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Abstract
We show that given the order of a single element selected uniformly at random from
Z

∗
N , we can with very high probability, and for any integer N , efficiently find the

complete factorization of N in polynomial time. This implies that a single run of the
quantum part of Shor’s factoring algorithm is usually sufficient. All prime factors of N
can then be recoveredwith negligible computational cost in a classical post-processing
step. The classical algorithm required for this step is essentially due to Miller.

Keywords Factoring · Order finding · Shor’s algorithms

Mathematics Subject Classification 11A51 · 68Q12 · 81P68

1 Introduction

In what follows, let

N =
n∏

i = 1

peii

be an m bit integer, with n ≥ 2 distinct prime factors pi , for ei some positive integer
exponents. Let an algorithm be said to factor N if it computes a non-trivial factor of
N , and to completely factor N if it computes the set {p1, . . . , pn}.

Let φ be Euler’s totient function, let λ be the Carmichael function, and let λ′(N ) =
lcm(p1 − 1, . . . , pn − 1). Furthermore, let Z∗

N denote the multiplicative group of ZN ,
the ring of integersmodulo N , and let ln and log be the natural and base-two logarithms,
respectively. Denote by [a, b] the range of integers from a up to and including b.
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Throughout this paper, we shall assume N to be odd for proof-technical reasons.
This does not imply a loss of generality: It is easy to fulfill this requirement by using
trial division. Indeed, one would in general always remove small prime factors before
calling upon more elaborate factoring algorithms. Note furthermore that order finding
may be performed prior to trial division being applied to N if desired, see Sect. 3.2.2
for further details.

There exist efficient probabilistic primality tests, such asMiller–Rabin [15,18], and
efficient algorithms for reducing perfect powers z = qe to q: A simple option is to
test if z1/d is an integer for some d ∈ [2, �log z�]. For more advanced options, see
e.g. Bernstein et al. [1].

2 Earlier works

Shor [21,22] proposed to factor N by repeatedly selecting a random g ∈ Z
∗
N , com-

puting its order r via quantum order finding, and executing a classical procedure
inspired by Miller [15]. Specifically, Shor proposed to use that if r is even, and
gr/2 �≡ −1 (mod N ), it must be that

(gr/2 − 1)(gr/2 + 1) = gr − 1 ≡ 0 (mod N )

where gcd((gr/2 ± 1) mod N , N ) yields non-trivial factors of N . Note that it holds
that gr/2 �≡ 1 (mod N ) by definition, as r is otherwise not the order of g.

Shor proved that the probability of the above two requirements being met is at least
1/2. If both requirements are not met, the algorithm may be re-run for a new g, in
which case the probability is again at least 1/2 of succeeding.

This implies that Shor’s algorithm will eventually succeed in splitting N into two
non-trivial factors. However, as re-running the quantum order-finding part of the algo-
rithm is expensive, it is natural to consider improved strategies.

To completely factor N , recursive calls to Shor’s factoring algorithm, and hence to
the quantum order-finding part, would naïvely be required, albeit with consecutively
smaller factors, until the factors are prime, perfect powers, or sufficiently small to
factor using classical algorithms. Again, it is natural to consider improved strategies
to avoid re-runs in this setting.

2.1 On the success probability of quantum order finding

Shor’s factoring algorithm as originally described can fail either because the order r
of g is not amenable to factoring N , in the sense that r is odd or gr/2 ≡ −1 (mod N ),
or because the order-finding part of the algorithm fails to return r given g.

The probability of the algorithm failing for the latter reason is negligible, however,
if the quantum part is correctly parameterized and post-processed, and if it is executed
as per its mathematical description by the quantum computer, see e.g. Appendix A
to [4] or [2] for analyses.

123
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Inwhat follows, we therefore primarily focus our attention on classically recovering
non-trivial factors of N given r . When referring to factoring in a single run of an order-
finding algorithm, we assume the order-finding algorithm to yield r given g.

2.2 Tradeoffs in quantum order finding

Before proceeding, we note that Seifert [20] has proposed to modify the order-finding
part of Shor’s algorithm to enable tradeoffs between the number of runs that need to
be performed on the quantum computer and the complexity of each run.

