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Abstract

We show that given the order of a single element selected uniformly at random from
Zy» we can with very high probability, and for any integer N, efficiently find the
complete factorization of N in polynomial time. This implies that a single run of the
quantum part of Shor’s factoring algorithm is usually sufficient. All prime factors of N
can then be recovered with negligible computational cost in a classical post-processing
step. The classical algorithm required for this step is essentially due to Miller.

Keywords Factoring - Order finding - Shor’s algorithms

Mathematics Subject Classification 11A51 - 68Q12 - 81P68

1 Introduction

In what follows, let

n
Nznpfi

i=1

be an m bit integer, with n > 2 distinct prime factors p;, for ¢; some positive integer
exponents. Let an algorithm be said to factor N if it computes a non-trivial factor of
N, and to completely factor N if it computes the set {p1, ..., pn}.

Let ¢ be Euler’s totient function, let A be the Carmichael function, and let A’ (N) =
lem(py —1, ..., p, — 1). Furthermore, let Z}, denote the multiplicative group of Zy,
the ring of integers modulo N, and let In and log be the natural and base-two logarithms,
respectively. Denote by [a, b] the range of integers from a up to and including b.
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Throughout this paper, we shall assume N to be odd for proof-technical reasons.
This does not imply a loss of generality: It is easy to fulfill this requirement by using
trial division. Indeed, one would in general always remove small prime factors before
calling upon more elaborate factoring algorithms. Note furthermore that order finding
may be performed prior to trial division being applied to N if desired, see Sect. 3.2.2
for further details.

There exist efficient probabilistic primality tests, such as Miller—Rabin [15,18], and
efficient algorithms for reducing perfect powers z = ¢¢ to ¢: A simple option is to
test if z!/¢ is an integer for some d € [2, [logz]]. For more advanced options, see
e.g. Bernstein et al. [1].

2 Earlier works

Shor [21,22] proposed to factor N by repeatedly selecting a random g € Z%,, com-
puting its order r via quantum order finding, and executing a classical procedure
inspired by Miller [15]. Specifically, Shor proposed to use that if r is even, and
g"/* # —1 (mod N), it must be that

(gr/2 _ 1)(gf/2 +1)=g"—1=0 (modN)

where ged((g”/? £ 1) mod N, N) yields non-trivial factors of N. Note that it holds
that g"/> # 1 (mod N) by definition, as r is otherwise not the order of g.

Shor proved that the probability of the above two requirements being met is at least
1/2. If both requirements are not met, the algorithm may be re-run for a new g, in
which case the probability is again at least 1/2 of succeeding.

This implies that Shor’s algorithm will eventually succeed in splitting N into two
non-trivial factors. However, as re-running the quantum order-finding part of the algo-
rithm is expensive, it is natural to consider improved strategies.

To completely factor N, recursive calls to Shor’s factoring algorithm, and hence to
the quantum order-finding part, would naively be required, albeit with consecutively
smaller factors, until the factors are prime, perfect powers, or sufficiently small to
factor using classical algorithms. Again, it is natural to consider improved strategies
to avoid re-runs in this setting.

2.1 On the success probability of quantum order finding

Shor’s factoring algorithm as originally described can fail either because the order r
of g is not amenable to factoring N, in the sense that r is odd or g’/> = —1 (mod N),
or because the order-finding part of the algorithm fails to return r given g.

The probability of the algorithm failing for the latter reason is negligible, however,
if the quantum part is correctly parameterized and post-processed, and if it is executed
as per its mathematical description by the quantum computer, see e.g. Appendix A
to [4] or [2] for analyses.
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In what follows, we therefore primarily focus our attention on classically recovering
non-trivial factors of N given r. When referring to factoring in a single run of an order-
finding algorithm, we assume the order-finding algorithm to yield r given g.

2.2 Tradeoffs in quantum order finding

Before proceeding, we note that Seifert [20] has proposed to modify the order-finding
part of Shor’s algorithm to enable tradeoffs between the number of runs that need to
be performed on the quantum computer and the complexity of each run.

