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Abstract
Intensive work on quantum computing has increased interest in quantum cryptography
in recent years.Although this technique is characterized by a very high level of security,
there are still challenges that limit thewidespread use of quantumkey distribution. One
of the most important problems remains secure and effective mechanisms for the key
distillation process. This article presents a new idea for a key reconciliation method
in quantum cryptography. This proposal assumes the use of mutual synchronization
of artificial neural networks to correct errors occurring during transmission in the
quantum channel. Users can build neural networks based on their own string of bits.
The typical value of the quantum bit error rate does not exceed a few percent; therefore,
the strings are similar and also users’ neural networks are very similar at the beginning
of the learning process. It has been shown that the synchronization process in the new
solution ismuch faster than in the analogous scenario used in neural cryptography. This
feature significantly increases the level of security because a potential eavesdropper
cannot effectively synchronize their own artificial neural networks in order to obtain
information about the key. Therefore, the key reconciliation based on the new idea can
be a secure and efficient solution.

Keywords Quantum cryptography · Artificial neural networks · Error correction ·
Machine learning

1 Introduction

Quantum cryptography is a technique which can ensure a very high level of data
security. Thanks to principles of quantum mechanics, secret keys can be established
between entities/users—usually called Alice and Bob. At the same time, an eavesdrop-
per (called Eve) can attempt to gain information about the key. However, measurement
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modifies the state of the transmitted information and even passive eavesdropping can
be discovered by Alice and Bob.

After quantumkeydistribution in the quantumchannel, the usersmust performakey
distillation process (consisting of quantum bit error estimation, error correction and
privacy amplification) in order to establish the secure final key. This process directly
influences the performance of key distribution and also the security and length of final
cryptographic key. Therefore, it is desirable to use secure and efficient methods in
practical implementations. These features are inherent in the solution presented in this
article—synchronization of the artificial neural network to correct errors occurring in
quantum channel during quantum key distribution process.

The rest of the article proceeds as follows. An introduction to quantum
cryptography—especially a description of the key distillation process—is presented
in Sect. 2. An introduction and presentation of the artificial neural networks used in
neural cryptography follow in Sect. 3. The new solution based on machine learning
in error correction process is presented in Sect. 4. In Sect. 5, experimental results are
discussed and compared with typical scenarios used in neural cryptography. Finally,
Sect. 6 concludes the article.

2 Quantum cryptography

Quantum cryptography ensures secure key distribution by means of the laws of
quantum mechanics [1]. First of all, the rules of quantum mechanics ensure that mea-
surement modifies the state of the transmitted qubit (quantum bit). This modification
can be discovered by the sender and the receiver of qubits. Therefore, quantum cryp-
tography requires two types of channels to be defined:

• the quantum channel, where qubits with the information about the distributed key
are exchanged and

• the public channel, which is used to check whether the communication through
the quantum channel is distorted. Also, this channel is used for the correction of
wrong bits.

The other rule of quantum mechanics which makes quantum cryptography a very
secure solution is the no-cloning theorem [2]. According to this theorem, it is not
possible to create identical copies of an unknown quantum state [3]. Therefore, an
eavesdropper is not able to clone the original qubit to measure the quantum state and
send the second qubit to the proper receiver.

We can split quantum cryptography into two main steps: the quantum key distribu-
tion protocol (e.g., BB84 protocol) and the key distillation algorithms (quantum error
bit estimation, error correction and privacy amplification).

2.1 Quantum key distribution

Quantum key distribution (QKD) is used to distribute an encryption key for symmetric
ciphers [4] (not to transmit messages between users). As has been mentioned, the
security of QKD relies on the foundations of quantum mechanics and information
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about a key is transmitted by means of qubits. We could distinguish two types of QKD
protocols: based on single and entangled particles [5].

In the first group—QKD protocols based on single particles—information about
the distributed key is coded by means of quantum states of single particles (such as
polarized photons). The quantum states of the particles do not depend on each other,
and each particle brings information which can be read independently.

The second group is based on entanglement. The entangled state of two particles
has the following feature: The states of particles are random (indeterminate) before
the measurement is performed but if we measure the state of the first particle, then
the state of the second particle is fully determined. This means that we only need
to measure one particle to know the states of both. It is worth mentioning that the
entanglement still retains this feature even if the particles are separated.