In essence, Seifert’s idea is to compute only partial information on the order in
each run, thereby reducing the number of operations that need to be performed by the
computer in each run without uncorrectable errors arising. Given the outputs from a
sufficiently large number of such partial runs, the order may then be re-constructed
efficiently classically, yielding a complete order-finding algorithm that returns r with
high probability given g. In the context of making tradeoffs, whenever we refer to a
single run of an order-finding algorithm in this work, it should be understood to refer
to a single run of a complete algorithm that yields r given g.

Making tradeoffs may prove advantageous in the early days of quantum computing
when the capabilities of the computers available are limited. In a future with large-
scale quantum computers, the fact that the partial runs are independent, and may be
executed in parallel, may furthermore prove useful.

On a side note, Knill [9] has proposed a different kind of tradeoffs, where the goal
is not to perform fewer operations in each run, but rather to obtain improved lower
bounds on the success probability of the order being returned.

2.3 Improvements for odd orders

Several improvements to Shor’s original classical post-processing approach have been
proposed, including in particular ways of recovering factors of N from odd orders
[6,8,10,14]. Grosshans et al. [6] point out that if a small prime factor q divides r , then
gcd((gr/q −1) mod N , N ) is likely to yield non-trivial factors of N . Johnston [8] later
made similar observations.

In the context of Shor’s algorithm, the observation that odd r may yield non-trivial
factors of N seems to first have been made by Martín-López et al. [14] in an actual
experimental implementation. This is reported in a work by Lawson [10] and later by
Grosshans et al. [6].

We may efficiently find all small prime factors of r . This often gives us several
attempts at recovering non-trivial factors of N , leading to an increase in the probability
of factoring N . Furthermore, we can try all combinations of these prime factors, with
multiplicity when applicable, to increase the number of non-trivial divisors.

123



205 Page 4 of 14 M. Ekerå

2.4 Improvements for special form integers

Ekerå and Håstad [3,5] have introduced a specialized algorithm for factoring RSA
integers that is more efficient than Shor’s general factoring algorithm. The problem of
factoring RSA integers merits special consideration because it underpins the security
of the widely deployed RSA cryptosystem [19].

The algorithm of Ekerå and Håstad classically reduces the RSA integer factoring
problem to a short discrete logarithm problem in a cyclic group of unknown order,
using ideas from [7], and solves this problem quantumly. It is more efficient primarily
because the quantum step is less costly compared to traditional quantum order finding,
both when not making tradeoffs and comparing to Shor, and when making tradeoffs
and comparing to Seifert. It furthermore allows for the two factors of the RSA integer
to be recovered deterministically, once the short discrete logarithmhas been computed.
This implies that there is little point in optimizing the post-processing in Shor’s original
algorithm if the goal is to factor RSA integers.

On the topic of factoring special form integers, Grosshans et al. [6] have furthermore
shown how so-called safe semi-primes may be factored deterministically after a single
run of Shor’s original order-finding algorithm. Xu et al. [23] have presented similar
ideas. Leander [11] has shown how the lower bound of 1/2 in Shor’s original analysis
may be improved to 3/4 for semi-primes.

2.5 Other related works on factoring via order finding

There is a considerable body of literature on factoring. The specific problem of factor-
ing via number theoretical oracles has been widely explored, in the scope of various
contexts. Many of the results have a lineage that can be traced back to the seminal
works of Miller [15].

More recently, Morain et al. [16] have investigated deterministic algorithms for
factoring via oracles that yield φ(N ), λ(N ) or the order r of an element g ∈ Z

∗
N . They

find that given φ(N ), it is possible to factor N unconditionally and deterministically
in polynomial time, provided that certain conditions on the prime factors of N are
met: It is required that N be square-free and that N has a prime factor p >

√
N . Their

approach leverages the Lenstra–Lenstra–Lovász (LLL) [12] lattice basis reduction
algorithm.

Morain et al. furthermore explicitly note that their work is connected to Shor’s fac-
toring algorithm, and that efficient randomized factoring algorithms are produced by
all three oracles (see Sects. 2.3 and 2.5 in [16]). They recall the method of Miller [15],
its adapted use in Shor’s algorithm for factoring via an oracle that yields the order r
of g ∈ Z

∗
N , and the fact that it may be necessary to consider multiple g to find one

with even order suitable for factoring N . This implies that multiple oracle calls may
be required to find non-trivial factors.

