Skip to main content
Log in

Quantum forgery attacks on COPA, AES-COPA and marble authenticated encryption algorithms

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The classic forgery attacks on COPA, AES-COPA and Marble authenticated encryption algorithms need to query about \({2^{n/2}}\) times, and their success probability is not high. To solve this problem, the corresponding quantum forgery attacks on COPA, AES-COPA and Marble authenticated encryption algorithms are presented. In the quantum forgery attacks on COPA and AES-COPA, we use Simon’s algorithm to find the period of the tag generation function in COPA and AES-COPA by querying in superposition, and then generate a forged tag for a new message. In the quantum forgery attack on Marble, Simon’s algorithm is used to recover the secret parameter L, and the forged tag can be computed with L. Compared with classic forgery attacks on COPA, AES-COPA and Marble, our attack can reduce the number of queries from \(O({2^{n/2}})\) to O(n) and improve success probability close to 100%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lu, J.: On the security of the LAC authenticated encryption algorithm. In: Proceedings of Australasian Conference on Information Security and Privacy, ACISP 2016, pp. 395–408 (2016)

  2. CAESAR-Competition for Authenticated Encryption: Security, applicability, and robustness. http://competitions.cr.yp.to/caesar.html

  3. Boer, G.J., McFarlane, N.A.: The AES atmospheric general circulation model. GARP Publ. Ser. 22, 409–460 (1979)

    Google Scholar 

  4. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Tischhauser, E., Yasuda, K.: Parallelizable and authenticated online ciphers. Proc. Adv. Cryptol. ASIACRYPT 2013, 424–443 (2013)

    MathSciNet  MATH  Google Scholar 

  5. National Institute of Standards and Technology (NIST): Advanced Encryption Standard (AES), FIPS-197 (2001)

  6. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Tischhauser, E., Yasuda, K.: AES-COPA v1. Submission to the CAESAR competition (2014). http://competitions.cr.yp.to/round1/aescopav1.pdf

  7. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Tischhauser, E., Yasuda, K.: AES-COPA v2. Submission to the CAESAR competition (2015). http://competitions.cr.yp.to/round1/aescopav2.pdf

  8. Guo, J.: Marble Specification Version 1.0. Submission to the CAESAR competition, 15 March (2014). http://competitions.cr.yp.to/round1/marblev10.pdf

  9. Guo, J.: Marble Specification Version 1.1. Submission to the CAESAR Competition, 26 March (2014). http://competitions.cr.yp.to/round1/marblev11.pdf

  10. Guo, J.: Marble Specification Version 1.2. Submission to the CAESAR Competition, 16 January (2015). https://groups.google.com/forum/#!topic/crypto-competitions/FoJITsVbBdM

  11. Nandi, M.: Revisiting security claims of XLS and COPA. In: IACR Cryptology ePrint Archive, vol. 444 (2015)

  12. Lu, J.: Almost universal forgery attacks on the COPA and marble authenticated encryption algorithms. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 789–799 (2017)

  13. Dunkelman, O., Keller, N., Shamir, A.: Almost universal forgery attacks on AES-based MAC’s. Des. Codes Crypt. 76(3), 431–449 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fuhr, T., Leurent, G., Suder, V.: Collision attacks against CAESAR candidates. Proc. Adv. Cryptol. ASIACRYPT 2015, 510–532 (2015)

    MATH  Google Scholar 

  15. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of 35th Annual Symposium on Foundations of Computer Science, pp. 124–134 (1997)

  16. Kuwakado, H., Morii, M.: Quantum distinguisher between the 3-round Feistel cipher and the random permutation. In: Proceedings of the 2010 IEEE International Symposium on Information Theory, pp. 13–18 (2010)

  17. Kuwakado, H., Morii, M.: Security on the quantum-type even-mansour cipher. In: Proceedings of the 2012 International Symposium on Information Theory and its Applications, pp. 28–31 (2012)

  18. Liu, W.-J., Gao, P.-P., Yu, W.-B., Qu, Z.-G., Yang, C.-N.: Quantum relief algorithm. Quantum Inf. Process. 17(10), 280 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quantum machine learning. Nature 549, 195–202 (2017)