In essence, Seifert’s idea is to compute only partial information on the order in
each run, thereby reducing the number of operations that need to be performed by the
computer in each run without uncorrectable errors arising. Given the outputs from a
sufficiently large number of such partial runs, the order may then be re-constructed
efficiently classically, yielding a complete order-finding algorithm that returns r with
high probability given g. In the context of making tradeoffs, whenever we refer to a
single run of an order-finding algorithm in this work, it should be understood to refer
to a single run of a complete algorithm that yields » given g.

Making tradeoffs may prove advantageous in the early days of quantum computing
when the capabilities of the computers available are limited. In a future with large-
scale quantum computers, the fact that the partial runs are independent, and may be
executed in parallel, may furthermore prove useful.

On a side note, Knill [9] has proposed a different kind of tradeoffs, where the goal
is not to perform fewer operations in each run, but rather to obtain improved lower
bounds on the success probability of the order being returned.

2.3 Improvements for odd orders

Several improvements to Shor’s original classical post-processing approach have been
proposed, including in particular ways of recovering factors of N from odd orders
[6,8,10,14]. Grosshans et al. [6] point out that if a small prime factor ¢ divides r, then
ged((g" /4 —1) mod N, N) is likely to yield non-trivial factors of N. Johnston [8] later
made similar observations.

In the context of Shor’s algorithm, the observation that odd » may yield non-trivial
factors of N seems to first have been made by Martin-L6pez et al. [14] in an actual
experimental implementation. This is reported in a work by Lawson [10] and later by
Grosshans et al. [6].

We may efficiently find all small prime factors of r. This often gives us several
attempts at recovering non-trivial factors of N, leading to an increase in the probability
of factoring N. Furthermore, we can try all combinations of these prime factors, with
multiplicity when applicable, to increase the number of non-trivial divisors.
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2.4 Improvements for special form integers

Ekera and Hastad [3,5] have introduced a specialized algorithm for factoring RSA
integers that is more efficient than Shor’s general factoring algorithm. The problem of
factoring RSA integers merits special consideration because it underpins the security
of the widely deployed RSA cryptosystem [19].

The algorithm of Ekera and Hastad classically reduces the RSA integer factoring
problem to a short discrete logarithm problem in a cyclic group of unknown order,
using ideas from [7], and solves this problem quantumly. It is more efficient primarily
because the quantum step is less costly compared to traditional quantum order finding,
both when not making tradeoffs and comparing to Shor, and when making tradeofts
and comparing to Seifert. It furthermore allows for the two factors of the RSA integer
to be recovered deterministically, once the short discrete logarithm has been computed.
This implies that there is little point in optimizing the post-processing in Shor’s original
algorithm if the goal is to factor RSA integers.

On the topic of factoring special form integers, Grosshans et al. [6] have furthermore
shown how so-called safe semi-primes may be factored deterministically after a single
run of Shor’s original order-finding algorithm. Xu et al. [23] have presented similar
ideas. Leander [11] has shown how the lower bound of 1/2 in Shor’s original analysis
may be improved to 3/4 for semi-primes.

2.5 Other related works on factoring via order finding

There is a considerable body of literature on factoring. The specific problem of factor-
ing via number theoretical oracles has been widely explored, in the scope of various
contexts. Many of the results have a lineage that can be traced back to the seminal
works of Miller [15].

More recently, Morain et al. [16] have investigated deterministic algorithms for
factoring via oracles that yield ¢ (N), A(N) or the order r of an element g € Z},. They
find that given ¢ (), it is possible to factor N unconditionally and deterministically
in polynomial time, provided that certain conditions on the prime factors of N are
met: It is required that N be square-free and that N has a prime factor p > +/N. Their
approach leverages the Lenstra—Lenstra—Lovasz (LLL) [12] lattice basis reduction
algorithm.