The authors furthermore state that if one has access to an oracle that yields e.g.φ(N )

or λ(N ), it is possible to do better: It is then possible to find a g �≡ ±1 (mod N ) such
that g2 ≡ 1 (mod N ). In particular, one may use that the orders of all elements in
Z

∗
N divide λ(N ) = 2t o, for some positive t and odd o, to efficiently find such g. The
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same statement holds for φ(N ). This is closely related to the observations made in
this paper. The original algorithm is from Miller [15].

2.6 On the relation to our contribution

Given the abundance of literature on the topic of factoring, it is admittedly hard to
make new original contributions, or even to survey the existing literature in its entirety.
We are, however, not aware of anyone previously demonstrating, within the context of
Shor’s algorithm, that a single call to the order-finding algorithm is in general sufficient
to completely factor any composite integer with high probability.

On the contrary, it is sometimes said or implied that Shor’s original post-processing
algorithm should be used in practice, potentially requiring several order-finding calls
to find even a non-trivial factor, let alone the complete factorization.

3 Our contribution

We give an efficient classical probabilistic polynomial-time algorithm, that is essen-
tially due to Miller [15], for completely factoring N given the order r of a single
element g selected uniformly at random from Z

∗
N . We furthermore analyze the run-

time and success probability of the algorithm: In particular, we give a lower bound on
its success probability.

3.1 Notes on our original intuition for this work

Given the order r of g, we can in general correctly guess the orders of a large fraction
of the other elements of Z∗

N with high probability.
To see why this is, note that g is likely to have an order such that λ(N )/r is a

moderate size product of small prime factors. Hence, by multiplying on or dividing
off small prime factors to r , we can guess λ(N ), and by extension the orders of other
elements in the group. This observation served as our original intuition for pursuing
this line of work. In this paper, we do, however, take matters a few steps further:

In particular, instead of guessing the orders of individual elements inZ∗
N , we instead

guess some multiple of λ′(N ). Furthermore, we show that even if we only manage to
guess some multiple of a divisor of λ′(N ), we are still often successful in recovering
the complete factorization of N .

3.2 The algorithm

In what follows, we describe a classical algorithm, essentially due to Miller [15] (see
the algorithm in Lemma 5ERH), for completely factoring N given amultiple of λ′(N ).
We have slightly modified it, however, by adding a step in which we attempt to guess
such a multiple, denoted r ′ below, given the order r of g.

Furthermore, we select k group elements x j uniformly at random from Z
∗
N , for
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k ≥ 1 some small parameter that may be freely selected, whereas Miller iterates over
all elements up to some bound.

With these modifications, we shall prove that the resulting probabilistic algorithm
runs in polynomial time, with the possible exception of the call to an order-finding
algorithm in the first step, and analyze its success probability.

To be specific, the resulting algorithm first executes the below procedure once to
find non-trivial factors of N :

1 Select g uniformly at random from Z
∗
N .

Compute the order r of g via an order-finding algorithm.

2 Let P(B) be the set of primes ≤ B.
Let η(q, B) be the largest integer such that qη(q,B) ≤ B.
Let m′ = cm for some constant c ≥ 1 that may be freely selected. Recall from the
introduction that m is the bit length of N .
Compute r ′ = r

∏
q ∈P(m′) q

η(q,m′).

3 Let r ′ = 2t o where o is odd.

4 For j = 1, 2, . . . , k for some k ≥ 1 that may be freely selected do:

4.1 Select x j uniformly at random from Z
∗
N .

4.2 For i = 0, 1, . . . , t do:

4.2.1 Compute di, j = gcd(x2
i o
j − 1, N ).

If 1 < di, j < N report di, j as a non-trivial factor of N .

We then obtain the complete factorization from the di, j reported as follows:
A set is initialized and N added to it before executing the above algorithm. For

each non-trivial factor reported, the factor is added to the set. The set is kept reduced,
so that it contains only non-trivial pairwise coprime factors. It is furthermore checked
for each factor in the set, if it is a perfect power qe, in which case q is reported as a
non-trivial factor. The algorithm succeeds if the set contains all distinct prime factors
of N when the algorithm stops.

