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Abstract
This work proposes an extension of the well-known Eisert–Wilkens–Lewenstein
scheme for playing a twice repeated 2 × 2 game using a single quantum system
with ten maximally entangled qubits. The proposed scheme is then applied to the
Prisoner’s Dilemma game. Rational strategy profiles are examined in the presence
of limited awareness of the players. In particular, the paper considers two cases of
a classical player against a quantum player game: the first case when the classical
player does not know that his opponent is a quantum one and the second case, when
the classical player is aware of it. To this end, the notion of unawareness was used,
and the extended Nash equilibria were determined.

Keywords Prisoners dilemma · Quantum games · Games with unawareness

1 Introduction

In the recent years, the field of quantum computing has developed significantly. One
of its related aspects is quantum game theory that merges together ideas from quantum
information [1] and game theory [2] to open up new opportunities for finding optimal
strategies for many games. The concept of quantum strategy was first mentioned
in [3], where a simple extensive game called PQ Penny Flip was introduced. The
paper showed that one player could always win if he was allowed to use quantum
strategies against the other player restricted to the classical ones. Next, Eisert Wilkens
and Lewenstein proposed a quantum scheme for Prisoners Dilemma game based on
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entanglement [4]. Their solution leads to a Nash equilibrium that a Pareto-optimal
payoff point.

Since then, many other examples of quantum gameswere proposed. Good overview
of quantumgame theory can be found in [5].One of the latest trends is to study quantum
repeated games [6,7]. In particular, quantum repeated Prisoner’s Dilemma [8,9] was
investigated. In [8], the idea was to classically repeat the Prisoner’s Dilemma with
strategy sets extended to include some special unitary strategies. That enabled one to
study conditional strategies similar to ones defined in the classical repeated Prisoner’s
Dilemma, for example, the “tit for tat” or Pavlov strategies.

We present a different approach taking advantage of the fact that a repeated game
is a particular case of an extensive-form game. A twice repeated 2 × 2 game is an
extensive game with five information sets for each of the two players. Instead of using
a classically repeated scheme based on two entangled qubits [8], we consider a twice
repeated game as a single quantum system which requires ten maximally entangled
qubits. Our scheme uses the quantum framework introduced in [10] and recently
generalized in [11], according to which choosing an action in an information set is
identified with acting a unitary operation on a qubit.

In this paper, we examine one of the most interesting cases in quantum game
theory—the problem in which one of the players has access to the full range of uni-
tary strategies whereas the other player can only choose from unitary operators that
correspond to the classical strategies. Additionally, we examine the quantum game in
terms of players’ limited awareness about available strategies. We use the concept of
games with unawareness [12–14] to check to what extend two different factors: access
to quantum strategies and game perception affect the result of the game.

2 Preliminaries

In what follows, we give a brief review of the basic concepts of games with unaware-
ness. The reader who is not familiar with this topic is encouraged to see [12].
Introductory examples and application of the notion of games with unawareness to
quantum games can be found in [15,16].

2.1 Strategic gamewith unawareness

A strategic form game with unawareness is defined as a family of strategic form
games. The family specifies how each player perceives the game, how she per-
ceives the other players’ perceptions of the game and so on. To be more precise,
let G = (N , (Si )i∈N , (ui )i∈N ) be a strategic form game. This is the game played by
the players which is also called the modeler’s game. Each player may have a restricted
view of the game, i.e., she may not be aware of the full description of G. Hence,
Gv = (Nv, ((Si )v)i∈Nv , ((ui )v)i∈Nv) denotes player v’s view of the game for v ∈ N .
That is, the player v views the set of players, the sets of players’ strategies, and the pay-
off functions as Nv, (Si )v and (ui )v, respectively. In general, each player also considers
how each of the other players views the game. Formally, with a finite sequence of play-
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ers v = (i1, . . . , in) there is associated a game Gv = (Nv, ((Si )v)i∈Nv , ((ui )v)i∈Nv ).
This is the game that player i1 considers that player i2 considers that …player in is
considering. A sequence v is called a view. The empty sequence v = ∅ is assumed
to be the modeler’s view, i.e., G∅ = G. We denote an action profile

∏
i∈Nv

si in Gv ,
where si ∈ (Si )v by (s)v . The concatenation of two views v̄ = (i1, . . . , in) followed
by ṽ = ( j1, . . . , jn) is defined to be v = ˆ̄vṽ = (i1, . . . , in, j1, . . . , jn). The set of all
potential views is V = ⋃∞

n=0 N
(n) where N (n) = ∏n

j=1 N and N (0) = ∅.
Definition 1 A collection {Gv}v∈V where V ⊂ V is a collection of finite sequences of
players is called a strategic-form game with unawareness and the collection of views
V is called its set of relevant views if the following properties are satisfied:

1. For every v ∈ V ,

vˆv ∈ V if and only if v ∈ Nv. (1)

2. For every vˆṽ ∈ V ,

v ∈ V, ∅ �= Nvˆṽ ⊂ Nv, ∅ �= (Si )vˆṽ ⊂ (Si )v for all i ∈ Nvˆṽ . (2)

3. If vˆvˆv̄ ∈ V , then

vˆvˆvˆv̄ ∈ V and Gvˆvˆv̄ = Gvˆvˆvˆv̄ . (3)

4. For every strategy profile (s)vˆṽ = {s j } j∈Nvˆṽ , there exists a completion to an
strategy profile (s)v = {s j , sk} j∈Nvˆṽ ,k∈Nv\Nvˆṽ such that

(ui )vˆṽ((s)vˆṽ) = (ui )v((s)v). (4)

2.2 Extended Nash equilibrium

A basic solution concept for predicting players’ behavior is a Nash equilibrium [17].

Definition 2 A strategy profile s∗ = (s1, s2, . . . , sn) is a Nash equilibrium if for each
player i ∈ {1, . . . , n} and each strategy si of player i

ui (s
∗) ≥ ui (si , s

∗−i ), (5)

where s∗−i :=(s j ) j �=i .

In order to define the Nash-type equilibrium for a strategic-form game with unaware-
ness, it is needed to redefine the notion of strategy profile.

