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Abstract
We define metrics and measures to characterize the ratio of accessible quantum
entanglement for complex network failures in the quantum Internet. A complex net-
work failure models a situation in the quantum Internet in which a set of quantum
nodes and a set of entangled connections become unavailable. A complex failure can
cover a quantum memory failure, a physical link failure, an eavesdropping activity,
or any other random physical failure scenarios. Here, we define the terms such as
entanglement accessibility ratio, cumulative probability of entanglement accessibility
ratio, probabilistic reduction of entanglement accessibility ratio, domain entanglement
accessibility ratio, and occurrence coefficient. The proposed methods can be applied
to an arbitrary topology quantum network to extract relevant statistics and to handle
the quantum network failure scenarios in the quantum Internet.
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PDF Probability density function
PR-EAR Probabilistic reduction of entanglement accessibility ratio
QKD Quantum key distribution
DD-EAR Domain-dependent entanglement accessibility ratio

1 Introduction

As quantum computers evolve significantly [2–11], there arises a fundamental need
for a communication network that provides unconditionally secure communication
and all the network functions of the traditional Internet. This network structure is
the quantum Internet [12–17]. The availability of quantum entanglement is a cru-
cial aspect in any global-scale quantum Internet. The quantum Internet refers to a
set of connected heterogeneous quantum communication networks realized by quan-
tum nodes and channels (such as optical fibers or wireless optical quantum channels
in the physical layer) [18–24]. The quantum Internet also integrates a set of classi-
cal auxiliary communication channels to transmit auxiliary classical-side information
between the quantum nodes. The quantum Internet is modeled as a global-scale quan-
tum communication network composed of quantum subnetworks and networking
components. The core network of the quantum Internet is assumed to be an entan-
gled network structure [12,25–39], which is a communication network in which the
quantum nodes are connected by entangled connections. An entangled connection
refers to a shared entangled system (i.e., a Bell state for qubit systems to connect two
quantum nodes) between the quantum nodes. In an unentangled network structure,
the quantum nodes are not necessarily connected by entanglement [40,41], and the
communication between the nodes is realized in a point-to-point setting. This setting
does not allow quantum communication over arbitrary distances, and an unentangled
network structure can mostly be used for establishing a point-to-point quantum key
distribution (QKD) [1,42] between the quantum nodes. These short distances can be
extended to longer distances by the utilization of free-space quantum channels [12,42].
However, this solution is auxiliary, since it can be used only at some specific points
of the unentangled network structure. Therefore, it does not represent an adequate
and fundamental answer to the problem of long-distance quantum communication.
Consequently, in an unentangled network structure, the multi-hop settings are weak
for experimental, long-distance and global-scale quantum communication. On the
other hand, the entangled network structure allows the parties to establish multi-hop
entanglement, multi-hop QKD, high-precision sensor networks, advanced distributed
computations and cryptographic functions, advanced quantum protocols, and, more
importantly, the distribution of quantum entanglement over arbitrary (unlimited, in
theory) distances [12]. As an important corollary, an entangled network structure pro-
vides a strong experimental basis for realizing a global-scale quantum communication
network, the quantum Internet.

In the entangled network structure of the quantum Internet, the entangled connec-
tions form entangled paths. Entanglement between a distant source and a target node
is established through several intermediate repeater nodes [12,25,26,43,44]. The level
of entanglement (i.e., the level of an entangled connection) is defined as the number
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of nodes (i.e., the hop distance between entangled nodes) spanned by the shared
entanglement, whose range is extended by the basic operation of entanglement
swapping (entanglement extension). The entangled connections have several rele-
vant attributes, the most important of which are the fidelity of entanglement and the
entanglement throughput. The throughput of an entangled connection is measured as
the number of entangled states per second at a given fidelity, which provides a useful
metric on the basis of which further relevant metrics can be built.

Here we define measures to characterize the ratio of accessible quantum entangle-
ment in case of complex network failures [45–48] in the quantum Internet. A complex
network failure models a network situation in which a set of quantum nodes and a
set of entangled connections become unavailable because of an (unknown) reason.
A complex failure, therefore, can cover a set of practical failure reasons: a quantum
memory failure situation in which a set of nodes and connections become unavail-
able, quantum node and connection failure scenarios, physical-link failures, or an
eavesdropping activity. Specifically, a complex failure event is modeled by a network
domain that is referred to as a complex failure domain. In our model, a failure domain
has an abstracted center point and a given length radius [47,48]. This domain approach
allows us to describe the probability that a given node or entangled connection (i.e.,
a given network element) is affected by a failure in the function of the given network
element’s distance from the abstracted center point of the complex failure domain.

The entanglement accessibility ratio of a given quantum network is based on the
metric of the given entangled connection’s entanglement throughput. Each entangled
connection is further verified by a given condition that puts a lower bound on the
entanglement throughput. The entanglement accessibility ratio measures the success-
ful accessible entanglement at a given lower bound condition for parallel complex
failures in the quantum network.

We also define the cumulative probability of entanglement accessibility ratio that
quantifies the cumulative probability of all complex failure events’ occurrence for
which the entanglement accessibility ratio exceeds a given lower bound.

We also quantify the probability that the total entanglement accessibility ratio in
the quantum network is reduced to at most a particular ratio after a complex failure.
Particularly, this parameter is referred as the probabilistic reduction of entanglement
accessibility ratio.

To describe the impacts of a given complex failure on the ratio of accessible entan-
glement, we define the domain entanglement accessibility ratio, which quantifies the
accessible entanglement ratio after a complex failure in a particular domain in a func-
tion of the radius of the given failure domain.

We define the occurrence coefficient of an entanglement accessibility ratio (occur-
rence ratio) at a complex failure domain, which is measured by the ratio of the number
of occurrence of a given entanglement accessibility ratio in the network after a com-
plex failure event and the total number of occurrences of all entanglement accessibility
ratios after a complex failure event.

We show that the defined measures can be extracted from the occurrence ratio,
and therefore, it is enough to determine the occurrence coefficient to derive the other
metrics. We propose an algorithm to determine the occurrence coefficient from the
empirical quantities of the quantumnetwork that are directly observable in the analyzed
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network setting. In particular, the defined entanglement accessibility measures can be
derived in a purely empirical way by extracting relevant statistics from the analyzed
quantum network.