    Article  ADS  Google Scholar 

  20. Liu, W., Chen, J., Wang, Y., Gao, P., Lei, Z.: Quantum-based feature selection for multiclassification problem in complex systems with edge computing. Complexity 2020, 8216874 (2020)

    MATH  Google Scholar 

  21. Gao, Y.-L., Chen, X.-B., Xu, G., Yuan, K.-G., Liu, W., Yang, Y.-X.: A novel quantum blockchain scheme base on quantum entanglement and DPoS. Quantum Inf. Process. 19, 420 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  22. Banerjee, S., Mukherjee, A., Panigrahi, P.K.: Quantum blockchain using weighted hypergraph states. Phys. Rev. Res. 2(1), 013322 (2020)

    Article  Google Scholar 

  23. Simon, D.R.: On the power of quantum computation. SIAM J. Comput. 26(5), 1474–1483 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Breaking symmetric cryptosystems using quantum period finding. In: Proceedings of the Advances in Cryptology-CRYPTO 2016, pp. 207–237 (2016)

  25. Shi, T., Jin, C., Guan, J.: Collision attacks against AEZ-PRF for authenticated encryption AEZ. China Commun. 15(2), 46–53 (2018)

    Article  Google Scholar 

  26. Grover, L.K.: Quantum computers can search arbitrarily large databases by a single query. Phys. Rev. Lett. 79(23), 4709–4712 (1997)

    Article  ADS  Google Scholar 

  27. Leander, G. May, A.: Grover meets Simon—quantumly attacking the FX-construction. In: Proceedings of Advances in Cryptology-ASIACRYPT 2017, pp. 161–178 (2017)

  28. Bernstein, E., Vazirani, U.: Quantum complexity theory. SIAM J. Comput. 26(5), 1411–1473 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  29. Xie, H., Yang, L.: Using Bernstein-Vazirani algorithm to attack block ciphers. Des. Codes Crypt. 87(5), 1161–1182 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  30. Chailloux, A., Naya-Plasencia, M., Schrottenloher, A.: An efficient quantum collision search algorithm and implications on symmetric cryptography. Proc. Adv. Cryptol. ASIACRYPT 2017, 211–240 (2017)

    MathSciNet  MATH  Google Scholar 

  31. Hosoyamada, A., Sasaki, Y., Xagawa, K.: Quantum multicollision-finding algorithm. Proc. Adv. Cryptol. ASIACRYPT 2017, 179–210 (2017)

    MathSciNet  MATH  Google Scholar 

  32. Hosoyamada, A., Sasaki, Y., Tani, S., Xagawa, K.: Improved quantum multicollision-finding algorithm. Proc. Postquantum Cryptogr. 2019, 350–367 (2019)

    MathSciNet  MATH  Google Scholar 

  33. Bonnetain, X., Naya-Plasencia, M., Schrottenloher, A.: On quantum slide attacks. Proc. Sel. Areas Cryptogr. SAC 2019, 492–519 (2019)

    MATH  Google Scholar 

  34. Hosoyamada, A., Sasaki, Y.: Quantum Demiric-Selcuk meet-in-the-middle attacks: applications to 6-round generic feistel constructions. In: Proceedings of Security and Cryptography for Networks, pp. 386–403 (2018)

  35. Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Quantum Differential and Linear Cryptanalysis. arXiv:1510.05836 (2015)

  36. Shi, T.R., Jin, C.H., Hu, B., Guan, J., Cui, J.Y., Wang, S.P.: Complete analysis of Simon’s quantum algorithm with additional collisions. Quantum Inf. Process. 18(11), 334 (2019)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant 62071240 and Grand 61802002, the Graduate Research and Innovation Projects of Jiangsu Province (KYCX20_0978), and the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (19KJB520028), and in part by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjie Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Liu, W. & Yu, W. Quantum forgery attacks on COPA, AES-COPA and marble authenticated encryption algorithms. Quantum Inf Process 20, 131 (2021). https://doi.org/10.1007/s11128-021-03036-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03036-w

Keywords

Navigation