Definition 3 Let {Gv}v∈V be a strategic-form game with unawareness. An extended
strategy profile (ESP) in this game is a collection of (pure or mixed) strategy profiles
{(σ )v}v∈V where (σ )v is a strategy profile in the gameGv such that for every vˆvˆv̄ ∈ V
holds

(σv)v = (σv)vˆv as well as (σ )vˆvˆv̄ = (σ )vˆvˆvˆv̄ . (6)
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To illustrate (6), let us take the game G12—the game that player 1 thinks that player
2 is considering. If player 1 assumes that player 2 plays strategy (σ2)12 in the game
G12, she must assume the same strategy in the game G1 that she considers, i.e.,
(σ2)1 = (σ2)12.

Next step is to extend rationalizability from strategic-form games to the games with
unawareness.

Definition 4 An ESP {(σ )v}v∈V in a game with unawareness is called extended ratio-
nalizable if for every vˆv ∈ V strategy (σv)v is a best reply to (σ−v)vˆv in the game
Gvˆv.

Consider a strategic-form game with unawareness {Gv}v∈V . For every relevant view
v ∈ V , the relevant views as seen from v are defined to be Vv = {ṽ ∈ V : vˆṽ ∈ V}.
Then, the game with unawareness as seen from v is defined by {Gvˆṽ}ṽ∈Vv . We are
now in a position to define the Nash equilibrium in the strategic-form games with
unawareness.

Definition 5 AnESP {(σ )v}v∈V in a gamewith unawareness is called an extendedNash
equilibrium (ENE) if it is rationalizable and for all v, v̄ ∈ V such that {Gvˆṽ}ṽ∈Vv =
{G ˆ̄vṽ

}ṽ∈V v̄ we have that (σ )v = (σ )v̄ .

The first part of the definition (rationalizability) is similar to the standard Nash equi-
librium, where it is required that each strategy in the equilibrium is a best reply to
the other strategies of that profile. For example, according to Definition 4, player 2’s
strategy (σ2)1 in the game of player 1 has to be a best reply to player 1’s strategy (σ1)12
in the game G12. On the other hand, in contrast to the concept of Nash equilibrium,
(σ1)12 does not have to a best reply to (σ2)1 but to strategy (σ2)121.

The following proposition shows that the notion of extended Nash equilibrium
coincides with the standard one for strategic-form games when all views share the
same perception of the game.

Proposition 1 Let G be a strategic-form game and {Gv}v∈V a strategic-form game
with unawareness such that for some v ∈ V , we have Gvˆv̄ = G for every v̄ such that
vˆv̄ ∈ V . Let σ be a strategy profile in G. Then,

1. σ is rationalizable for G if and only if (σ )v = σ is part of an extended rational-
izable profile in {Gv}v∈V .

2. σ is a Nash equilibrium for G if and only if (σ )v = σ is part of on an ENE for
{Gv}v∈V , and this ENE also satisfies (σ )v = (σ )vˆv̄ .

Remark 1 Wesee from (3) and (6) that for every vˆvˆv̄ ∈ V a normal-form gameGvˆvˆv̄
and a strategy profile (σ )vˆvˆv̄ , determine the games and profiles in the formGvˆvˆ...ˆvˆv̄
and (σ )vˆvˆ...ˆvˆv̄ , respectively, for example, G121 determines G122...21. Hence, in gen-
eral, a game with unawareness {Gv}v∈V and an extended strategy profile {(σ )v}v∈V
are defined by {Gv}v∈N∪{∅} and {(σ )v}v∈N∪{∅}, where

N = {v ∈ V | v = (i1, . . . , in) with ik �= ik+1 for all k}. (7)

Then, we get {Gv}v∈V from {Gv}v∈N∪{∅} by setting G ṽ = Gv for v = (i1, . . . , in) ∈
N and ṽ = (i1, . . . , ik, ik, ik+1, . . . , in) ∈ V . For this reason, we often restrict our-
selves to N ∪ {∅} throughout the paper.
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Fig. 1 Twice repeated 2 × 2 game represented by an extensive-form game

3 Twice repeated 2× 2 game

The concept of a finitely repeated game assumes playing a normal-form game (a stage
of the repeated game) for a fixed number of times (see, for example, [18]). The players
are informed about the results of consecutive stages. Let us consider a 2× 2 bimatrix
game

(
(a00, b00) (a01, b01)
(a10, b10) (a11, b11)

)

. (8)

In the two-stage 2× 2 bimatrix, the game can be easily depicted as an extensive-form
game (see Fig. 1). The first stage of the twice repeated 2 × 2 game is a part of the
game where the players specify an action C or D at the information sets 1.1 and 2.1.
When the players choose their actions, the result of the first stage is announced. Since
they have knowledge about the results of the first stage, they can choose different
actions at the second stage depending on the previous result. Hence, the next four
game trees from Fig. 1 are required to describe the repeated game. Each player has
five information sets at which they specify their own actions; player 1’s information
sets are denoted by 1.1, 1.2, 1.3, 1.4 and 1.5, player 2’s information sets are 2.1, 2.2,
2.3, 2.4 and 2.5. Note that player 2’s information sets consist of two nodes connected
by dotted lines. This is intended to show a lack of knowledge of the player 2 about the
previous move of player 1. Recall that a player’s strategy is a function that assigns to
each information set of that player an action available at that information set. In our
example, this means that each player’s strategy specifies an action at the first stage and
four actions at the second stage. For example, strategy (C,C, D, D,C) of a player in
the game given in Fig. 1 says that the player chooses action C at the first stage, and
depending on one of the four possible results of the first stage, he chooses actions C ,
D, D, C , respectively.

If player 1plays that strategywhereas player 2 chooses, for example (D,C, D,C,C),
then the resulting strategy vector determines the unique path from the node 1.1 that
intersects the nodes 2.1, 1.2 and 2.3 and gives the payoff outcome (a01+a10, b01+b10).
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The players can also choose their own actions in a random way, i.e., according
to some probability distribution determined by themselves. Such strategies are called
behavioral strategies (see, for example, [2]).