The proposed protocol is not dependent from the actual physical implementation;
therefore, it can be applied in the heterogeneous network structure and network com-
ponents of the quantum Internet. (The protocol can also be applied in the quantum
Internet at the utilization of magnetic field in the perturbation method [49–51] (kind
of Zeeman effect [52]) in the physical layer,1 or in electromagnetic field-based [54,55]
scenarios in the network components.)

The novel contributions of our manuscript are as follows:

1. We define measures to characterize the accessible quantum entanglement in case
of complex network failures in the quantum Internet.

2. We define the terms such as entanglement accessibility ratio, cumulative proba-
bility of entanglement accessibility ratio, probabilistic reduction of entanglement
accessibility ratio, and occurrence coefficient.

3. We show that the defined measures can be extracted from the occurrence ratio, and
therefore, it is enough to determine the occurrence coefficient to derive the other
metrics.

4. We propose an algorithm to determine the occurrence coefficient from the empiri-
cal quantities of the quantum network that are directly observable in the analyzed
network setting of the quantum Internet.

5. The entanglement accessibility measures can be derived in a purely empirical way
by extracting relevant statistics from the quantum Internet.

This paper is organized as follows: In Sect. 2, the related works are summarized.
In Sect. 3, some preliminaries are introduced. Section 4 defines the entanglement
accessibility measures. Section 5 discusses the occurrence coefficient and defines
an algorithm for the empirical evaluation of the measures. In Sect. 6, a numerical
evaluation is proposed. Finally, Sect. 7 concludes the paper.

2 Related works

In this section, we review some recent results connected to the establishment of the
experimental quantum Internet.

A technical roadmap on the experimental development of the quantum Internet has
been provided in [15]. The roadmap is connected to the Quantum Internet Research
Group (QIRG) [56], which group is formulated and supported by an international

1 At a constant magnetic field perturbation, the evolution operator is diagonal. Evenwhen themagnetic field
depends only on time and not on space, the exact perturbation unitary evolution operator remains diagonal.
The quantum system can be disturbed by perturbing it with electric, magnetic, or electromagnetic radiation,
and hence, the system becomes excited and changes its state. Magnetic field-based protocol design here is
more complex because a 1-D (dimensional) magnetic field will not act on a 1-D charged particle. (From
the Lorentz law [53], (qV × B) ⊥V , where q is the charge of the particle, V is the velocity, and B is the
magnetic field.) Note, a charged particle can also be excited in a 3-D box with a 3-D control magnetic field.
Another possible extension to this problem is to consider a particle in a 3-D box perturbed by a vector
electric field and a vector magnetic field [54,55].
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researcher background and collaboration. The authors of [15] address some important
capability milestones for the realization of a global-scale quantum Internet. The tech-
nical roadmap also addresses important future engineering problems brought up by
the quantum Internet, such as the development of a standardized architectural frame-
work for the quantum Internet, standardization and protocols of the quantum Internet,
application programming interface (API) for the quantum Internet, and the definition
of the application level of the quantum Internet [1].

In a quantum Internet scenario, entanglement purification is a procedure that takes
two imperfect systems σ1 and σ2 with initial fidelity F0 < 1 and outputs a higher-
fidelity density ρ such that F (ρ) > F0. In [57], the authors propose novel physical
approaches to assess and optimize entanglement purification schemes. The proposed
solutions provide an optimization framework of practical entanglement purification.

In [58], the authors defined amethod for deterministic delivery of quantumentangle-
ment on a quantum network. The results allow us to realize entanglement distribution
across multiple remote quantum nodes in a quantum Internet setting.

In [59], a satellite-to-ground QKD system over 1200 km has been demonstrated.
The proposed model integrated a low-Earth-orbit satellite with decoy-state QKD. The
reported key rate of the protocol was above the kHz key rate over a distance up to
1200km. The work has a relevance for an experimental quantum Internet, since the
results also allow us to realize high-efficiency long-distance QKD in a global quantum
Internet setting.

In [60], the authors demonstrated the quantum teleportation of independent single-
photon qubits over 1400km. Since an experimental realization of a global-scale
quantum Internet requires the application of quantum teleportation over long dis-
tances, the proposed results represent a fundamental of any experimental quantum
Internet. In [61], the authors demonstrated quantum teleportation with high-fidelity
values between remote single-atom quantum memories.

Some other recent results connected to the development of an experimental global-
scale quantum Internet are as follows. In [62], the authors demonstrated the Bell
inequality violation using electron spins separated by 1.3km. In [63], the authors
demonstrated modular entanglement of atomic qubits using photons and phonons.
The quantum repeaters are fundamental networking elements of any experimental
quantum Internet. The quantum repeaters are used in the entanglement distribution
process to generate quantum entanglement between distant senders and receivers. The
quantum repeaters also realize the entanglement purification and the entanglement
swapping (entanglement extension) procedures. For an experimental realization of
quantum repeaters based on atomic ensembles and linear optics, see [64].

Since quantum channels also have a fundamental role in the quantum Internet,
we suggest the review paper of [65] and also the work of [66], for some specialized
applications of quantum channels. For a review on some recent results of quantum
computing technology, we suggest [67]. For some recent services developed for the
quantum Internet, we suggest [68–77].

Some other related topics are as follows: The works [25,26,40,43,65,68–70] are
related to the utilization of entanglement for long-distance quantum communications
and for a global-scale quantum Internet and also to the various aspects of quantum
networks in a quantum Internet setting.
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For some fundamental works on quantum machine learning, see [78–81]; on quan-
tum Shannon theory, see [65,66,82–86]; on quantum computing, see [87,88]; for
schemes for reducing decoherence in quantummemory, see [89]; for quantum network
coding, see [90–93]; for transformation of multipartite pure states, see [94]; for mul-
tistage entanglement swapping, see [95]; and for optical microcavities and photonic
channels for quantum communication, see [96].

For some important works on the experimental implementations of quantum
repeaters, entanglement purification, and entanglement distribution, see [95,97–110].