Recall from the introduction that there are efficient methods for reducing qe to q,
and methods for testing primality in probabilistic polynomial time.

3.2.1 Notes on efficient implementation

Note that the algorithm as described in Sect. 3.2 is not optimized: Rather, it is presented
for ease of comprehension and analysis.

In an actual implementation itwould for example be beneficial to performarithmetic
modulo N ′ throughout step 4 of the algorithm, for N ′ a composite divisor of N that is
void of prime factors that have already been found.

The algorithmwould of course also stop incrementing j as soon as the factorization
is complete, rather than after k iterations, and stop incrementing i as soon as x2

i o
j ≡

1 (mod N ′) rather than continue up to t . It would select x j and g from Z
∗
N\{1}

rather than from Z
∗
N . In step 4.2.1, it would compute di, j = gcd(ui, j − 1, N ′), where
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u0, j = xoj mod N ′, and ui, j = u2i−1, j mod N ′ for i ∈ [1, t], to avoid raising x j to o
repeatedly.

Ideas for potential optimizations:To further speed up the exponentiations, instead of
raising each x j to a pre-computed guess r ′ for a multiple of λ′(N ), a smaller exponent
that is amultiple of the order of x j mod N ′ mayconceivably be speculatively computed
and used in place of r ′. To obtain more non-trivial factors from each x j , combinations
of small divisors of the exponent may conceivably be exhausted; not only the powers
of two that divide the exponent.

Missing factors: If an x j is such that w j = xN
′r ′

j �≡ 1 (mod N ′), a factor q equal
to the order of w j mod N ′ is missing in the guess r ′ for a multiple of λ′(N ′). Should
this lead the algorithm to fail to completely factor N ′, it may be worthwhile to attempt
to compute the missing factor:

The options available include searching for q by exponentiating to all primes up
to some bound, which is essentially analogous to increasing c, or using some form of
cycle-finding algorithm that does not require a multiple of q to be known in advance.

In short, there are a number of optimizations that may be applied, but doing so
above would obscure the workings of the algorithm, and the analysis that we are about
to present. It is furthermore not necessary, since the algorithm as described is already
very efficient.

3.2.2 Notes on performing order finding for a multiple of N

Note that the order-finding call in step 1 may be performed for a multiple of N if
desired. This can only cause r to grow by some multiple, which in turn can only serve
to increase the success probability, in the sameway that growing r to r ′ in step 2 serves
to increase the success probability, see Sect. 3.3. In turn, this explains why we can
replace N with N ′ as described in the previous section, and why a restriction to odd
N does not imply a loss of generality.

3.2.3 Notes on analogies with Miller’s, Rabin’s and Long’s works

Miller’s original version of the algorithm in Sect. 3.2 is deterministic, and proven to
work only assuming the validity of the extended Riemann hypothesis (ERH), as is
Miller’s primality test in the same thesis [15].

Rabin [18] later converted Miller’s primality test into a probabilistic polynomial-
time algorithm that is highly efficient in practice. At about the same time, Long
[13], acknowledging ideas from Flajolet, converted Miller’s factoring algorithm into
a probabilistic polynomial-time algorithm. This in a technical report that seemingly
went unpublished.1 More specifically, Long lower-bounds the probability of randomly
selecting an element g ∈ Z

∗
N of order r a multiple of λ′(N ). He then gives a random-

ized version of Miller’s algorithm for splitting N into two non-trivial factors given
this multiple of λ′(N ).

The above is closely related to our work.We takematters a step further, however, by
convertingMiller’s factoring algorithm into an efficient probabilistic polynomial-time

1 The report became available to us only as we were preparing to publish this paper.
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algorithm for recovering the complete factorization of N given the order r of a single
element g selected uniformly at random from Z

∗
N . We lower-bound the probability

of the algorithm succeeding in recovering all factors of N given r . We show this
probability to be very high, by carefully considering cases where r is a multiple of a
divisor of λ′(N ).