Definition 6 A behavior strategy of a player in an extensive-form game is a function
mapping each of his information sets to a probability distribution over the set of
possible actions at that information set.

For example, in the case of the gamegivenbyFig. 1, player 1’s andplayer 2’s behavioral
strategies are determined by quintuples (p1, p2, p3, p4, p5) and (q1, q2, q3, q4, q5),
respectively, in which pi and qi are the probabilities of choosing their first strategy
at information set i . The payoff outcome resulting from playing by the players the
general behavioral strategies is

(2a00, 2b00)p1q1 p2q2 + (a00 + a01, b00 + b01)p1q1 p2(1 − q2)

+ (a00 + a10, b00 + b10)p1q1(1 − p2)q2
+ (a00 + a11, b00 + b11)p1q1(1 − p2)(1 − q2)

+ (a01 + a00, b01 + b00)p1(1 − q1)p3q3
+ (2a01, 2b01)p1(1 − q1)p3(1 − q3)

+ (a01 + a10, b01 + b10)p1(1 − q1)(1 − p3)q3
+ (a01 + a11, b01 + b11)p1(1 − q1)(1 − p3)(1 − q3)

+ (a10 + a00, b10 + b00)(1 − p1)q1 p4q4
+ (a10 + a01, b10 + b01)(1 − p1)q1 p4(1 − q4)

+ (2a10, 2b10)(1 − p1)q1(1 − p4)q4
+ (a10 + a11, b10 + b11)(1 − p1)q1(1 − p4)(1 − q4)

+ (a11 + a00, b11 + b00)(1 − p1)(1 − q1)p5q5
+ (a11 + a01, b11 + b01)(1 − p1)(1 − q1)p5(1 − q5)

+ (a11 + a10, b11 + b10)(1 − p1)(1 − q1)(1 − p5)q5
+ (2a11, 2b11)(1 − p1)(1 − q1)(1 − p5)(1 − q5). (9)

4 Construction of a twice repeated 2× 2 quantum game

We propose a scheme of playing a twice repeated 2 × 2 game. It is based on the
protocol introduced in [10], where a quantum approach to general finite extensive
quantum games was considered. A two-stage 2×2 game is an example of an extensive
game with ten information sets. According to the idea presented in [9], we associate
choosing an action at an information set with a unitary operation performed on a qubit.
As a result, each player specifies a unitary action on each of five qubits. To be more
specific, let us consider a 2 × 2 bimatrix game (8). We define a triple

�QQ = (H, {SU(2)⊗5, SU(2)⊗5}, (u1, u2)), (10)

where
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– H is a Hilbert space
(
C2

)⊗10
.

– SU(2) is the special unitary group of degree 2. The commonly used parameteriza-
tion for U ∈ SU(2) is given by

(
eiα cos θ

2 ieiβ sin θ
2

ie−iβ sin θ
2 e−iα cos θ

2

)

, θ ∈ [0, π ], α, β ∈ [0, 2π). (11)

– |�f〉 is the final state determined by a strategy
⊗5

i=1Ui (θi , αi , βi ) ∈ SU(2)⊗5 of
player 1 and a strategy

⊗10
j=6Uj (θ j , α j , β j ) ∈ SU(2)⊗5 of player 2 according to

the following formula:

|�f〉 = J †
(

10⊗

i=1

Ui (θi , αi , βi )

)

J |0〉⊗10, J = 1√
2

(
1⊗10 + iσ⊗10

x

)
, (12)

– the payoff vector function (u1, u2) is given by

(u1, u2)

(
10⊗

i=1

Ui (θi , αi , βi )

)

= tr (X |�f〉〈�f|) , (13)