Today, we know a lot of QKD protocols but only a few are used in practice [6]. The
first protocol invented was BB84 [7], presented in 1984 by Bennett and Brassard. This
protocol is based on single particles (polarized photons). Another protocol based on
single particles isB92—developedbyoneof the creators ofBB84,Bennett, in 1992 [8].
It is simpler and faster than its predecessor. Furthermore, it is more efficient because
it detects eavesdroppers faster. A well-known QKD protocol based on entanglement
is E91, invented in 1991 by Ekert [9]. It was an innovative solution which used the
phenomenonof entangled particles for thefirst time. In principle,manyother protocols,
such as BBM92 [10] (proposed byBennett, Brassard andMermin in 1992) or SARG04
[11] (proposed by Scarano, AcĂn, Ribordy and Gisin in 2004) are modified versions
of the BB84 protocol.

2.2 Key distillation

During the quantum key distribution process, Alice and Bob use two communication
channels: quantum and public. In the quantum channel, information is coded bymeans
of quantum states. In the public channel,Alice andBob exchange data to checkwhether
Eve is eavesdropping. However, the public channel is necessary for more cases.

It is not only Eve that is responsible for errors in the quantum channel. Errors during
quantum communication may occur because of disturbance in the quantum channel,
optical misalignment, noise in detectors or other factors. Therefore, Alice and Bob
have to estimate the error rate and decide whether there is an eavesdropper in between
or not. In practice, they compare a small portion of a distributed raw key through
the public channel and compute the quantum bit error rate (QBER). The portion of
compared bits can depend on the security requirements [12]. If QBER exceeds a given
threshold, it means that Eve has eavesdropped (or the quantum channel is too noisy to
perform a proper key distribution). But if the error rate is low enough, Alice and Bob
continue further distillation of the key. Of course, they must delete the compared part
of the raw key for security reasons.

After the bit error estimation, Alice and Bob use key distillation protocols. These
protocols usually involve two steps: key reconciliation (error correction) and privacy
amplification.

123



174 Page 4 of 18 M. Niemiec

As mentioned previously, quantum communication is not perfect and some errors
usually occur. If the number of errors does not exceed a given threshold of QBER,
the reconciliation process must find and correct or delete these errors. Alice and Bob
should disclose as little information as possible by using an appropriate reconciliation
algorithm. Since they are not able to avoid the leakage of information, they have to
reject some bits of the key.

The first binary error correction method was provided by the BBBSS protocol. This
protocol was designed by Bennett and his coworkers [13]. It requires the parities of
raw key subsets from Alice and Bob to be exchanged. BBBSS uses several passes to
correct the errors by parity check. A pseudo-random permutation is used after each
pass. Two years later, Brassard and Salvail constructed the Cascade algorithm with
improved efficiency [14]. Usually, it uses four passes and doubles block length starting
from the second pass. This ensures a faster error correction process. Nowadays, the
Cascade key reconciliation algorithm is usually used in practical implementations.
Other reconciliationmethods based on the BBBSS algorithm are Furukawa–Yamazaki
[15] (less efficient than theCascade) andWinnowprotocol [16]which uses aHamming
code to reduce the number of errors.

Alice andBob can choose one of several known reconciliation algorithms; however,
currently the most popular reconciliation methods are algorithms which are based on
a parity check of blocks. The simplest scenario assumes that the key is grouped into
blocks of a given size. The size of a block depends on the error rate value which
was estimated before. Alice and Bob compare parities of each block over the public
channel. If their parities disagree, the block contains an odd number of errors. This
block is cut into two sub-blocks, and their parities are compared again. This procedure
is continued recursively for all blocks which contain an odd number of errors as long
as errors will be corrected. After that, both keys contain an even number of errors or
none. Alice and Bob shuffle the positions of bits and repeat the same procedure with
blocks of bigger size as long as both keys will be the same. A serious problem occurs
if blocks contain an even numbers of errors. Therefore, users must try to change the
block size or rearrange the position of errors in the string. However, this approach can
be ineffective and may even lead to failing the error correction process.

Each parity control over the public channel discloses a part of the secret key’s infor-
mation. If Eve collects the parities of many blocks, she will be able to calculate parts
of the key. Therefore, Alice and Bob must reject some bits to reduce the eavesdrop-
per’s knowledge about the secret key. Many rejected bits increase the security level
but unfortunately decrease the final length of the key. It decreases the efficiency of
whole QKD system. The ideal key reconciliation algorithm should ensure an efficient
and secure error correction process as well as avoid leakage of information about the
key.

At the end of the key distillation process, the privacy amplification should be carried
out. Because Eve may have gained significant knowledge of the key (eavesdropping
in the quantum channel and in the public channel during the bit error estimation and
key reconciliation), Alice and Bob are required to strengthen their privacy. They can
delete some of the bits and construct the final key in a specific way.