3 Preliminaries

3.1 Entanglement fidelity

The aim of the entanglement distribution procedure is to establish a d-dimensional
entangled system between the distant points A and B, through the intermediate quan-
tum repeater nodes. Let d = 2, and let |β00〉 be the target entangled system A and B,
|β00〉 = 1√

2
(|00〉 + |11〉) , subject to be generated. At a particular density σ generated

between A and B, the fidelity of σ is evaluated as

F = 〈β00|σ |β00〉 . (1)

Without loss of generality, an aim of a practical entanglement distribution is to reach
F ≥ 0.98 in (1) for a given σ [12–14,25,26,43,65,68].

3.2 Entangled network structure

Let V refer to the nodes of an entangled quantum network N , which consists of a
transmitter node A ∈ V , a receiver node B ∈ V , and quantum repeater nodes Ri ∈ V ,
i = 1, . . . , q. Let E = {

E j
}
, j = 1, . . . ,m refer to a set of edges (an edge refers

to an entangled connection in a graph representation) between the nodes of V , where
each E j identifies an Ll -level entanglement, l = 1, . . . , r , between quantum nodes x j
and y j of edge E j , respectively. Let N = (V ,S) be an actual quantum network with
|V | nodes and a set S of entangled connections. An Ll -level, l = 1, . . . , r , entangled
connection ELl (x, y), refers to the shared entanglement between a source node x and
a target node y, with hop distance

d (x, y)Ll = 2l−1, (2)

since the entanglement swapping (extension) procedure doubles the span of the
entangled pair in each step. This architecture is also referred to as the doubling archi-
tecture [12,25,26,43].

For a particular Ll -level entangled connection ELl (x, y) with hop distance (2),
there are d (x, y)Ll − 1 intermediate nodes between the quantum nodes x and y.
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3.3 Entanglement purification and entanglement throughput

Entanglement purification is a probabilistic procedure that creates a higher-fidelity
entangled system from two low-fidelity Bell states. The entanglement purification
procedure yields a Bell state with an increased entanglement fidelity F ′,

Fin < F ′ ≤ 1, (3)

where Fin is the fidelity of the imperfect input Bell pairs. The purification requires the
use of two-way classical communications [12–14,25,26,43,65,68].

Let BF (Ei
Ll

) refer to the entanglement throughput of a given Ll entangled connec-

tion Ei
Ll

measured in the number of d-dimensional entangled states established over

Ei
Ll

per sec at a particular fidelity F (dimension of a qubit system is d = 2) [12–
14,25,26,43,65,68].

For any entangled connection Ei
Ll
, a condition c should be satisfied as

c : BF (Ei
Ll ) ≥ B*

F (Ei
Ll ), for ∀i, (4)

where B*
F (Ei

Ll
) is a critical lower bound on the entanglement throughput at a particular

fidelity F of a given Ei
Ll
, i.e., BF (Ei

Ll
) of a particular Ei

Ll
has to be at least B*

F (Ei
Ll

).

4 Model description

In this section, we define the terms and metrics for entanglement accessibility in the
quantum Internet.

4.1 Failure identifications in the quantum internet

LetR f refer to a complex failure domain that models a set of quantum nodes V
(R f

)

and a set of entangled connections S (R f
)
in a particular network domain [47,48],

whose nodes and entangled connections are affected by a complex failure f
(complex—randomly affects both nodes and connections). Note that while S (R f

)

refers to the set of local entangled connections within the failure domainR f , E refers
to the entangled connections of the global quantum network N ; therefore, S (R f

)
is

a subset of E ,
S (R f

) ⊂ E, (5)

and
V
(R f

) ⊂ V , (6)

also holds.
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An f complex failure event is identified by the entanglement throughput of an i th
Ll -level entangled connection Ei

Ll
as

f : BF (Ei
Ll ) < B*

F (Ei
Ll ), (7)

where B*
F (Ei

Ll
) is a critical lower bound on the entanglement throughput.

In the cR f center of R f , for all entangled connections of the set S (R f
)
of R f ,

BF (Ei
Ll ) = 0, (8)

and therefore, the probability Pr ( f ) that an event f occurs at cR f for all elements of
S (R f

)
is

Pr ( f ) = 1. (9)

As the distance d from the center ofR f increases, the complex failure probability
Pr ( f ) decreases, e.g.,

Pr ( f ) < 1. (10)

Let cR f be the center of domainR f , and let rR f be the radius ofR f defined as in
terms of the hop distance of an abstracted shortest entangled path P inR f , as

rR f = d
(
P
(
x
(
cR f

)
, y
(
cR f

)))
, (11)

where x
(
cR f

)
∈ R f is the nearest affected quantum node to cR f , y

(
cR f

)
∈ R f

is the farthest affected quantum node from cR f , while P
(
x
(
cR f

)
, y
(
cR f

))
is an

abstracted shortest entangled path between x
(
cR f

)
and y

(
cR f

)
, with a hop distance

d
(
P
(
x
(
cR f

)
, y
(
cR f

)))
, as

d
(
P
(
x
(
cR f

)
, y
(
cR f

)))

= d
(
x
(
cR f

)
, x ′

1

(
cR f

))

Ll
+

m∑

i=1

d
(
x ′
i

(
cR f

)
, x ′

i+1

(
cR f

))

Ll

+ d
(
x ′
m+1

(
cR f

)
, y
(
cR f

))

Ll
,

(12)

where x ′
i

(
cR f

)
, i = 1, . . . ,m are intermediate quantum nodes between x

(
cR f

)
and

y
(
cR f

)
on the entangled path P

(
x
(
cR f

)
, y
(
cR f

))
.

Thus, (11) can be rewritten via (12). Then, assuming a doubling architecture on

P
(
x
(
cR f

)
, y
(
cR f

))
between x

(
cR f

)
and y

(
cR f

)
in R f , the radius in (11)

is yielded as
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rR f

= 2
l
(
E
(
x
(
cR f

)
,x ′

1

(
cR f

)))
−1 +

m∑

i=1

2
l
(
E
(
x ′
i

(
cR f

)
,x ′

i+1

(
cR f

)))
−1

+ 2
l
(
E
(
x ′
m+1

(
cR f

)
,y
(
cR f

)))
−1

,

(13)

where l (E (x, y)) identifies the level of the entangled connection ELl (x, y).
The probability of (10) is derived further as follows. At a given random cR f and

rR f , the probability that a given element (e.g., node or connection) i is affected [47]
by the complex failure f is defined as

Pr(di,cRf
) =

{ −di,cRf
rRf

+ 1, if di,cRf
≤ rRf

0, otherwise
, (14)

where di,cR f
is the distance of element i from the center cR f of complex failure

domain R f .