where

X = (2a00, 2b00)|00〉〈00| ⊗ 1⊗3 ⊗ |00〉〈00| ⊗ 1⊗3

+ (a00 + a01, b00 + b01)|00〉〈00| ⊗ 1⊗3 ⊗ |01〉〈01| ⊗ 1⊗3

+ (a00 + a10, b00 + b10)|01〉〈01| ⊗ 1⊗3 ⊗ |00〉〈00| ⊗ 1⊗3

+ (a00 + a11, b00 + b11)|01〉〈01| ⊗ 1⊗3 ⊗ |01〉〈01| ⊗ 1⊗3

+ (a01 + a00, b01 + b00)|0〉〈0| ⊗ 1 ⊗ |0〉〈0| ⊗ 1⊗2 ⊗ |1〉〈1| ⊗ 1 ⊗ |0〉〈0| ⊗ 1⊗2

+ (2a01, 2b01)|0〉〈0| ⊗ 1 ⊗ |0〉〈0| ⊗ 1⊗2 ⊗ |1〉〈1| ⊗ 1 ⊗ |1〉〈1| ⊗ 1⊗2

+ (a01 + a10, b01 + b10)|0〉〈0| ⊗ 1 ⊗ |1〉〈1| ⊗ 1⊗2 ⊗ |1〉〈1| ⊗ 1 ⊗ |0〉〈0| ⊗ 1⊗2

+ (a01 + a11, b01 + b11)|0〉〈0| ⊗ 1 ⊗ |1〉〈1| ⊗ 1⊗2 ⊗ |1〉〈1| ⊗ 1 ⊗ |1〉〈1| ⊗ 1⊗2

+ (a10 + a00, b10 + b00)|1〉〈1| ⊗ 1⊗2 ⊗ |0〉〈0| ⊗ 1 ⊗ |0〉〈0| ⊗ 1⊗2 ⊗ |0〉〈0| ⊗ 1

+ (a10 + a01, b10 + b01)|1〉〈1| ⊗ 1⊗2 ⊗ |0〉〈0| ⊗ 1 ⊗ |0〉〈0| ⊗ 1⊗2 ⊗ |1〉〈1| ⊗ 1

+ (2a10, 2b10)|1〉〈1| ⊗ 1⊗2 ⊗ |1〉〈1| ⊗ 1 ⊗ |0〉〈0| ⊗ 1⊗2 ⊗ |0〉〈0| ⊗ 1

+ (a10 + a11, b10 + b11)|1〉〈1| ⊗ 1⊗2 ⊗ |1〉〈1| ⊗ 1 ⊗ |0〉〈0| ⊗ 1⊗2 ⊗ |1〉〈1| ⊗ 1

+ (a11 + a00, b11 + b00)|1〉〈1| ⊗ 1⊗3 ⊗ |0〉〈0| ⊗ |1〉〈1| ⊗ 1⊗3 ⊗ |0〉〈0|
+ (a11 + a01, b11 + b01)|1〉〈1| ⊗ 1⊗3 ⊗ |0〉〈0| ⊗ |1〉〈1| ⊗ 1⊗3 ⊗ |1〉〈1|
+ (a11 + a10, b11 + b10)|1〉〈1| ⊗ 1⊗3 ⊗ |1〉〈1| ⊗ |1〉〈1| ⊗ 1⊗3 ⊗ |0〉〈0|
+ (2a11, 2b11)|1〉〈1| ⊗ 1⊗3 ⊗ |1〉〈1| ⊗ |1〉〈1| ⊗ 1⊗3 ⊗ |1〉〈1|. (14)

The construction (14) of the operator X results from the following reasoning. First
note that the information sets 1.1, …, 1.5 of player 1 are associated with the first five
qubits, and the information sets 2.1, …, 2.5 of player 2 are associated with the other
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five qubits. Now, consider, for example, the outcome (2a00, 2b00). In the classical
case that payoff outcome is obtained if the players choose their first strategies at the
information sets 1.1, 2.1, 1.2 and 2.2. These information sets are assigned to the first,
sixth, second and seventh qubit, respectively. Therefore, the state 0 measured on those
qubits results in the outcome (2a00, 2b00) in the quantum game. In similar way, we
can justify the other terms of (14).

The scheme defined by (10)–(14) is an extension of the classical way of playing the
game. As in the case of the standard Eisert–Wilkens–Lewenstein scheme, the model
�QQ determines the game equivalent to the classical one by restricting the strategy
sets of the players.

Proposition 2 The game determined by

(

H,

{
5⊗

i=1

Ui (θi , 0, 0),
10⊗

i=6

Ui (θi , 0, 0)

}

, (u1, u2)

)

(15)

is outcome-equivalent to the two-stage bimatrix 2 × 2 game.

Proof Let us first consider the outcome (2a00, 2b00). Denote by P the projection of
(14) corresponding to that outcome,

P = |00〉〈00| ⊗ 1⊗3 ⊗ |00〉〈00| ⊗ 1⊗3. (16)

If player 1 and 2 choose
⊗5

i=1Ui (θi , 0, 0) and
⊗10

i=6Ui (θi , 0, 0), respectively, the
final state becomes

|�f〉 = J †
(

10⊗

i=1

Ui (θi , 0, 0)

)

J |0〉⊗10, (17)

and the probability of obtaining (2a00, 2b00) is

tr(P|�f〉〈�f|) = cos2
θ1

2
cos2

θ2

2
cos2

θ6

2
cos2

θ7

2
. (18)

So, by substituting

cos2 (θ1/2) = p1, cos2 (θ2/2) = p2, cos2 (θ6/2) = q1, cos2 (θ7/2) = q2, (19)

the right-hand side of (18) multiplied by (2a00, 2b00) is equal to the first term of (9).
Similarly, the outcome (a10 + a11, b10 + b11) is associated with the projection

P ′ = |1〉〈1| ⊗ 1⊗2 ⊗ |1〉〈1| ⊗ 1 ⊗ |0〉〈0| ⊗ 1⊗2 ⊗ |1〉〈1| ⊗ 1. (20)

In this case,

tr(P ′|�f〉〈�f|) = sin2
θ1

2
sin2

θ4

2
cos2

θ6

2
sin2

θ9

2
. (21)

123



A quantum approach to twice-repeated 2 × 2 game Page 9 of 20 269

Substituting

cos2 (θ1/2) = p1, cos2 (θ4/2) = p4, cos2 (θ6/2) = q1, cos2 (θ9/2) = q4, (22)

we obtain (1 − p1)q1(1 − p4)(1 − q4). In general, a strategy profile in the form

5⊗

i=1

Ui (2 arccos
√
pi , 0, 0) ⊗

10⊗

i=6

Ui (2 arccos
√
qi−5, 0, 0) (23)

results in the outcome (9). ��

Twice-repeated quantum Prisoner’s Dilemmawith unawareness

The Prisoner’s Dilemma is one of the most interesting problems in game theory. It
shows how the individual rationality of the players can lead them to an inefficient
result. Let us consider a general form of the Prisoner’s Dilemma

(
C D

C (R, R) (S, T )

D (T , S) (P, P)

)

, (24)

where T > R > P > S. The payoff profile (R, R) of (24) is more beneficial to both
players than (P, P). However, each player obtains a higher payoff by choosing D
instead of C (in other words, the strategy C is strictly dominated by D). As a result,
the rational strategy profile is (D, D), and it implies the payoff P for each player. A
similar scenario occurs in a case of finitely repeated Prisoner’s Dilemma game. By
induction, it can be shown that playing the action D at each stage of finitely repeated
Prisoner’s Dilemma constitutes the unique Nash equilibrium.

We assume that the modeler’s game G∅ (the game that is actually played by the
players) is defined by (10). Player 1 being aware of all the unitary strategies also views
the quantum game, i.e.,G1 = �QQ . Next, we assume that player 2 perceives the game
to be the classical one. In other words, player 2 views the game of the form

�CC = (H, {{1, σx }⊗5, {1, σx }⊗5}, (u1, u2)).

We then assume that player 1 finds that player 2 is considering �CC , and higher-order
views v ∈ {21, 121, 212, . . . } are associated with �CC . We thus obtain a game with
unawareness {�v}v∈V0 defined as follows:

�v =
{

�QQ if v ∈ {∅, 1},
�CC otherwise.

(25)
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In what follows, we determine the players’ rational strategies by applying the notion of
extendedNash equilibrium. First, we need to formulate the lemma that specifies player
1’s best reply to theNash equilibrium strategy of the classical twice repeated Prisoner’s
dilemma. Recall that the action D corresponds to iσx in the quantum scheme (10). This
implies that (iσx )⊗5 is a counterpart of the unique Nash equilibrium (D, D, D, D, D)

in the classical game. The following result is a part of the extended Nash equilibrium.