Morain et al. furthermore explicitly note that their work is connected to Shor’s fac-
toring algorithm, and that efficient randomized factoring algorithms are produced by
all three oracles (see Sects. 2.3 and 2.5 in [16]). They recall the method of Miller [15],
its adapted use in Shor’s algorithm for factoring via an oracle that yields the order r
of g € Z%, and the fact that it may be necessary to consider multiple g to find one
with even order suitable for factoring N. This implies that multiple oracle calls may
be required to find non-trivial factors.

The authors furthermore state that if one has access to an oracle that yields e.g. ¢ (N)
or A(N), it is possible to do better: It is then possible to find a g # &1 (mod N) such
that g2 = 1 (mod N). In particular, one may use that the orders of all elements in
Z”]‘V divide A(N) = 2'0, for some positive ¢ and odd o, to efficiently find such g. The
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same statement holds for ¢ (N). This is closely related to the observations made in
this paper. The original algorithm is from Miller [15].

2.6 On the relation to our contribution

Given the abundance of literature on the topic of factoring, it is admittedly hard to
make new original contributions, or even to survey the existing literature in its entirety.
We are, however, not aware of anyone previously demonstrating, within the context of
Shor’s algorithm, that a single call to the order-finding algorithm is in general sufficient
to completely factor any composite integer with high probability.

On the contrary, it is sometimes said or implied that Shor’s original post-processing
algorithm should be used in practice, potentially requiring several order-finding calls
to find even a non-trivial factor, let alone the complete factorization.

3 Our contribution

We give an efficient classical probabilistic polynomial-time algorithm, that is essen-
tially due to Miller [15], for completely factoring N given the order r of a single
element g selected uniformly at random from Zy,. We furthermore analyze the run-
time and success probability of the algorithm: In particular, we give a lower bound on
its success probability.

3.1 Notes on our original intuition for this work

Given the order r of g, we can in general correctly guess the orders of a large fraction
of the other elements of Z}, with high probability.

To see why this is, note that g is likely to have an order such that L(N)/r is a
moderate size product of small prime factors. Hence, by multiplying on or dividing
off small prime factors to r, we can guess A(N), and by extension the orders of other
elements in the group. This observation served as our original intuition for pursuing
this line of work. In this paper, we do, however, take matters a few steps further:

In particular, instead of guessing the orders of individual elements in Z%,, we instead
guess some multiple of A’(N). Furthermore, we show that even if we only manage to
guess some multiple of a divisor of A'(N), we are still often successful in recovering
the complete factorization of N.

3.2 The algorithm

In what follows, we describe a classical algorithm, essentially due to Miller [15] (see
the algorithm in Lemma 5 ERH), for completely factoring N given a multiple of A’ (V).
We have slightly modified it, however, by adding a step in which we attempt to guess
such a multiple, denoted r’ below, given the order r of g.

Furthermore, we select k group elements x; uniformly at random from ZY, for
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k > 1 some small parameter that may be freely selected, whereas Miller iterates over
all elements up to some bound.

With these modifications, we shall prove that the resulting probabilistic algorithm
runs in polynomial time, with the possible exception of the call to an order-finding
algorithm in the first step, and analyze its success probability.

To be specific, the resulting algorithm first executes the below procedure once to
find non-trivial factors of N:

1 Select g uniformly at random from Zy,.
Compute the order r of g via an order-finding algorithm.

2 Let P(B) be the set of primes < B.
Let (g, B) be the largest integer such that ¢"¢-8) < B.
Let m’ = c¢m for some constant ¢ > 1 that may be freely selected. Recall from the
introduction that m is the bit length of N.
Compute 7' = r [, c pur gnam),

3 Letr’ = 2’0 where o is odd.

4 For j =1, 2, ..., kfor some k > 1 that may be freely selected do:

4.1 Select x; uniformly at random from Z7.
42 Fori =0, 1, ..., tdo:

42.1 Compute d; ; = ged(x?? — 1, N).
If 1 <d;j < N reportd; ; as a non-trivial factor of N.

We then obtain the complete factorization from the d; ; reported as follows:

A set is initialized and N added to it before executing the above algorithm. For
each non-trivial factor reported, the factor is added to the set. The set is kept reduced,
so that it contains only non-trivial pairwise coprime factors. It is furthermore checked
for each factor in the set, if it is a perfect power ¢°, in which case ¢ is reported as a
non-trivial factor. The algorithm succeeds if the set contains all distinct prime factors
of N when the algorithm stops.