Even though it is possible to apply different solutions during the privacy amplifica-
tion process, universal hash functions are mainly used in practice. Universal families
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of hash functions were created byWegman and Carter [17]. Privacy amplification with
hash functions was proposed by Bennett et al. [18] in 1988. In general, the algorithm
is based on one-way functions which are able to convert a large string of bits into a
short binary word.

Following [18], the theorem which defines the probability of the eavesdropper’s
information after error correction is presented below.

Theorem 1 Assume that M is the length of the reconciled key and Eve’s knowledge
about the key is no more than E deterministic bits. Let h : {0, 1}M → {0, 1}E be
any hash function of the universal family, let S < M − E be a security parameter
and let R = M − E − S. If g : {0, 1}M → {0, 1}R is chosen randomly, then the
expected amount of information on g(x) given by knowledge of h, g and h(x) is at
most: 2−S/ log 2. This means that:

Expected amount of information ≤ 2−S

log 2
[bit]. (1)

The security parameter S allows the security of the final encryption key to be
controlled. By means of the theorem, we are able to increase the security of a given
QC system. Unfortunately, too many rejected bits decrease the final length of the key,
and thus the efficiency of QKD system also decreases.

If Alice and Bob perform all these steps, the final key will be significantly reduced.
This is characteristic for all quantum key distribution protocols [19]. Because each
stage reduces the key length, the performance of QKD is also reduced. Sometimes,
when we want to ensure a high level of security, this reduction is significant. Using the
QKD Protocol Simulator [20], we can easily check that, e.g., 1000 qubits transmitted
in the quantum channel cause approx. 300 bits of final key. Therefore, improving effi-
ciency of key distillation process is crucial to the quantum cryptography implemented
in real communication networks.

3 Artificial neural networks

Artificial neural networks (ANN) are a family of statistical learningmodels inspired by
biological neural networks [21]. They are used to estimate functions that can depend
on a large number of inputs. An ANN consists of artificial neurons (analogous to
biological neurons) which are connected together. Each connection can transmit a
signal between neurons [22]. Neurons are usually organized in layers: The first layer
consists of input neurons which can send the data to the second layer (called hidden).
A neural network can have one or more hidden layers. The last layer—consisting
of output neurons—is called the output layer. The connections can store parameters
(called weights) that can be manipulated during calculation.
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Fig. 1 TPM machine

3.1 Tree parity machine

The most popular neural network used for cryptography purposes is the tree parity
machine (TPM) which contains only one hidden layer. An example TPM structure
is presented in Fig. 1. It consists of K N input neurons, where K is the number of
neurons in the hidden layer and N is the number of inputs into each neuron in the
hidden layer. This network has only one output neuron. Each connection between the
input layer and hidden layer is characterized by its weight, which is an integer from
the range [−L, L].

The output value of neuron k in the hidden layer depends on input x and weight w
and is calculated as:

σk = sgn

(
N∑

n=1

xkn ∗ wkn

)
(2)

where signum function is:

sgn(z) =
{

−1 z ≤ 0

1 z > 0
(3)

The output value of the neuron in the output layer is calculated as:

τ =
K∏

k=1

σk (4)

Nowadays, the TPMs are used for establishing the secret key between users. This
usage of ANN for cryptographic purposes is called neural cryptography. Alice and
Bob use two identical neural networks which are able to synchronize after mutual
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learning [23]. At the beginning of this process, each TPM generates random values of
weights but after synchronization process both users have TPMs with the same values
of weights. Therefore, Alice and Bob can construct the secret key using synchronized
weights (just change weight values into binary string).

In order to synchronize neural networks, users generate random input (the same
for both TPMs) and compute outputs from each TPM. If the output of Alice’s TPM is
the same as Bob’s TPM, they can start the learning process for the neural networks. If
the outputs are different (one TPM generated the value 1 but the other generated the
value −1), Alice and Bob must generate another input.

We can choose any learning algorithm; however, the generalized form of Hebbian
method is the most popular in practical implementations [24]. The new weights are
calculated by means of the following formula:

w�
kn = νL(wkn + xkn ∗ σk ∗ Θ(σk, τ )) (5)

where:

Θ(σk, τ )) =
{
0 if σk �= τ

1 if σk = τ
(6)

and function νL limits values of connections to the range [−L, L]:

νL(z) =

⎧⎪⎨
⎪⎩

−L if z ≤ −L

z if − L < z < L

L if z ≥ L

(7)

As we can see, the algorithm strengthens the connections which have the same value
as the TPM output.

After the appropriate number of iterations, the synchronization process ends and
the weights of both TPM machines are the same. Then, Alice and Bob can change
weights into binary strings and use them as a secret cryptographic key.