Lemma 1 Player 1’s best reply to (iσx )⊗5 in the set SU(2)⊗5 is of the form

τ ∗ = Uz(γ1) ⊗Ux (θ2)Uz(γ2) ⊗Ux (θ3)Uz(γ3) ⊗Uz(γ4) ⊗Ux (θ5)Uz(γ5), (26)

where θi ∈ [0, π/2], ∑i γi = kπ/2, k ∈ 2Z + 1.

The complete proof of Lemma 1 is given in “Appendix A.” Here, we derive the result
of playing the strategy profile (τ ∗ ⊗ (iσx )⊗5). The player 1’s payoff resulting from
playing the strategy (26) against (iσx )⊗5 is

u1
(
τ ∗ ⊗ (iσx )

⊗5
)

= 2S cos2
(

5∑

i=1

γi

)

cos2
θ3

2

+(S + P) cos2
(

5∑

i=1

γi

)

sin2
θ3

2
+ 2T sin2

(
5∑

i=1

γi

)

. (27)

Thus, player 1 obtains the maximal payoff 2T by choosing
∑5

i=1 γi = kπ/2, k ∈
2Z + 1.

Remark 2 It is worth noting that the strategy (26) turns out to be a nontrivial extension
of the quantum player’s best reply to strategy iσx in the one-stage Prisoner’s Dilemma.
Recall that according to [4,19], the Eisert–Wilkens–Lewenstein approach to game (24)
is defined by the final state

|�〉 = J †(U1(θ1, α1, β1) ⊗U2(θ2, α2, β2))J |00〉,
J = 1√

2
(1 ⊗ 1 + iσx ⊗ σx ), (28)

and the measurement operator

Y =
∑

i, j=0,1

(ai j , bi j )|i j〉〈i j |. (29)
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In case

|�1〉 = J † (U1(θ1, α1, β1) ⊗ iσx ) J |00〉 (30)

= sin β1 sin
θ1

2
|00〉 + i cosα1 cos

θ1

2
|01〉

+ i sin α1 cos
θ1

2
|10〉 − cosβ1 sin

θ1

2
|11〉, (31)

player 1’s payoff u1(U1(θ1, α1, β1) ⊗ iσx ) = tr (Y |�1〉〈�1|) = T if θ1 = 0 and
α1 ∈ {π/2, 3π/2}. Thus, the set of player 1’s best replies to iσx is

{

U1(0, α1, β1), α1 ∈
{

π

2
,
3π

2

}

, β ∈ (0, 2π)

}

=
{

Uz(γ ), γ ∈
{

π

2
,
3π

2

}}

.(32)

Proposition 3 Let {�v}v∈V0 be a game with unawareness defined by (25). Then, all
extended Nash equilibria {(σ )v} of {�v}v∈V0 are of the form:

(σ )v =
{(

τ ∗, (iσx )⊗5
)

if v ∈ {∅, 1},
(
(iσx )⊗5, (iσx )⊗5

)
otherwise.

(33)

Proof Since �v = �CC for v ∈ V0\{∅, 1}, it follows that (σ )v is a Nash equilibrium
in �CC . We know from classical game theory that the unique Nash equilibrium in the
twice repeated Prisoner’s Dilemma is (D, D, D, D, D). In terms of the EWL scheme
that profile can be written as (iσx )⊗5. Therefore,

(σ )v =
(
(iσx )

⊗5, (iσx )
⊗5

)
, v ∈ V0\{∅, 1}. (34)

In order to prove that (σ )1 = (σ1, σ2)1 = (
τ ∗, (iσx )⊗5

)
, we first note from the

definition of extended strategy profile that

(σ2)1 = (σ2)12 = (iσx )
⊗5. (35)

According to Definition 4, player 1’s strategy (σ1)1 has to be a best reply to (σ2)1 =
(iσx )⊗5 in the game �1 = �QQ . Since player 1 has access to all the unitary actions,
by Lemma 1, his best reply to (iσx )⊗5 is (σ1)1 = τ ∗ given by (26). Finally, (6) implies
that

(σ1)∅ = (σ1)1 = τ ∗ and (σ2)∅ = (σ2)2 = (iσx )
⊗5. (36)

��

5 Higher-order unawareness

In the previous section,we considered a typical case inwhichoneof the players is aware
of quantum strategies, whereas the other player views the classical game. Then, we
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showed that the quantum player obtains the best possible payoff resulting from playing
an extended Nash equilibrium. An interesting question that arises here is whether the
strategic position of the classical player can be improved by increasing his awareness
about the game. Let us consider the case that player 1 views the quantum game. In
addition, player 2 is aware of using quantum strategies by player 1, (�′

2 = �QC ) and
he knows that player 1 views the quantum strategies (�′

21 = �QC ). The formal way
of describing the problem is twofold. Player 1 can perceive the game with quantum
strategies for both players (�′

1 = �QQ), or he may think that he is the only one who
has access to all the unitary strategies (�′′

1 = �QC ). As long as player 1 finds that
player 2 is considering the classical game �CC (i.e., �′

12 = �′′
12 = �CC ), both ways

describe the same problem. Formally, the case in which the classical player is aware
of using the quantum strategies by player 1 is given by collections of games {�′

v} or
{�′′

v } where

�′
v =

⎧
⎪⎨

⎪⎩

�QQ if v ∈ {∅, 1},
�QC if v ∈ {2, 21},
�CC otherwise,

or �′′
v =

{
�QC if v ∈ {∅, 1, 2, 21},
�CC otherwise.

(37)

In order to find out the reasonable outcome of (37), we need to determine player 2’s
best reply to τ ∗.