Recall from the introduction that there are efficient methods for reducing ¢° to ¢,
and methods for testing primality in probabilistic polynomial time.

3.2.1 Notes on efficient implementation

Note that the algorithm as described in Sect. 3.2 is not optimized: Rather, it is presented
for ease of comprehension and analysis.

In an actual implementation it would for example be beneficial to perform arithmetic
modulo N’ throughout step 4 of the algorithm, for N’ a composite divisor of N that is
void of prime factors that have already been found.

The algorithm would of course also stop incrementing j as soon as the factorization
is complete, rather than after k iterations, and stop incrementing i as soon as x/2.lo =
1 (mod N’) rather than continue up to . It would select x; and g from Z*N\{ 1}
rather than from Z”j\,. In step 4.2.1, it would compute d; ; = ged(u; j — 1, N'), where
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uop,j = x;? mod N, and u; j = ”1’2—1,/‘ mod N’ for i € [1, ], to avoid raising x; to o
repeatedly.

Ideas for potential optimizations: To further speed up the exponentiations, instead of
raising each x; to a pre-computed guess ’ for a multiple of A'(N), a smaller exponent
thatis amultiple of the order of x; mod N’ may conceivably be speculatively computed
and used in place of r’. To obtain more non-trivial factors from each x j» combinations
of small divisors of the exponent may conceivably be exhausted; not only the powers
of two that divide the exponent.

Missing factors: If an x; is such that w; = x;.\'/r/ # 1 (mod N'), a factor g equal
to the order of w; mod N’ is missing in the guess ' for a multiple of A"(N”). Should
this lead the algorithm to fail to completely factor N’, it may be worthwhile to attempt
to compute the missing factor:

The options available include searching for g by exponentiating to all primes up
to some bound, which is essentially analogous to increasing c, or using some form of
cycle-finding algorithm that does not require a multiple of g to be known in advance.

In short, there are a number of optimizations that may be applied, but doing so
above would obscure the workings of the algorithm, and the analysis that we are about
to present. It is furthermore not necessary, since the algorithm as described is already
very efficient.

3.2.2 Notes on performing order finding for a multiple of N

Note that the order-finding call in step 1 may be performed for a multiple of N if
desired. This can only cause r to grow by some multiple, which in turn can only serve
to increase the success probability, in the same way that growing r to r’ in step 2 serves
to increase the success probability, see Sect. 3.3. In turn, this explains why we can
replace N with N’ as described in the previous section, and why a restriction to odd
N does not imply a loss of generality.

3.2.3 Notes on analogies with Miller’s, Rabin’s and Long’s works

Miller’s original version of the algorithm in Sect. 3.2 is deterministic, and proven to
work only assuming the validity of the extended Riemann hypothesis (ERH), as is
Miller’s primality test in the same thesis [15].

Rabin [18] later converted Miller’s primality test into a probabilistic polynomial-
time algorithm that is highly efficient in practice. At about the same time, Long
[13], acknowledging ideas from Flajolet, converted Miller’s factoring algorithm into
a probabilistic polynomial-time algorithm. This in a technical report that seemingly
went unpublished.! More specifically, Long lower-bounds the probability of randomly
selecting an element g € Z}; of order r a multiple of A'(N). He then gives a random-
ized version of Miller’s algorithm for splitting N into two non-trivial factors given
this multiple of A'(N).

The above is closely related to our work. We take matters a step further, however, by
converting Miller’s factoring algorithm into an efficient probabilistic polynomial-time

! The report became available to us only as we were preparing to publish this paper.

@ Springer



205 Page8of14 M. Ekera

algorithm for recovering the complete factorization of N given the order r of a single
element g selected uniformly at random from Zj,. We lower-bound the probability
of the algorithm succeeding in recovering all factors of N given r. We show this
probability to be very high, by carefully considering cases where r is a multiple of a
divisor of A'(N).