3.2 Security of neural cryptography

Synchronization of TPMs requires communication betweenAlice and Bob. Therefore,
it can be eavesdropped by an intruder (Eve). The simplest passive attack is an attempt
to synchronize the Eve’s TPM machine with the TPMs belonging to Alice and Bob.
We can specify that during the synchronization process, three events may occur:

* if τAlice �= τBob, then no TPM machine is subjected to the learning process,
* if τAlice = τBob �= τEve, then only the machines of Alice and Bob are subjected
to the learning process,

* if τAlice = τBob = τEve, then all machines are subjected to the learning process.

If the output of the Eve’s TPM machine is different than the outputs of the Alice and
Bob’s machines, the learning process cannot be performed. Therefore, the synchro-
nization of the Eve’s TPM is slower than the synchronization of the TPMs belonging to
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Fig. 2 Synchronization of TPMs (Alice, Bob and intruder)

Alice and Bob. An example of the synchronization process is presented in Fig. 2 (TPM
machines with parameters: N = 8, K = 6, L = 2 and Hebbian learning algorithm).
Alice and Bob synchronized neural networks before 200 iterations, but attacker was
not able to do it for 1000 iterations.

Unfortunately, an attack can be improved by using multiple TPMs owned by Eve.
In this case, the attacker has many machines, each initiated with different weights.
This method increases the probability of the attacker’s success, since it is enough that
only one machine will be synchronized with Alice’s and Bob’s machines. However,
simultaneous synchronization of many TPM machines is ineffective and users can
easily improve the security by increasing the used neural network (increasing L,N and
K parameters). This results in a reduction in the synchronization speed of the attacker.

A known improvement to the introduced simple passive attack is worthmentioning.
The event τAlice = τBob �= τEve cannot stop Eve’s synchronization process. This
approach is known as a geometric attack [25]. The attacker can flip the output of
a selected neuron in the hidden layer before applying the learning process in order
to correct the output τEve. Taking into account the correlation of weights in TPMs
machines belonging to Alice, Bob and Eve, the authors of [26] considered attractive
and repulsive steps of the synchronization process. Despite the fact that a geometric
attack can improve the learning process of Eve’s TPM machine, the synchronization
process is still less effective. Finally, it was demonstrated that ANNs which interact
with each other (Alice’s andBob’sTPMs) synchronize faster thanEve’sTPMmachine.

The security of neural cryptography has been considered in a number of papers [21,
27–32]. However, synchronization of TPMs can be further improved by learning by
queries [33] instead of random inputs. This approach is based on exchanging inputs
between Alice and Bob which are correlated with the weight vectors of the TPMs. The
queries introduce a mutual influence between Alice and Bob which is not available to
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an attacking Eve. The results shown in [34] confirm that queries restore the security
against cooperating attackers.

4 Error correction based on TPMs

One of the crucial steps in the quantum key distribution process is the correction of
errors. This step decides on the security level of final key, but also significantly influ-
ences the performance of the quantum cryptography. Currently used solutions assume
parity checking and deleting bits to minimize the probability of information leakage.
Such an approach causes a significant reduction in key length and low efficiency in
the whole QKD system. In this section, a new approach to error correction based on
mutual synchronization of TPM machines is introduced.

4.1 Applicability of TPMs

The idea for a new error correctionmethod is the following:After theQBERestimation
step, we can use the synchronization of the TPM machines to correct errors in the
quantum cryptography (instead of any other error correction algorithm). In this way,
we will be able to correct errors that occurred during the transmission of qubits.
Importantly, in this scenario, Alice’s binary string is very similar to Bob’s string of
bits. The typical value for QBER does not exceed a few percent [35–38]; therefore, we
must correct only a small part of the whole key. This means that the TPM machines
are close to synchronization and the learning process will finish much faster than in
the case of synchronization of random strings of bits. Of course, this increases the
security level significantly.

It is worth mentioning that the presented idea—using the mutual synchronization
of neural networks to correct errors—is a special case when this process makes sense.
In general, TPM machines cannot be used for error correction of digital information
becauseweare not able to predict thefinalweights after the learningprocess.BothTPM
machines dynamically adjust their weights; therefore, the final strings are random.
However, in the case of quantum cryptography, this feature is an advantage because
we want to generate unpredictable string of bits which can be used as a secure key.