Lemma 2 Player 2’s best reply to τ ∗ in the set {1, iσx }⊗5 is of the form

τ ∗
2 = 1 ⊗ {1, iσx }⊗3 ⊗ 1. (38)

Proof Since player 2’s payoff function is linear in each pure strategy of {1, iσx }⊗5

when player 1’s strategy is fixed, any mixed best reply cannot lead to a higher payoff.
It is therefore sufficient to compare the expected payoffs of player 2 that correspond to
strategy profiles from τ ∗⊗{1, iσx }⊗5.We obtain the following four different outcomes

Strategy profile Player 2’s payoff

τ∗ ⊗
(
1 ⊗ {1, iσx }⊗3 ⊗ 1

)
(P + T ) sin2 (θ5/2) + 2P cos2 (θ5/2)

τ∗ ⊗
(
1 ⊗ {1, iσx }⊗3 ⊗ iσx

)
(P + R) sin2 (θ5/2) + (P + S) cos2 (θ5/2)

τ∗ ⊗
(
iσx ⊗ {1, iσx }⊗2 ⊗ 1 ⊗ {1, iσx }

)
S + P

τ∗ ⊗
(
iσx ⊗ {1, iσx }⊗2 ⊗ iσx ⊗ {1, iσx }

)
2S

From the fact that T > R > P > S, we see that player 2’s best reply is given by
(38) for every θ5 ∈ [0, π/2]. ��
Lemma 2 enables us to determine all the extended Nash equilibria in {�v} defined by
(37).
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Proposition 4 Let {�v}v∈V0 be a game with unawareness defined by (37). Then, all
extended Nash equilibria {(σ )v} of {�v}v∈V0 are of the form:

(σ )v =

⎧
⎪⎨

⎪⎩

(
τ ∗, τ ∗

2

)
if v ∈ {∅, 2},

(
τ ∗, (iσx )⊗5

)
if v ∈ {1, 21},

(
(iσx )⊗5, (iσx )⊗5

)
otherwise.

(39)

Proof The proof proceeds along the same lines as the proof of Proposition 3. Without
restriction of generality, we can assume that {�v} = {�′′

v } according to (37). Similar
arguments to those in the proof of Proposition show that

(σ )v =
(
(iσx )

⊗5, (iσx )
⊗5

)
, v ∈ {12, 212, 121, . . . } (40)

and

(σ )v =
(
τ ∗, (iσx )⊗5

)
, v ∈ {1, 21}. (41)

Since (σv)v = (σv)vˆv (see Definition 3),

(σ1)2 = (σ1)21 = τ ∗. (42)

Now, (σ2)2 is a best reply to (σ1)2 in the game �′′
2 . By Lemma 2, (σ1)2 = τ ∗

2 .
Consequently,

(σ )2 = (
τ ∗, τ ∗

2

)
. (43)

��
According to (39), the result of the game is (σ )2 = (σ )∅ = (τ ∗, τ ∗

2 ). It corresponds
to the following payoffs: (P + S) sin2(θ5/2) + 2P cos2(θ5/2) for player 1 and (P +
T ) sin2(θ5/2) + 2P cos2(θ5/2) for player 2. Since player 1 does not have the most
preferred parameter θ5 in τ ∗, the difference between player 2 and player 1 payoff can
take any value of (T − S) sin2(θ5/2). If we assume that the parameter θ5 is uniformly
distributed over [0, π ] then, on average, player 2 gets

1

π
(T − S)

∫ π

0
sin2

θ5

2
dθ5 = 1

2
(T − S) (44)

more than player 1.

6 Summary and conclusions

In this paper, we proposed a new scheme for a twice repeated quantum game based
on the fact that it is a particular case of an extensive form game. We analyzed the
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scheme for a twice repeated Prisoner’s Dilemma game, with focus on the situation
where players have different perception of the game described by the formalism of
the games with unawareness [12].

In particular, we determined the extended Nash equilibrium for the case where one
player has access to full range of quantum strategies, while the other perceives the
game as a classical one. We found best replies of the quantum player to the classical
equilibrium strategy. This result is an extension of the corresponding one-stage version
of the game, and it similarly allows quantum player to get the best possible outcome.

We also discussed high-order unawareness, where we slightly increase game per-
ception of the classical player, so that he knows that his opponent is actually a quantum
player, while the quantum player is not aware of that knowledge of the classical player.
We show that this situation improves the strategic position of the classical player. As a
result of playing the extended Nash equilibrium, the difference between the classical
and quantum player’s payoffs is always nonnegative and strictly positive as long as
the parameter θ5 �= 0 in the player 1’s equilibrium action τ ∗. Therefore, the average
payoff of the classical player is grater that the payoff of the quantum player.

Our results showed that the proposed scheme is a nontrivial generalization of the
well-known EWL scheme. It can be easily extended to any repeated 2 × 2 quantum
game. Additionally, in the future it should be possible to implement our scheme on
already existing quantum hardware: IBM-Q or Rigetti computing. The research based
on the proposed scheme is also promising in the incoming era of quantum internet as
indicated by appearing quantum network simulators such as Simulaqron, which can
be used to simulate two players playing over quantum net.
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Appendix: Proof of Lemma 1

Proof First, note that a unitary matrix U ∈ SU(2) can be written as a product of the
rotation matrices Uz and Ux in the following way:

U (θ, α, β) =
(

eiα cos θ
2 ieiβ sin θ

2
ie−iβ sin θ

2 e−iα cos θ
2

)

=
(

ei(γ+δ) cos θ
2 iei(γ−δ) sin θ

2
ie−i(γ−δ) sin θ

2 e−i(γ+δ) cos θ
2

)

=
(
eiγ 0
0 e−iγ

) (
cos θ

2 i sin θ
2

i sin θ
2 cos θ

2

) (
eiδ 0
0 e−iδ

)

= Uz(γ )Ux (θ)Uz(δ). (45)
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The probability of winning the biggest payoff by a quantum player is described by:

P = f1(θ1, θ4) f2(θ , γ , δ), (46)

where θ = (θ2, θ3, θ5), γ = (γ1, γ2, γ3, γ4, γ5) and δ = (δ1, δ2, δ3, δ4, δ5). Functions
in (46) are defined as

f1(θ1, θ4) = cos2
(

θ1

2

)

cos2
(

θ4

2

)

(47)

and

f2(θ , γ , δ) = fccc(θ) sin2
(

5∑

i=1

δi +
5∑

i=1

γi

)