3.2.4 Notes on analogies with Pollard’s works

Miller’s algorithm may be regarded as a generalization of Pollard’s p — 1 algorithm
[17]: Miller essentially runs Pollard’s algorithm for all prime factors p; in parallel by
using that a multiple of A'(N) = lem(p; —1, ..., p, — 1) is known. Pollard, assuming
no prior knowledge, uses a product of small prime powers up to some smoothness
bound B in place of A’(N). This factors out p; from N if p; — 1 is B-smooth, giving
Pollard’s algorithm its name.

Since we only know r, a multiple of some divisor of A'(N), we grow r to r’ by
multiplying on a product of small prime powers. This is in analogy with Pollard’s
approach.

3.3 Analysis of the algorithm

A key difference between our modified algorithm in Sect. 3.2 and the original algorithm
in Miller’s thesis [15] is that we compute the order of a random g and then add a
guessing step: We guess an r’ in step 2 that we hope will be a multiple of p; — 1 for
alli € [1, n], and if not all, then at least for all but one index on this interval, in which
case the algorithm will still be successful in completely factoring N.

This is shown in the below analysis. Specifically, we lower-bound the success
probability and demonstrate the polynomial runtime of the algorithm. Throughout the
analysis, and the remainder of this work, we use the notation implicitly introduced in
the pseudocode for the algorithm in Sect. 3.2.

Furthermore, we use that for g selected uniformly at random from

n

ZTV:Z;TI x...xZ;e,,,

we have that g mod p; for i € [1, n] are selected independently and uniformly at
random from the cyclic groups Z), . The same holds with x; in place of g.

Definition 1 The prime p; is unlucky if 7" is not a multiple of p; — 1.
Lemma 1 The probability that p; is unlucky is at most log p; /(m’ logm’).

Proof For p; to be unlucky, there has to exist a prime power g¢ such that

(i) ¢ > m’, as q° otherwise divides r’,
(ii) ¢¢ divides p; — 1, and
(iii) g is a g®-power mod p;, to reduce the order of g mod p; by a factor g°.
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The number of such prime powers ¢¢ that divide p; — 1 is at most log p; / logm’ by a
simple size comparison, as g¢ > m’ and as the product of the prime powers in question
cannot exceed p; — 1. For each such prime power, the probability that g is a g®-power
mod p; is at most 1/g¢ < 1/m’. The lemma follows by taking the product of these
two expressions. O

Lemma 2 If at most one p; is unlucky, then except with probability at most

()

all n prime factors of N will be recovered by the algorithm after k iterations.

Proof For the algorithm not to find all prime factors, there must exist two distinct
prime factors g1 and g» that both divide N, such that for all combinations of i € [0, 7]
and j € [1, k], either both factors divide x2o — 1, or none of them divide x2o 1,

To see why this is, note that the two factors will otherwise be split apart for some
combination of i and j in step 4.2.1 of the algorithm in Sect. 3.2, and if this occurs
pairwise for all factors, the algorithm will recover all factors.

There are (;) ways to select two distinct primes from the n distinct primes that
divide N. For each such pair, at most one of g; and ¢» is unlucky, by the formulation
of the lemma.

(i) If either g1 or g7 is unlucky:
Without loss of generality, say that ¢ is lucky and ¢» is unlucky.

— The lucky prime ¢ then divides sz.t" — 1. To see why this is, recall that x; € Zj,
and that g1 — 1 divides r’ since g is lucky, so

x/2~" :x; =1 (modgq).

— The unlucky prime ¢, divides sz’o — 1iff sz.[(’ =1 (mod ¢q2).

For x ; selected uniformly at random from 7%, and odd g2, where we recall that
we assumed N and hence ¢> to be odd in the introduction, this event occurs
with probability at most 1/2.

To see why this is, note that since ¢ is unlucky, only an element x; with an
order modulo g5 that is reduced from the maximum order go — 1 by some
factor dividing ¢» — 1 can fulfill the condition. The reduction factor must be
at least two. It follows that at most 1/2 of the elements in Z}; can fulfill the
condition.