3.2.4 Notes on analogies with Pollard’s works

Miller’s algorithm may be regarded as a generalization of Pollard’s p − 1 algorithm
[17]: Miller essentially runs Pollard’s algorithm for all prime factors pi in parallel by
using that a multiple of λ′(N ) = lcm(p1−1, . . . , pn−1) is known. Pollard, assuming
no prior knowledge, uses a product of small prime powers up to some smoothness
bound B in place of λ′(N ). This factors out pi from N if pi − 1 is B-smooth, giving
Pollard’s algorithm its name.

Since we only know r , a multiple of some divisor of λ′(N ), we grow r to r ′ by
multiplying on a product of small prime powers. This is in analogy with Pollard’s
approach.

3.3 Analysis of the algorithm

Akeydifference betweenourmodified algorithm inSect. 3.2 and the original algorithm
in Miller’s thesis [15] is that we compute the order of a random g and then add a
guessing step: We guess an r ′ in step 2 that we hope will be a multiple of pi − 1 for
all i ∈ [1, n], and if not all, then at least for all but one index on this interval, in which
case the algorithm will still be successful in completely factoring N .

This is shown in the below analysis. Specifically, we lower-bound the success
probability and demonstrate the polynomial runtime of the algorithm. Throughout the
analysis, and the remainder of this work, we use the notation implicitly introduced in
the pseudocode for the algorithm in Sect. 3.2.

Furthermore, we use that for g selected uniformly at random from

Z
∗
N � Z

∗
p
e1
1

× . . . × Z
∗
penn

,

we have that g mod pi for i ∈ [1, n] are selected independently and uniformly at
random from the cyclic groups Z∗

pi . The same holds with x j in place of g.

Definition 1 The prime pi is unlucky if r ′ is not a multiple of pi − 1.

Lemma 1 The probability that pi is unlucky is at most log pi/(m′ logm′).

Proof For pi to be unlucky, there has to exist a prime power qe such that

(i) qe > m′, as qe otherwise divides r ′,
(ii) qe divides pi − 1, and
(iii) g is a qe-power mod pi , to reduce the order of g mod pi by a factor qe.
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The number of such prime powers qe that divide pi − 1 is at most log pi/ logm′ by a
simple size comparison, as qe > m′ and as the product of the prime powers in question
cannot exceed pi − 1. For each such prime power, the probability that g is a qe-power
mod pi is at most 1/qe ≤ 1/m′. The lemma follows by taking the product of these
two expressions. �

Lemma 2 If at most one pi is unlucky, then except with probability at most

2−k ·
(
n

2

)

all n prime factors of N will be recovered by the algorithm after k iterations.

Proof For the algorithm not to find all prime factors, there must exist two distinct
prime factors q1 and q2 that both divide N , such that for all combinations of i ∈ [0, t]
and j ∈ [1, k], either both factors divide x2

i o
j − 1, or none of them divide x2

i o
j − 1.

To see why this is, note that the two factors will otherwise be split apart for some
combination of i and j in step 4.2.1 of the algorithm in Sect. 3.2, and if this occurs
pairwise for all factors, the algorithm will recover all factors.

There are
(n
2

)
ways to select two distinct primes from the n distinct primes that

divide N . For each such pair, at most one of q1 and q2 is unlucky, by the formulation
of the lemma.

(i) If either q1 or q2 is unlucky:
Without loss of generality, say that q1 is lucky and q2 is unlucky.

– The lucky prime q1 then divides x2
t o
j −1. To seewhy this is, recall that x j ∈ Z

∗
N

and that q1 − 1 divides r ′ since q1 is lucky, so

x2
t o
j = xr

′
j ≡ 1 (mod q1).

– The unlucky prime q2 divides x2
t o
j − 1 iff x2

t o
j ≡ 1 (mod q2).

For x j selected uniformly at random fromZ
∗
N , and odd q2, where we recall that

we assumed N and hence q2 to be odd in the introduction, this event occurs
with probability at most 1/2.
To see why this is, note that since q2 is unlucky, only an element x j with an
order modulo q2 that is reduced from the maximum order q2 − 1 by some
factor dividing q2 − 1 can fulfill the condition. The reduction factor must be
at least two. It follows that at most 1/2 of the elements in Z

∗
N can fulfill the

condition.