+ fscc(θ) sin2
(

5∑

i=1

δi + γ1 − γ2 + γ3 + γ4 + γ5

)

+ fcsc(θ) sin2
(

5∑

i=1

δi + γ1 + γ2 − γ3 + γ4 + γ5

)

+ fssc(θ) sin2
(

5∑

i=1

δi + γ1 − γ2 − γ3 + γ4 + γ5

)

+ fccs(θ) sin2
(

5∑

i=1

δi + γ1 + γ2 + γ3 + γ4 − γ5

)

+ fscs(θ) sin2
(

5∑

i=1

δi + γ1 − γ2 + γ3 + γ4 − γ5

)

+ fcss(θ) sin2
(

5∑

i=1

δi + γ1 + γ2 − γ3 + γ4 − γ5

)

+ fsss(θ) sin2
(

5∑

i=1

δi + γ1 − γ2 − γ3 + γ4 − γ5

)

, (48)

where

fccc(θ) = cos2
(

θ2

2

)

cos2
(

θ3

2

)

cos2
(

θ5

2

)

,

fscc(θ) = sin2
(

θ2

2

)

cos2
(

θ3

2

)

cos2
(

θ5

2

)

,

...

fsss(θ) = sin2
(

θ2

2

)

sin2
(

θ3

2

)

sin2
(

θ5

2

)

. (49)
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For each θ1 ∈ [0, 2π ], θ4 ∈ [0, 2π ] we have f1(θ1, θ4) ∈ [0, 1], and f2(θ, γ , δ) ∈
[0, 1] is satisfied for each θ ∈ [0, 2π ]3, γ ∈ [0, 2π ]5, δ ∈ [0, 2π ]5. So if
f1(θ1, θ4) f2(θ , γ , δ) = 1, then

f1(θ1, θ4) = 1 and f2(θ, γ , δ) = 1. (50)

To obtain f1(θ1, θ4) = 1, we need cos2
(

θ1
2

)
= 1 and cos2

(
θ4
2

)
= 1. That implies

Ux (θ) = I in representation (45) and therefore strategy elements for qubits 1 i 4 have
the form

U1 = Uz(γ1 + δ1) = Uz(α1), (51)

U4 = Uz(γ4 + δ4) = Uz(α4). (52)

To see which conditions need to be fulfilled to obtain f2(θ , γ , δ) = 1, first note that

fccc(θ) + fscc(θ) + fcsc(θ) + fssc(θ) + fccs(θ) + fscs(θ) + fcss(θ) + fsss(θ)

= cos2
(

θ2

2

)

cos2
(

θ3

2

)

cos2
(

θ5

2

)

+ sin2
(

θ2

2

)

cos2
(

θ3

2

)

cos2
(

θ5

2

)

+ cos2
(

θ2

2

)

sin2
(

θ3

2

)

cos2
(

θ5

2

)

+ sin2
(

θ2

2

)

sin2
(

θ3

2

)

cos2
(

θ5

2

)

+ cos2
(

θ2

2

)

cos2
(

θ3

2

)

sin2
(

θ5

2

)

+ sin2
(

θ2

2

)

cos2
(

θ3

2

)

sin2
(

θ5

2

)

+ cos2
(

θ2

2

)

sin2
(

θ3

2

)

sin2
(

θ5

2

)

+ sin2
(

θ2

2

)

sin2
(

θ3

2

)

sin2
(

θ5

2

)

=
(

cos2
(

θ2

2

)

+ sin2
(

θ2

2

)) (

cos2
(

θ3

2

)

+ sin2
(

θ3

2

)) (

cos2
(

θ5

2

)

+ sin2
(

θ5

2

))

= 1. (53)

Then, we can write

f2(θ , γ , δ) = fccc(θ)sccc(δ, γ ) + fscc(θ)sscc(δ, γ ) + fcsc(θ)scsc(δ, γ )

+ fssc(θ)sssc(δ, γ ) + · · · + fsss(θ)ssss(δ, γ ), (54)

where sggg(δ, γ ) ∈ [0, 1] for ggg ∈ {ccc, ccs, csc, . . . , sss}, ∑
fggg(θ) = 1 and

fggg(θ) ∈ [0, 1] for each θ .
If we introduce:

αsum =
5∑

i=1

(δi + γi ) =
5∑

i=1

(αi ), (55)
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then we can rewrite (48) as:

f2(θ , γ , δ) = fccc(θ)(sin2(αsum)) + fscc(θ) sin2(αsum − 2γ2)

+ fcsc(θ) sin2(αsum − 2γ3) + fssc(θ) sin2(αsum − 2γ2 − 2γ3)

+ fccs(θ) sin2(αsum − 2γ5) + fscs(θ) sin2(αsum − 2γ2 − 2γ5)

+ fcss(θ) sin2(αsum − 2γ3 − 2γ5)

+ fsss(θ) sin2(αsum − 2γ2 − 2γ3 − 2γ5). (56)

To obtain f2(θ, γ , δ) = 1 for each ggg ∈ {ccc, ccs, csc, . . . , sss} forwhich fggg > 0,
there have to be sggg = 1. The list of these conditions for i, j, k ∈ {2, 3, 5} is shown
in detail in the following table:

(a) if fggg > 0 (b) then sggg = 1

cos2(θi )cos2(θ j )cos2(θk) > 0 sin2(αsum) = 1
sin2(θi )cos2(θ j )cos2(θk) > 0 sin2(αsum − 2γi ) = 1
cos2(θi )sin2(θ j )sin2(θk) > 0 sin2(αsum − 2γ j − 2γk) = 1
sin2(θi )sin2(θ j )sin2(θk) > 0 sin2(αsum − 2γi − 2γ j − 2γk) = 1

(57)

Let us consider several cases.