4.2 Entanglement accessibility ratio

Let S∗ refer to those entangled connections of N for which the condition c [see (4)]
holds after a complex failure f . Let �c ( f ) be a random variable that quantifies the
ratio of total entanglement throughput in a complex failure event at a given c [see (4)].
This quantity is referred as the entanglement accessibility ratio (EAR) after a complex
failure f and identified by the ratio of total entanglement throughput after a complex
failure f of N and the total entanglement throughput without a failure event [47] at a
given lower bound condition (4) as

�c ( f ) =
∑|S∗|

i=1 BF (Ei
Ll

)
∑|S|

i=1 BF (Ei
Ll

)
, (15)

where |S| is the number of connections in the set S of N , and |S∗| is the cardinality
of connection set S∗ after a failure f occurs inR f .

4.3 Cumulative probability of entanglement accessibility ratio

Let x be a critical lower bound on the entanglement accessibility ratio of �c ( f )
[see (15)] at a given condition c and a complex failure f . A σ (�c ( f )) cumulative
probability of all complex failure events’ occurrence for which the yielding ratio
�c ( f ) at a given c is at least x [see (15)],

�c ( f ) ≥ x, (16)
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is referred to as the cumulative probability of entanglement accessibility ratio (CP-
EAR) σ c (�c ( f )), defined as

σ c (�c ( f )
) =

∑

f :�c( f )≥x

Pr ( f )

= 1 −
∑

f :�c( f )<x

Pr ( f )

= 1 − ζ c (�c ( f )
)
,

(17)

where ζ c (�c ( f )) is the cumulative distribution function of �c ( f ) at a condition c.
The ξ c (�c ( f )) probability density function (PDF) of ratio

�c ( f ) = x (18)

after a complex failure f is therefore

ξ c
(
�c ( f )

) =
∑

f :�c( f )=x

Pr ( f ) . (19)

4.4 Probabilistic reduction of entanglement accessibility ratio

Assume that the ζ c (�c ( f )) cumulative distribution function of �c ( f ) at a condition
c is given as

ζ c (�c ( f )
) =

∑

f :�c( f )<x

Pr ( f ) = q. (20)

Using (20), the probabilistic reduction of entanglement accessibility ratio (PR-
EAR) �c (�c ( f )) at a given ratio x , condition c, and probability q is defined as

�c (�c ( f )
) = min

{
�c ( f ) : ζ c (�c ( f )

) = q
}

= min

⎧
⎨

⎩
�c ( f ) :

∑

f :�c( f )<x

Pr ( f ) = q

⎫
⎬

⎭
.

(21)

As follows, the PR-EAR parameter �c (x) in (21) quantifies the probability q that
the total entanglement accessibility ratio is reduced to at most ratio x after a complex
failure f .

4.5 Domain-dependent entanglement accessibility ratio

The 	x (r) domain-dependent entanglement accessibility ratio (DD-EAR) quantifies
the �c ( f ) accessible entanglement ratio after a complex failure f in a particular
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domain R f in a function of the radius rR f ofR f as

	x
(
rR f

)
=

∑

�c( f )

�c ( f ) ϕ
(
�c ( f ) , rR f

)
, (22)

where ϕ
(
�c ( f ) , rR f

)
is the PDF of ratio �c ( f ) at an rR f -radius length complex

failure domainR f , defined as

ϕ
(
�c ( f ) , rR f

)
=

∑

f :�c( f )=x,rR f

Pr ( f ) . (23)

A complex network failure situation of a quantum repeater network N with failure
domainR f is illustrated in Fig. 1. A complex failure f is associated with domainR f ,
f = 1, . . . ,m. In the center cR f of theR f , for all Ei

Ll
connections BF (Ei

Ll
) = 0, and

Pr ( f ) = 1. As the distance d from the center ofR f increases, the failure probability
decreases, e.g., Pr ( f ) < 1. The condition c : BF (Ei

Ll
) ≥ B∗

F (Ei
Ll

) holds for ∀i ,
where B∗

F (Ei
Ll

) is a critical lower bound on an i th Ll -level entangled connection Ei
Ll
,

for the established entangled connections of N ,

Fig. 1 An f complex network failure scenario in a quantum Internet setting. A complex failure defines a
domainR f (depicted by the gray-line circle) with a random radius rR f

and center cR f
, and with a set of

affected quantum nodes (depicted by dark gray nodes) and entangled connections (depicted by dashed red
lines) between a source (A) quantum node and a target (B) quantum node (the affected network components
are depicted by the gray cloud)
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5 Evaluation of entanglement accessibility

In this section, first, we define a coefficient that describes the occurrence of a given
entanglement accessibility ratio after a multiple complex failure scenario. Then, we
propose an empirical method to determine the occurrence coefficient from the observ-
able quantities of a particular quantum network of the quantum Internet.

5.1 Occurrence coefficient

Let Q (�c ( f )) refer to the occurrence coefficient of a particular�c ( f ) entanglement
accessibility ratio at a complex failure domain R f in N , defined as

Q
(
�c ( f )

) = N (�c ( f ))

N (Ac ( f ))
, (24)

where N (�c ( f )) is the number of occurrence of a given entanglement accessibility
ratio �c ( f ) in N after a failure f , while N (Ac ( f )) quantifies the total number of
occurrences of all accessible ratios Ac ( f ) in N after a failure f .

Extending (24) to all the m complex failure domains R f =1, . . . ,R f =m yields

Qtot(N ) =
∑

f

Q
(
�c ( f )

)

= Q( f =1) (�c ( f )
)+ · · · + Q( f=m)

(
�c ( f )

)
,

(25)

where Q( f=i) (�c ( f )) quantifies the occurrence of ratio �c ( f ) via (24) for an i th
domain R f =i .

In the function of Qtot(N ), the quantities of (17), (21), and (22) can be derived as
follows.