For each iteration j ∈ [1, k], the failure probability is hence at most 1/2.
Since there are k iterations, the total failure probability is at most 2−k .

(ii) If both q1 and q2 are lucky:
In this case, both q1 and q2 divide x2

t o
j − 1, since x j ∈ Z

∗
N , and since r ′ = 2t o
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where q1 − 1 and q2 − 1 both divide r ′, so

x2
t o
j = xr

′
j ≡ 1 (mod q) for q ∈ {q1, q2}.

The algorithm fails iff xoj has the same order modulo both q1 and q2.
To see why this is, note that

di, j = gcd(x2
i o
j − 1, N )

is computed in step 4.2.1 of the algorithm, for i ∈ [0, t], and that the prime
q ∈ {q1, q2} divides di, j iff x2i oj ≡ 1 (mod q). It is only if this occurs for the same
i for both q1 and q2 that q1 and q2 will not be split apart, i.e., if xoj has the same
order modulo both q1 and q2.
To analyze the probability of xoj having the same order modulo q1 and q2, we let 2t1

and 2t2 be the greatest powers of two to divide q1 − 1 and q2 − 1, respectively.
Recall furthermore that we assumed N , and hence q1 and q2, to be odd in the
introduction. This implies that we may assume that t ≥ t1 ≥ t2 ≥ 1 without loss
of generality.

Consider x2
t1−1o
j :

– If t1 = t2, the probability that x2
t1−1o
j − 1 is divisible by q1 but not by q2 is

1/4, and vice versa for q2 and q1. Hence, the probability is at most 1/2 that xoj
has the same order modulo both q1 and q2.

– If t1 > t2, the probability that x2
t1−1o − 1 is divisible by q1 is 1/2, whereas the

same always holds for q2. Hence, the probability is again at most 1/2 that xoj
has the same order modulo q1 and q2.

For each iteration j ∈ [1, k], the probability is hence again at most 1/2.
Since there are k iterations, the total failure probability is at most 2−k .

The lemma follows from the above argument, as there are
(n
2

)
combinations with

probability at most 2−k each. �

By definition q is said to divide u iff u ≡ 0 (mod q). Note that this implies that all
q �= 0 divide u = 0. This situation arises in the above proof of Lemma 2.

Lemma 3 At least two primes are unlucky with probability at most

1

2c2 log2 cm
.

Proof The three conditions used to establish the upper bound in the proof of Lemma 1
are independent for any two distinct primes pi . Hence, by the proof of Lemma 1, we
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have that the probability of at least two primes being unlucky is upper-bounded by

∑

(i1,i2) ∈S

log pi1
m′ logm′ · log pi2

m′ logm′ ≤ 1

2(m′ logm′)2

(
n∑

i = 1

log pi

)2

≤ 1

2c2 log2 cm

where we used that
∑n

i = 1 log pi ≤ log N ≤ m and m′ = cm, and where S is the
set of all pairs (i1, i2) ∈ [1, n]2 such that the product pi1 · pi2 is distinct, and so the
lemma follows. �

3.3.1 Runtime analysis

Claim 1 It holds that log r ′ = O(m).

Proof By the prime number theorem, there are O(m′/ lnm′) primes less than m′. As
r < N we have log r < m. Furthermore, as each prime power qe in r ′/r is less than
m′, we have

log r ′ ≤ log r + O(m′/ lnm′) · logm′ = O(m)

as m′ = cm for some constant c ≥ 1, and so the claim follows. �

3.3.2 Main theorem

Theorem 1 The factoring algorithm, with the possible exception of the single order-
finding call, completely factors N in polynomial time, except with probability at most

2−k ·
(
n

2

)
+ 1

2c2 log2 cm

where n is the number of distinct prime factors of N , m is the bit length of N , c ≥ 1
is a constant that may be freely selected, and k is the number of iterations performed
in the classical post-processing.