1. If for each ggg ∈ {ccc, ccs, csc, . . . , sss} fggg > 0, then all conditions listed in
(57(b)) apply. From the first condition, αsum = ∑5

i=1 αi = ∑5
i=1(δi + γi ) = k π

2
where k is odd. Also, from all conditions, for every w ∈ {2, 3, 5} γw = nw

π
2

where nw ∈ {0, 1, 2, 3, 4}.
If nw is odd: Uz(γw) = I and

Uw = Ux (θw)Uz(δw) = Ux (θw)Uz(δw + γw) = Ux (θw)Uz(αw). (58)

If nw is even:

Uw = Uz(γw)Ux (θw)Uz(δw) = Uz

(
n
π

2

)
Ux (θw)Uz(δw)

= Ux (−θw)Uz

(
δw + n

π

2

)
= Ux (−θw)Uz(δw + γw) = Ux (−θw)Uz(αw).

(59)

2. If there exists at least one w ∈ {2, 3, 5} for which cos2(θw) = 0 or sin2(θw) = 0,
if cos2(θw) = 0 then

Uw = Uz(γw)Ux (π)Uz(δw)

= Uz(γw)iσxUz(δw) = iσxUz(δw − γw) = iσxUz(βw). (60)
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if[(a)] sin2(θw) = 0 then

Uw = Uz(γw)Ux (0)Uz(δw)

= Uz(γw)Uz(δw) = Uz(δw + γw) = Uz(αw). (61)

Next, we consider three subcases: exactly one, exactly two and exactly three w ∈
{2, 3, 5} such that cos2(θw) = 0 or sin2(θw) = 0.

(b) There exists exactly onew ∈ {2, 3, 5} forwhich cos2(θw) = 0 or sin2(θw) = 0.
If cos2(θw) = 0 then, according to (57), the following conditions for v, r ∈
{2, 3, 5} and v �= w, r �= w apply:

sin2(αsum − 2γw) = 1,

sin2(αsum − 2γw − 2γv) = 1,

sin2(αsum − 2γw − 2γr ) = 1,

sin2(αsum − 2γw − 2γv − 2γr ) = 1. (62)

Next, from the first condition of (62), we have: αsum − 2γw = βw +∑5
p=1,p �=w αp = k π

2 , where k is even. And from all conditions of (62):
γv = n π

2 , γr = n π
2 , n ∈ {0, 1, 2, 3, 4}.

From that, the actual strategy elements for qubits w, v and r are:
Uw = iσxUz(βw), Uv = Ux (θv)Uz(αv) or Uv = Ux (−θv)Uz(αv), Ur =
Ux (θr )Uz(αr ) or Ur = Ux (−θr )Uz(αr )

If sin2(θw) = 0 then, according to (57), the following conditions for v, r ∈
{2, 3, 5} and v �= w, r �= w apply:

sin2(αsum) = 1,

sin2(αsum − 2γv) = 1,

sin2(αsum − 2γr ) = 1,

sin2(αsum − 2γv − 2γr ) = 1. (63)

Next, from the first condition of (63), we have:αsum = ∑5
p=1 αp = k π

2 , where
k is even. And from all the conditions of (63): γw = n π

2 , γv = n π
2 , γr = n π

2 ,
n ∈ {0, 1, 2, 3, 4}.
From that, the actual strategy elements for qubits w, v and r are:
Uw = Uz(αw), Uv = Ux (θv)Uz(αv) or Uv = Ux (−θv)Uz(αv) Ur =
Ux (θr )Uz(αr ) or Ur = Ux (−θr )Uz(αr ).

(b) There exist exactly one w ∈ {2, 3, 5} that cos2(θw) �= 0 and sin2(θw) �= 0. In
that case,weuse similar inference as in previous one andpresent thefinal results
for simplicity. In these case, there are three possibilities for v, r ∈ {2, 3, 5}:
If cos2(θv) = 0, cos2(θr ) = 0, then the actual strategy elements are:
Uw = Ux (θw)Uz(αw) or Uw = Ux (−θw)Uz(αw), Uv = iσxUz(βv), Ur =
iσxUz(βr ),
and αsum − 2γv − 2γr = ∑5

p=1;p �=v;p �=r αp + βv + βr = k π
2 , k-even.
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If cos2(θv) = 0, sin2(θr ) = 0, then the actual strategy elements are:
Uw = Ux (θw)Uz(αw) or Uw = Ux (−θw)Uz(αw), Uv = iσxUz(βv), Ur =
Uz(αr ),
and αsum − 2γv = ∑5

p=1;p �=v αp + βv = k π
2 , k-even.

If sin2(θv) = 0, sin2(θr ) = 0, then the actual strategy elements are:
Uw = Ux (θw)Uz(αw) or Uw = Ux (−θw)Uz(αw), Uv = Uz(αv), Ur =
Uz(αr ),
and αsum = ∑5

p=1 αp = k π
2 , k-even.

(c) For all w ∈ {2, 3, 5}, cos2(θw) = 0 or sin2(θw) = 0. In that case, we also use
similar inference as in previous ones and present the final results for simplicity.
In these case, there are four possibilities for w, v, r ∈ {2, 3, 5}:
If cos2(θw) = 0,cos2(θv) = 0,cos2(θr ) = 0, then the actual strategy elements
are:
Uw = iσxUz(βw), Uv = iσxUz(βv), Ur = iσxUz(βr )

and αsum − 2γw − 2γv − 2γr = α1 + α4 + βw + βv + βr = k π
2 , k-even.

If sin2(θw) = 0,cos2(θv) = 0,cos2(θr ) = 0, then the actual strategy elements
are:
Uw = Uz(αw), Uv = iσxUz(βv), Ur = iσxUz(βr )

and αsum − 2γv − 2γr = ∑5
p=1;p �=vp �=r αp + βv + βr = k π

2 , k-even

If sin2(θw) = 0,sin2(θv) = 0,cos2(θr ) = 0, then the actual strategy elements
are:
Uw = Uz(αw), Uv = Uz(αv), Ur = iσxUz(βr )

and αsum − 2γr = ∑5
p=1;p �=r αp + βr = k π

2 , k-even.

If sin2(θw) = 0,sin2(θv) = 0,sin2(θr ) = 0, then the actual strategy elements
are:
Uw = Uz(αw), Uv = Uz(αv), Ur = Uz(αr )

and αsum = ∑5
p=1 αp = k π

2 , k-even. ��
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