For an m-domain setting with domains R f =1, . . . ,R f=m , σ c (�c ( f )) can be
derived from the function Qtot(N ) as

σ c (�c ( f )
) = Qtot(N )

m
, (26)

while �c (�c ( f )) at R f =1, . . . ,R f=m is

�c (�c ( f )
) = min

{
�c ( f ) : 1 − Qtot(N )

m
= q

}
. (27)

At a particular failure domain radius rR f of a given R f , let

Q̃
(
�c ( f ) , rR f

)
= ξ c

(
�c ( f ) , rR f

)

=
∑

f :�c( f )=x,rR f

Pr ( f ) ,
(28)
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where ξ c (�c ( f )) as shown in (19).
For all domains R f=1, . . . ,R f =m , (28) extends to

Q̃tot
(
�c ( f ) , rR f

)
=
∑

f

Q̃
(
�c ( f ) , rR f

)

= Q̃( f =1)
(
�c ( f ) , rR f

)
+ · · · + Q̃( f =1)

(
�c ( f ) , rR f

)
,

(29)

where Q̃( f=i)
(
�c ( f ) , rR f

)
quantifies the occurrence of ratio �c ( f ) for an

i th domain R f=i via a particular radius rR f using (28). Then 	x
(
rR f

)
in a

R f =1, . . . ,R f =m scenario is expressed as

	x
(
rR f

)
=

∑

�c( f )

�c ( f )
Q̃tot

(
�c ( f ) , rR f

)

m
. (30)

Therefore, (26) to (30) follow that the entanglement accessibility ratios can be

determined via the occurrence coefficient Q̃tot
(
�c ( f ) , rR f

)
.

To find this quantity at a given network N empirically, we propose an algorithm as
follows.

5.2 Empirical evaluation of occurrence coefficient

We propose an algorithm, AQ(�c( f )), for the empirical determination of the O-EAR
coefficient Q (�c ( f )) [see (24)] at a complex failure domain R f scenario and
then the evaluation of Qtot(N ) [see (25)] by the extended analysis of all domains
R f =1, . . . ,R f =m . Some preliminary definitions are as follows.

5.2.1 Definitions

To describe the topology of N , let IN be the node-to-node incidence matrix of N , and
let ĨN refer to a temporal incidence matrix for the iteration steps of the algorithm.

Each Li -level entangled connection is characterized by a particular entanglement
throughput rate BF (Ei

Ll
), which are used to determine the A (S) total accessible entan-

glement at a connection set S at no failure as

A (S) =
|S|∑

i=1

BF (Ei
Ll ). (31)

Then, let Aρ,Uk and Bρ,Uk be the source and target quantum nodes of a demand
ρ associated with user Uk , k = 1, . . . , K , where K is the number of users. Then, let

123



115 Page 14 of 28 L. Gyongyosi, S. Imre

D
(
ρ
(S ′)) be the total required entanglement by a demand ρ as

D
(
ρ
(S ′)) =

|ρ(S ′)|∑

i=1

BF (Ei
Ll ), (32)

f ρ
(S ′) refers to the connection set S ′ of ρ.
For a given demand ρi , let

DP(N )
(
ρi
(S ′

i

))
(33)

quantify the total required entanglement of demand ρi with connection set S ′
i along

entangled connections traversed by respective paths P (N ) in N .
Let

� = {
ρ1, . . . , ρg

}
(34)

identify a set of g demands with both end nodes Aρ∈�,Uk and Bρ∈�,Uk not affected
by a complex failure f .

Assuming that a complex failure f with a domainR f occurs in N , the total acces-
sible entanglement after a complex failure f is

A
(S∗) =

|S∗|∑

i=1

BF (Ei
Ll ), (35)

where S∗ is the connection set of N after the failure.
The center cR f of a domain R f and the corresponding radius length rR f of R f

are modeled as uniformly distributed random continuous variables [47].
At a given B̂F (Ei

Ll
)upper boundon the entanglement throughput of Ei

Ll
, the remain-

ing accessible entanglement throughput is defined as

F(Ei
Ll ) = B̂F (Ei

Ll ) − BF (Ei
Ll ), (36)

where BF (Ei
Ll

) refers to a current rate.
Let R f (N ) quantify the empirical estimate of entanglement accessible ratio�c ( f )

[see (15)] after a complex failure f in a given quantum network N , as

R f (N ) = A (S∗)
A (S)

, (37)

where A (S∗) is defined in (35), while A (S) is given by (31). Therefore, R f (N )

provides an estimation of Q (�c ( f )) from the empirical values of (35) and (31) as

Q
(
�c ( f )

) = N (R f (N ))

N (Ac ( f ))
, (38)
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5.2.2 Algorithm

TheAQ(�c( f )) algorithm aims to determine the empirical estimation of the occurrence
function Q (�c ( f )).

The algorithmAQ(�c( f )) for aR f =1, . . . ,R f=m multiple complex failure scenario
is given in Algorithm 1.

5.3 Description

A brief description of the AQ(�c( f )) method is as follows. In steps 1 and 2, some
initializations are performed for further calculations. Steps 3 to 5 derive the ratio
R f (N ) ≈ �c ( f ) of accessible entanglement at a given failure domainR f . The steps
aim to determine the ratio of total accessible entanglement in a given complex domain
failure scenario. For each demand that has unaffected end nodes, a path searching is
performed to find the shortest alternate path Ṗi for all demands ρi to serve requirement
D
(
ρi
(S ′

i

))
of a givenρi . If an alternate path exists but the entangled connections of the

path are not able to serve the required entanglement D
(
ρi
(S ′

i

))
, then a new shortest

path P̈i is determined. The calculations are performed for all demands that are present
with a nonzero required entanglement in the network. In step 6, the iteration is extended
for the evaluation of all failure domains R f=1, . . . ,R f =m .

5.3.1 Step 1

In step 1, a temporal incidence matrix ĨN is initialized by IN , and the value of the total
accessible entanglement via set S∗ after a complex failure f is set to zero, A (S∗) = 0,
where A (S∗) is defined in (35). To identify the set of quantum nodes affected by f ,
for all nodes their corresponding probability Pr(di,cR f

) is determined via (14) in a
function of distance di,cR f

node i from center cR f of R f . Then to distinguish the
unusable connections after f has occurred for all connections for which condition c
does not hold [see (4)], set the corresponding elements of ĨN to 0.