Proof It is easy to see that the non-order-finding part of the algorithm runs in polyno-
mial time inm, as all integers are of length O(m), including in particular r ′ by Claim 1.
The theorem then follows from the analysis in Sect. 3.3, by summing the upper bound
on the probability of a failure occurringwhen atmost one prime is unlucky inLemma2,
and on the probability of at least two primes being unlucky in Lemma 3. �

By the abovemain theorem, the algorithmwill be successful in completely factoring
N , if the constant c is selected so that 1/(2c2 log2 cm) is sufficiently small, and if
2−k for k the number of iterations is sufficiently small in relation to

(n
2

)
for n the

number of distinct prime factors in N . The latter requirement is easy to meet: Pick
k ≥ 2 log n − 1 + τ for some positive τ . Then 2−k · (n

2

) ≤ 2−τ .
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The time complexity of the algorithm is dominated by k exponentiations of an
integer modulo N to an exponent of length O(m) bits, and by the need to test the
factors identified for primality. This is indeed very efficient.

Note furthermore that our analysis of the success probability of the algorithm is
a worst-case analysis. In practice, the actual success probability of the algorithm is
higher. Also, nothing in our arguments strictly requires c to be a constant: We can
make c a function of m to further increase the success probability at the expense of
working with O(c(m)m) bit exponents.

4 Summary and conclusion

When factoring an integer N via order finding, as in Shor’s factoring algorithm, com-
puting the order of a single element selected uniformly at random from Z

∗
N suffices

to completely factor N , with very high probability, depending on how c and k are
selected in relation to the number of factors n and the bit length m of N , for N any
integer.
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A Supplementary simulations

We have implemented the algorithm in Sage to test it in practice. This is possible for
any problem instance for which the factorization of N = pe11 · . . . · penn is known:

Order finding can be implemented exactly classically if the factorization of pi − 1
is known for all i ∈ [1, n]. If only the pi are known, order finding can be simulated
heuristically classically: The correct order of g is then returned with very high proba-
bility. If the correct order is not returned, somemultiple of the correct order is returned,
see Sect. A.2. Both approaches are efficient.
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A.1 Selecting problem instances

To setup problem instances, we select n ≥ 2 distinct primes {p1, . . . , pn} uniformly
at random from the set of all odd � bit primes, exponents {e1, . . . , en} uniformly at
random from the integers on [1, emax], and compute N = pe11 · . . . · penn .

This yields N with two ormore factors of size approximately � bits, that may ormay
not occur with multiplicity depending on how emax is selected, providing a suitable
range of problem instances for testing the algorithm. Note that N on the above form
are hard to factor classically when � is large. However, we know the factorization by
virtue of how N is selected, enabling us to simulate order finding heuristically when
executing our tests.

A.2 Simulating order finding

To simulate order finding heuristically, we use for efficiency that selecting g uniformly
at random from Z

∗
N is equivalent to selecting (g1, . . . , gn) uniformly at random from

Z
∗
p
e1
1

× . . . × Z
∗
penn

� Z
∗
N .

To approximate the order ri of each gi thus selected, we let λ(peii ) be an initial
guess for ri . For all f ∈ P(Bs) for some bound Bs , we then let ri ← ri/ f for as long
as f divides ri and it holds that

gri / fi ≡ 1 (mod peii ),

where we recall that P(Bs) is the set of all primes ≤ Bs .
We then construct g from gi and pi , ei via the Chinese remainder theorem, by

requiring that g ≡ gi (mod peii ) for all i ∈ [1, n], and take r = lcm(r1, . . . , rn) as
the approximate order r of g. This is a good approximation of r , in the sense that it is
equal to r with very high probability, provided that Bs is selected sufficiently large.

There is of course still a tiny risk that the approximation of r will be incorrect, in
which case it will be equal to cr · r , for cr > Bs a factor that divides λ(N )/r . This
implies that the factoring algorithm will perform slightly better under simulated order
finding than under exact order finding, as the order is never reduced by factors greater
than Bs . The difference is, however, negligible for sufficiently large Bs .

A.3 Results

We have executed tests, in accordance with the above, for all combinations of

� ∈ {256, 512, 1024} n ∈ {2, 5, 10, 25} emax ∈ {1, 2, 3}

with c = 1, unbounded k, and Bs = 106 in the order-finding simulator. As expected,
the algorithm recovered all factors efficiently from r and N in all cases considered.

For these choices of parameters, the runtime typically varies from seconds up to
minutes when the Sage script is executed on a regular laptop computer.
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