For each iteration j € [1, k], the failure probability is hence at most 1/2.
Since there are k iterations, the total failure probability is at most 2.

(i1) If both g1 and g, are lucky:
In this case, both ¢g; and ¢ divide szt" — 1, since x; € Zj,, and since r’ = 2o
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where g — 1 and g, — 1 both divide 7/, so

x/zlo = x;/ =1 (modg) forgqg € {q1,q2)}.
The algorithm fails iff x¢ has the same order modulo both ¢; and ¢5.

To see why this is, note that
di.j = ged(x?? — 1,N)

is computed in step 4.2.1 of the algorithm, for i € [0, ¢], and that the prime
q € {q1, q2} divides d; ; iff x?l” = 1 (mod g). It is only if this occurs for the same
i for both g1 and ¢, that g1 and g will not be split apart, i.e., if x;? has the same
order modulo both g1 and ¢g5.

To analyze the probability of xJ”. having the same order modulo ¢ and g2, we let 2!
and 2 be the greatest powers of two to divide g; — 1 and g, — 1, respectively.
Recall furthermore that we assumed N, and hence ¢g; and g7, to be odd in the
introduction. This implies that we may assume that t > t; > f, > 1 without loss
of generality.

Consider szt' o,

— If t; = 15, the probability that xf"’lo — 1 is divisible by ¢ but not by ¢» is
1/4, and vice versa for g, and q;. Hence, the probability is at most 1/2 that x;?
has the same order modulo both g and ¢>.

— Ift; > 1p, the probability that x2"7'0 _ 1 s divisible by ¢ is 1/2, whereas the
same always holds for g>. Hence, the probability is again at most 1/2 that x;.’
has the same order modulo g1 and g».

For each iteration j € [1, k], the probability is hence again at most 1/2.
Since there are k iterations, the total failure probability is at most 2%,

The lemma follows from the above argument, as there are (’;) combinations with
probability at most 2% each. O

By definition ¢ is said to divide u iff u = 0 (mod ¢). Note that this implies that all
q # 0 divide u = 0. This situation arises in the above proof of Lemma 2.

Lemma 3 At least two primes are unlucky with probability at most

1
2¢2log? em’

Proof The three conditions used to establish the upper bound in the proof of Lemma 1
are independent for any two distinct primes p;. Hence, by the proof of Lemma 1, we
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have that the probability of at least two primes being unlucky is upper-bounded by

1 1 1 n 2 1
Z og pi og pi
m’lgoplrln’ m' lgoplrzn’ = 2(m’logm’)? < ]ng') = 202 1002
(i,in)eS & g g i=1 c-log“cm

where we used that )/ log p; < logN < m and m’ = cm, and where S is the
set of all pairs (i1, i) € [I, n]? such that the product p;, - pj, is distinct, and so the
lemma follows. O

3.3.1 Runtime analysis
Claim 1 It holds that logr’ = O (m).

Proof By the prime number theorem, there are O (m’/Inm’) primes less than m’. As
r < N we have logr < m. Furthermore, as each prime power ¢ in r’/r is less than
m’, we have

logr’ <logr + O(m'/Inm') -logm’ = O (m)

as m’ = cm for some constant ¢ > 1, and so the claim follows. O

3.3.2 Main theorem

Theorem 1 The factoring algorithm, with the possible exception of the single order-
finding call, completely factors N in polynomial time, except with probability at most

ok (n) . 1
2 2¢2 log? cm

where n is the number of distinct prime factors of N, m is the bit length of N, ¢ > 1
is a constant that may be freely selected, and k is the number of iterations performed
in the classical post-processing.