5.3.2 Step 2

In step 2, for all entangled connections of S∗, the amount of the utilizable throughput
rate is set to a maximum of the given entangled connection Ei

Ll
, F(Ei

Ll
) = B̂F (Ei

Ll
),

where B̂F (Ei
Ll

), the upper bound on the throughput of an entangled connection Ei
Ll
,

and F(Ei
Ll

) are given by (36). Initialize a set � = {
ρ1, . . . , ρg

}
of demands with both

end nodes Aρ∈�,Uk and Bρ∈�,Uk not affected by f as given by (34). The quantity of
DP(N )

(
ρi
(S ′

i

))
[see (33)],whichdescribes the required total entanglement bydemand

ρi with connection set S ′
i along entangled connections traversed by respective paths

P (N ) in N , is set to the amount of the total entanglement required for ρi , D
(
ρi
(S ′

i

))

[see (32)]. As a final substep, determine the shortest path Ṗi for ρi by using the
temporarily incidence matrix ĨN as characterized in step 1.
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Algorithm 1 Estimation of occurrence of entanglement accessibility ratio

Step 1. Let ĨN = IN and A
(S∗) = 0. At a given f , determine Pr(di,cR f

) for all i . For all

connections of S for which condition c does not hold, set the corresponding elements of ĨN to 0.
Step 2. For all entangled connections of S∗, set F(Ei

Ll
) = B̂F (Ei

Ll
). For all ρi demands of �, set

DP(N )
(
ρi
(S ′

i
)) = D

(
ρi
(S ′

i
))

.

Using ĨN , determine the shortest path Ṗi for demand ρi .
Step 3. For all ρi of �, evaluate

A
(S ′

i
) = min

Ṗi∈Ei
Ll

F
(
Ei
Ll

)
= min

Ṗi∈Ei
Ll

B̂F

(
Ei
Ll

)

If DP(N )
(
ρi
(S ′

i

)) ≤ A
(S ′

i

)
, then set

A
(S∗) = A

(S∗)+ DP(N )
(
ρi
(S ′

i
))

,

and set

DP(N )
(
ρi
(S ′

i
)) = 0.

For all entangled connections traversed by Ṗi , set F(Ei
Ll

) = F(Ei
Ll

) − DP(N )
(
ρi
(S ′

i

))
. If

DP(N )
(
ρi
(S ′

i

))
> A

(S ′
i

)
, then set

A
(S∗) = A

(S∗)+ A
(S ′

i
)
,

and set

DP(N )
(
ρi
(S ′

i
)) = DP(N )

(
ρi
(S ′

i
))− A

(S ′
i
)
.

For all entangled connections traversed by Ṗi , set

F(Ei
Ll

) = F(Ei
Ll

) − A
(S ′

i
)
.

Step 4. Define a set of demands λ, which contains all ρi demands, where DP(N )
(
ρi
(S ′

i

))
> 0.

Determine the next shortest path P̈i . Set A
(S∗) = A

(S∗)+ X and

DP(N )
(
ρi
(S ′

i

)) = DP(N )
(
ρi
(S ′

i

))− X , where X is a given ratio of the maximum of the total

accessible entanglement throughput of the entangled connections of P̈i . For all E
i
Ll

entangled

connections traversed by P̈i , determine the current F(Ei
Ll

).

Step 5. Repeat step 4until DP(N )
(
ρi
(S ′

i

)) = 0 or P̈i = ∅ holds. Output R f (N ) via (37), and the
empirical estimation of the Q

(
R f (N )

)
occurrence from (24) via (38).

Step 6. Repeat steps 1 to 5 for all m complex failure domainsR f =1, . . . ,R f =m and output
Qtot(N ) via (25).

5.3.3 Step 3

In step 3, some computations are performed for the demands ρi of set �, whose
demands are not affected by the failure. The value of the total accessible entanglement
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via connection set S ′
i of a given demand ρi after a complex failure f , A

(S ′
i

)
[see (31)],

is set to the minimal amount of utilizable throughput rate of Ṗi ; thus,

A
(S ′

i

) = min
Ṗi∈Ei

Ll

F(Ei
Ll ). (39)

From step 2, it follows that A
(S ′

i

)
will be equal to the maximal entanglement rate of

that entangled connection, which yields the min–max optimization

A
(S ′

i

) = min
Ṗi∈Ei

Ll

B̂F (Ei
Ll ). (40)

After this substep, the relation of DP(N )
(
ρi
(S ′

i

))
and A

(S ′
i

)
is verified, and the

next steps are selected based on it. If the value of the required total entanglement
DP(N )

(
ρi
(S ′

i

))
of demand ρi along entangled connections traversed by respective

pathsP (N ) in N does not exceed A
(S ′

i

)
, the value of the total accessible entanglement

of demand ρi after a complex failure f , then A (S∗) value of total accessible entangle-
ment via connection set S∗ after a complex failure f is increased by DP(N )

(
ρi
(S ′

i

))
.

Conversely, if DP(N )
(
ρi
(S ′

i

))
exceeds A

(S ′
i

)
, then A (S∗) is increased by A

(S ′
i

)
. As

the value of A (S∗) is determined, depending on the relation of DP(N )
(
ρi
(S ′

i

))
and

A
(S ′

i

)
, the value of the required total entanglement DP(N )

(
ρi
(S ′

i

))
is either decreased

by DP(N )
(
ρi
(S ′

i

))
or by A

(S ′
i

)
. This substep therefore yields DP(N )

(
ρi
(S ′

i

)) = 0 if
DP(N )

(
ρi
(S ′

i

)) ≤ A
(S ′

i

)
, but results in DP(N )

(
ρi
(S ′

i

)) = DP(N )
(
ρi
(S ′

i

))−A
(S ′

i

)

if DP(N )
(
ρi
(S ′

i

))
> A

(S ′
i

)
. Depending on the relation of DP(N )

(
ρi
(S ′

i

))
and

A
(S ′

i

)
, a final computation is also performed in this step. For each entangled connec-

tion traversed by the shortest path Ṗi , the amount of remaining utilizable entanglement
throughput is decreased as F(Ei

Ll
) = F(Ei

Ll
)−DP(N )

(
ρi
(S ′

i

))
if DP(N )

(
ρi
(S ′

i

)) ≤
A
(S ′

i

)
, and F(Ei

Ll
) = F(Ei

Ll
) − A

(S ′
i

)
if DP(N )

(
ρi
(S ′

i

))
> A

(S ′
i

)
holds.

