the estimated values of αZ (pZ ), βZ1(pZ ), and βZ2(pZ ), where
these values were obtained by parameter estimation using L1,L2, and simulated log-
ical error rate data set as input data. These parameters were estimated using linear
and quadratic functions in Eq. (10), and Eq. (11) is derived from Eq. (10). Each con-
stant c1 = −65.727, c2 = 0.122, c3 = −0.0682, c4 = −0.172, c5 = 0.065, c6 =
0.190, c7 = −6.070, c8 = −7.407 has been acquired by the parameter estimation
using L1, L2, pZ , and the logical error rate simulation data set as input data. Solid
line in Fig. 6 is plotted by substituting these constants to Eq. (11).
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