Proof 1t is easy to see that the non-order-finding part of the algorithm runs in polyno-
mial time in m, as all integers are of length O (m), including in particular 7’ by Claim 1.
The theorem then follows from the analysis in Sect. 3.3, by summing the upper bound
on the probability of a failure occurring when at most one prime is unlucky in Lemma 2,
and on the probability of at least two primes being unlucky in Lemma 3. O

By the above main theorem, the algorithm will be successful in completely factoring
N, if the constant ¢ is selected so that 1/ (2c2 log2 cm) is sufficiently small, and if
2% for k the number of iterations is sufficiently small in relation to (;) for n the
number of distinct prime factors in N. The latter requirement is easy to meet: Pick
k = 2logn — 1 + t for some positive T. Then 275 - (5) <277,
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The time complexity of the algorithm is dominated by k exponentiations of an
integer modulo N to an exponent of length O (m) bits, and by the need to test the
factors identified for primality. This is indeed very efficient.

Note furthermore that our analysis of the success probability of the algorithm is
a worst-case analysis. In practice, the actual success probability of the algorithm is
higher. Also, nothing in our arguments strictly requires ¢ to be a constant: We can
make ¢ a function of m to further increase the success probability at the expense of
working with O (c(m) m) bit exponents.

4 Summary and conclusion

When factoring an integer N via order finding, as in Shor’s factoring algorithm, com-
puting the order of a single element selected uniformly at random from 7y, suffices
to completely factor N, with very high probability, depending on how ¢ and k are
selected in relation to the number of factors n and the bit length m of N, for N any
integer.
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A Supplementary simulations

We have implemented the algorithm in Sage to test it in practice. This is possible for
any problem instance for which the factorization of N = pf‘ - ...+ patis known:

Order finding can be implemented exactly classically if the factorization of p; — 1
is known for all i € [1, n]. If only the p; are known, order finding can be simulated
heuristically classically: The correct order of g is then returned with very high proba-
bility. If the correct order is not returned, some multiple of the correct order is returned,
see Sect. A.2. Both approaches are efficient.
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A.1 Selecting problem instances

To setup problem instances, we select n > 2 distinct primes {p1, ..., p,} uniformly
at random from the set of all odd ¢ bit primes, exponents {eq, ..., e,} uniformly at
random from the integers on [1, emax ], and compute N = p{' ... p,".

This yields N with two or more factors of size approximately ¢ bits, that may or may
not occur with multiplicity depending on how ep,y is selected, providing a suitable
range of problem instances for testing the algorithm. Note that N on the above form
are hard to factor classically when £ is large. However, we know the factorization by
virtue of how N is selected, enabling us to simulate order finding heuristically when
executing our tests.

A.2 Simulating order finding

To simulate order finding heuristically, we use for efficiency that selecting g uniformly
at random from Z*N is equivalent to selecting (g1, .. ., g») uniformly at random from

ZFe) X oo X L*ey =775,
i o N

To approximate the order r; of each g; thus selected, we let A( pfi) be an initial
guess for ;. For all f € P(By) for some bound By, we then let r; <— r;/ f for as long
as f divides r; and it holds that

g =1 (mod pf"),

where we recall that P(By) is the set of all primes < B;.

We then construct g from g; and p;, ¢; via the Chinese remainder theorem, by
requiring that g = g; (mod pl.ei) foralli € [1, n], and take r = Icm(ry, ..., ry) as
the approximate order r of g. This is a good approximation of r, in the sense that it is
equal to » with very high probability, provided that By is selected sufficiently large.

There is of course still a tiny risk that the approximation of r will be incorrect, in
which case it will be equal to ¢, - r, for ¢, > By a factor that divides A(N)/r. This
implies that the factoring algorithm will perform slightly better under simulated order
finding than under exact order finding, as the order is never reduced by factors greater
than B;. The difference is, however, negligible for sufficiently large Bj.

A.3 Results

We have executed tests, in accordance with the above, for all combinations of
£ € {256, 512, 1024} n € {2, 5, 10, 25} emax € {1, 2, 3}

with ¢ = 1, unbounded k, and By, = 10° in the order-finding simulator. As expected,
the algorithm recovered all factors efficiently from r and N in all cases considered.

For these choices of parameters, the runtime typically varies from seconds up to
minutes when the Sage script is executed on a regular laptop computer.
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