5.3.4 Step 4

In step 4, a set λ of demands is determined via condition DP(N )
(
ρi
(S ′

i

))
> 0. It

follows that some demanded entanglement cannot be served fully; thus, in this step,
the entanglement assigned to the demands should be increased as much as possible.
These demands are still associated with a nonzero required entanglement ratio in
the network, and therefore, these queries should be processed. This step focuses on
the service of these demands via the corresponding calculations that are similar to
the calculations of step 3. The A (S∗) value is increased by a given X , which is
a given ratio of the maximum of the total accessible entanglement throughput of the
entangled connections of the next shortest path P̈i . Then, the value of DP(N )

(
ρi
(S ′

i

))

is decreased by ratio X .
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5.3.5 Step 5

In step 5, all demands are served until there is no nonzero required entanglement
present in the network. All demands are served if DP(N )

(
ρi
(S ′

i

)) = 0 for all ρi .
The serving process of demands also stops if there is no next shortest path P̈i in
the network; therefore, P̈i = ∅ holds. Finally, the empirical estimation of the ratio
of accessible entanglement after a failure is determined as R f (N ) = A (S∗) /A (S)

[see (37)]. The estimation of Q
(
R f (N )

)
[see (24)] uses the empirical value of A (S∗)

after a complex failure f via connection set S∗, and also the empirical value of the
A (S) via connection set S. Using the resulting estimate R f (N ) in (37), Q

(
R f (N )

)

can be determined via the estimation in (38).

5.3.6 Step 6

Finally, step 6 extends the results for all them failure events occurring in N to determine
Qtot(N ) [see (25)].

5.4 Computational complexity

The computational complexity of algorithm AQ(�c( f )) depends on the complexity of
the searching method applied in steps 3 and 4 to compute the shortest paths. Using a
base-graph method [68–70] to determine the shortest path with respect to the entan-
glement throughput metric, the complexity of the method is at mostO (log n)2, where
n is the size of a k-dimensional n-sized base graph Gk of N .

5.5 Nonlinear optimization for the control observable

A non-stochastic regulation (NSR) [111–113] nonlinear optimization method can be
definedwithin the proposed scheme to yield an estimation of the occurrence coefficient
(control observable), in the following manner.

Let Q (�c ( f )) be an actual occurrence ratio at a particular f in N subject to be
estimated, and let

�R (N ) = (
R f=1 (N ) , . . . , R f =m (N )

)T (41)

be the noisy empirical vector of the R f (N ), f = 1, . . . ,m noisy quantities associated
with the m failure domains R1, . . . ,Rm .

In the optimization model, it is assumed that the empirical statistical information
obtainable from the quantum network is noisy. LetΔ be a noise vector associated with
the estimation error, such that

�R (N ) = �Qtot (N ) + Δ, (42)

where �Qtot (N ) is the vector as

�Qtot (N ) = (
Q
(
�c ( f = 1)

)
, . . . , Q

(
�c ( f = m)

))T
. (43)
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Then, the
〈
Qtot (N )

〉
estimate of Qtot (N ) yielded via an NSR optimization [111–113]

is as 〈 �Qtot (N )
〉
= arg min

Q(�c( f ))

(( �R (N ) − ξ
( �d ⊗ e

�Qtot(N )
)) T

(KΔ)−1

×
( �R (N ) − ξ

( �d ⊗ e
�Qtot(N )

))

+ ω−2
∫

�Q′tot (N )
2
dt

)
,

(44)

where ω is an unknown regularization parameter, ξ is a linear operator, �d is a matrix,
as

�d = (d ( f = 1) , . . . , d ( f = m))T , (45)

where d ( f ) is a deterministic exponential function

d ( f ) = 1

δ
e

− f
δ , (46)

where δ is an unknown regularization parameter, such that from (46)

�Qtot (N ) = d ( f ) ⊗ eQ(�c( f )), (47)

where Q (�c ( f )) is as
Q
(
�c ( f )

) = α + γ ϕ (Δ) , (48)

where α and γ are unknown regularization parameters, ϕ (Δ) is a process that repre-
sents the noise of the empirical estimation, KΔ is the covariance matrix of the noise
Δ included in the empirical vector �R (N ), γ is a regularization parameter, �Q′tot (N )

is the derivative of �Qtot (N ), and ⊗ is the convolution operator.
To determine the formula of (44), the estimation of the unknown parameters ω

in (44), δ in (46), and α, γ in (48), is as follows. An L Laplace approximation of
a marginal likelihood [113,114] can be derived to evaluate the estimations of the
unknown parameters at a particular �R (N ) [see (42)], as

L
( �R (N ) |α, γ, δ

)
= FL

( �R (N )
)
√

(2π)�L

det (ϒ)
, (49)

where FL
( �R (N )

)
is a probability function, as

FL
( �R (N )

)
= Pr

( �R (N ) , α, γ, δ,	
( �Qtot (N )

))
, (50)

where 	
( �Qtot (N )

)
∈ R

�L is an approximation of �Qtot (N ), �L is the order of

approximation, and ϒ is defined as

ϒ = H−1
(
− log FL

( �R (N )
))

, (51)

123



115 Page 20 of 28 L. Gyongyosi, S. Imre

where H−1 is the inverse of a HessianH.
As follows, the unknown parameters can be evaluated from the noisy empirical

vector (42); therefore, the
〈
Qtot (N )

〉
estimate of Qtot (N ) can be determined via the

formula of (44).

5.6 Entropy rate on a Lie group

The entropy rate [115] in the protocol can be formalized using the Lie algebra the-
ory [116–118], in the following manner.

At a given Q (�c ( f )) at a particular failure domain R f , let

G f ≡ G
(R f , Q

(
�c ( f )

)
, c
) ∈ SE (n) (52)

be a group function on the n = 2-dimensional Lie group SE (n) = SE (2), defined as

G f = exp
(R f X1 + Q

(
�c ( f )

)
X2
)
exp (c · X3) , (53)

where c is a constant set to c = 0, while X1, X2 and X3 are basis matrices for the Lie
algebra [117,118] SE (2), as

X1 =
⎛

⎝
0 0 1
0 0 0
0 0 0

⎞

⎠ , X2 =
⎛

⎝
0 0 0
0 0 1
0 0 0

⎞

⎠ , X3 =
⎛

⎝
0 −1 0
1 0 0
0 0 0

⎞

⎠ . (54)

Then, let
ϕ f ≡ ϕ

(
G
(R f , Q

(
�c ( f )

)
, c
)
, f
)

(55)

be a PDF that characterizes the distribution of the group function G f at a given f .
For (55), the Lie derivative X ′

iϕ f , i = 1, 2, 3, is defined as

X ′
iϕ f =

[
d

d f
ϕ
(
G f ◦ e f Xi

)]

f =0
, (56)

where ϕ
(
G f ◦ e f Xi

)
is a PDF of

(
G f ◦ e f Xi

)
, e f Xi is a matrix exponential, and ◦ is

the matrix multiplication operator.
Then, the S

(
ϕ f
)
entropy rate at (55) on a Lie group SE (2) is yielded as

S
(
ϕ f
) = −

∫

SE(2)

ϕ f
(
G f

)
logϕ f

(
G f

)
dG f , (57)
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while the S′ (ϕ) change of the entropy rate of (57) is as

S′ (ϕ f
) = dS

(
ϕ f
)

d f

= −
∫

SE(2)

(
∂ϕ f

∂ f
logϕ f + ∂ϕ f

∂ f

)
dG f .

(58)

Applying the derivations for the m failure domains R f , f = 1, . . . ,m, the S� (ϕ)

total entropy rate is

S� (ϕ) = −
m∫

1

∫

SE(2)

ϕ f
(
G f

)
logϕ f

(
G f

)
dG f d f , (59)

while S′
� (ϕ) the derivative of S� (ϕ) is as

S′
� (ϕ) = −

m∫

1

∫

SE(2)

(
∂ϕ f

∂ f
logϕ f + ∂ϕ f

∂ f

)
dG f df. (60)

6 Numerical evaluation

The numerical evaluation serves illustration purposes in random quantum network
settings. As future work, our aim is to utilize an advanced network simulation frame-
work [119].

6.1 CP-EAR and PR-EAR

In this subsection, the CP-EAR and PR-EAR coefficients are illustrated.
The analysis assumes f = 1, . . . , 100 failure domains in random quantum network

scenarios Ns , s = 1, 2, such that distribution of Pr ( f )-s is drawn from a U uniform
distribution, {Pr ( f )}100f =1 ∈ U .

The distributions of the σ c (�c ( f )) coefficient for random quantum network sce-
narios Ns , s = 1, 2, in function of x , �c ( f ) ≥ x , are depicted in Fig. 2a, b. The
corresponding �c (�c ( f )) values of Ns , s = 1, 2, in function of q, q = Pr ( f ), are
depicted in Fig. 2c, d.

6.2 DD-EAR

In this subsection, the DD-EAR coefficient is illustrated for random quantum network
scenarios Ns , s = 1, 2, with f = 1, . . . , 100.
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(a) (b)

(c) (d)

Fig. 2 TheCP-EAR coefficient (a,b), and the PR-EAR coefficient (c,d). aAdistribution of the σ c (�c ( f )
)

coefficient for a random network scenario Ns , s = 1, in function of x , �c ( f ) ≥ x , f = 1, . . . , 100.
b A distribution of the σ c (�c ( f )

)
coefficient for a random network scenario Ns , s = 2, in function of

x , �c ( f ) ≥ x , f = 1, . . . , 100. c Distribution of �c (�c ( f )
)
in function of q, q = Pr ( f ), for N1.

d Distribution of �c (�c ( f )
)
in function of q, q = Pr ( f ), for N2

The distribution of the �c ( f ) and ϕ
(
�c ( f ) , rR f

)
coefficients of 	x

(
rR f

)
,

and the resulting 	x
(
rR f

)
in function of the normalized hop distance 0 ≤

ζ
(
d
(
P
(
x
(
cR f

)
, y
(
cR f

))))
≤ 1,

ζ
(
d
(
P
(
x
(
cR f

)
, y
(
cR f

))))
= d

(
P
(
x
(
cR f

)
,y
(
cR f

)))

d
(
P∗
(
x
(
cR f

)
,y
(
cR f

))) , (61)

where P
(
x
(
cR f

)
, y
(
cR f

))
is a shortest entangled path between x

(
cR f

)

and y
(
cR f

)
in R f , while d

(
P∗

(
x
(
cR f

)
, y
(
cR f

)))
is an upper bound on

d
(
P
(
x
(
cR f

)
, y
(
cR f

)))
in R f , for random quantum network scenarios Ns ,

s = 1, 2 are depicted in Fig. 3.
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(a) (b) (c)

(d) (e) (f)

Fig. 3 The DD-EAR coefficient. The distribution of�c ( f ), ϕ
(
�c ( f ) , rR f

)
, and	x

(
rR f

)
, at random

quantum network scenarios Ns , s = 1, 2, with f = 1, . . . , 100. a A distribution of ϕ
(
�c ( f ) , rR f

)

at N1, f = 1, . . . , 100. b A distribution of �c ( f ) at N1, f = 1, . . . , 100. c Distribution of 	x
(
rR f

)

in function of a normalized hop distance ζ
(
d
(
P
(
x
(
cR f

)
, y
(
cR f

))))
at N1, f = 1, . . . , 100. d A

distribution of ϕ
(
�c ( f ) , rR f

)
at N2, f = 1, . . . , 100. eA distribution of�c ( f ) at N2, f = 1, . . . , 100.

f Distribution of 	x
(
rR f

)
in function of a normalized hop distance ζ

(
d
(
P
(
x
(
cR f

)
, y
(
cR f

))))

at N2, f = 1, . . . , 100

7 Conclusions

Here, we defined entanglement accessibility measures to evaluate the ratio of acces-
sible quantum entanglement at complex failure events in the quantum Internet. A
complex failure is modeled by a complex failure domain, which identifies a set of
quantum nodes and entangled connections affected by that failure. We introduced the
terms such as entanglement accessibility ratio and occurrence coefficient to charac-
terize the availability of entanglement in a multiple failure setting. We proposed an
algorithm to derive the occurrence coefficient via an empirical estimation observable
from the evaluated parameters of the analyzed quantum network. The defined metrics
and algorithm can be applied efficiently in experimental quantum Internet scenarios.
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