Taking into account the software environments and hardware resources currently
available, the usage of TPM-based error correction seems to be justified. Although the
time of learning processes for software implementations of TPMs strongly depends on
the hardware resources, a typical duration of one iteration on an ordinary computer is
a fewmilliseconds [39]. However, hardware implementation helps to shorten this time
by more than thousandfold (i.e., parallel processing using FPGA presented in [40]).
Additionally, ASIC implementations of neural cryptography in 130-nm and 65-nm
standard-cell CMOS technologies are available [41]. These circuits reduce imple-
mentation costs and ensure fast synchronization of neural networks; the maximum
operation frequency is several hundred MHz which results less than one microsecond
per single iteration.
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Additionally, the security services and architectures being used confirm the feasi-
bility of TPM implementation in practice. For example, a chip-level microcomputer
bus system with TPMs introduced in [42] provides efficient data encryption with a
low hardware overhead, comparable to well-known and widely used stream ciphers.
Moreover, synchronization of ANNs was proposed to environments such as ad hoc
networks (TPMs for establishing common group keys [43]) or wireless sensor net-
works with limited resources (lightweight key agreement protocol based on TPMs
known as TinyTPM [44]).

4.2 Error correction process

The use case with the proposed solution is as follows. Let’s assume that Alice and
Bob carried out the process of quantum key distribution in the quantum channel and
they estimated the quantum bit error rate. If the QBER level is acceptable (this means
that no one eavesdropped on the quantum channel or a very small percentage of bits
were eavesdropped), the error correction process can start.

Step 1 Alice and Bob create their own TPM machines based on their own strings
of bits. The users change string of bits into weights in their own TPM machines
(bits into numbers from the range [−L, L] ). Values {−L,−L + 1, . . . , L − 1, L}
become weights of connections between the input neurons and the neurons in the
hidden layer. Values of parameter K (the number of neurons in the hidden layer)
and N (the number of inputs into each neuron in the hidden layer) are chosen
by Alice and Bob and can be public. In this way, Alice and Bob construct very
similar neural networks—the TPM machines have the same structure (K N input
neurons), and most of the weights are the same. The differences are located only
in the places where errors occurred: For example, if QBER ≈ 3%, it means that
≈ 97% of bits are correct.
Step 2 After the construction of the neural networks, synchronization of the TPM
machines begins and continues until all weights in both machines become the
same. In order to synchronize neural networks, Alice generates random input (an
input string has K N length) and computes output from her own TPM machine.
Then, Alice informs Bob about the result (value 1 or −1) and also the generates
input string. Bob computes output from his own TPMmachine, based on the input
string generated by Alice. If the output of Alice’s TPM is the same as Bob’s TPM,
they can start the learning process for the neural networks (otherwise, the different
input string is generated by Alice). The synchronization process can be based on
the Hebbian learning algorithm, which strengthens the connections which have
the same value as the TPM output. After the appropriate number of iterations, the
synchronization process ends and the weights of both TPMmachines are the same.
Step 3 When the TPM machines are synchronized, the weights are the same in
both neural networks. Therefore, Alice and Bob can convert the weights back
into string of bits—the users change numbers from the range [−L, L] into bits
(in the opposite way than in Step 1). Because both the TPM machines have been
synchronized, the Alice’s string of bit is now the same as the Bob’s string of bits.
All errors have been corrected.
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After this three-step error correction process, both users may use the obtained
string of bits for cryptography purposes, e.g., to secure communications ensuring
confidentiality, integrity or authentication.

4.3 Security considerations

Thepresented solution—using themutual synchronization ofTPMmachines to correct
errors—is not based on parity check which causes the information leakage; however,
privacy amplification process is still recommended. It will protect this solution against
unknown attacks to TPMs, which can be proposed in the future.

Let’s assume that before the error correction process, Alice and Bob changed string
of bits into weights and created their own TPM machines. Thus, the TPM machines
contain K N input neurons with weights and each weight is an integer from the range
[−L, L]. Therefore, a singleweight has 2L+1 possible values. The number of possible
keys which are stored using TPM is:

(2L + 1)K N (8)

However, after each synchronization process (iteration), Eve is able to acquire a partial
information about TPMs. Taking into account the input and output of TPMs (value
τ ), Eve can reject the half of possible keys (Eq. 8) from the further considerations.
Therefore, after the i iterations, the number of possibilities is reduced to:

2−i (2L + 1)K N (9)

and this is adequate to a TPM machine with smaller number of input neurons with
weights:

(2L + 1)K N−Z (10)

Comparing both Eqs. (9 and 10), we are able to quantify the maximum Eve’s knowl-
edge after i iterations and define the reduction of key to protect Alice and Bob against
the information leakage during TPMs synchronization process as:

Z = log(2L+1) 2
i (11)

This reduction strongly depends on the parameter L . However, the reduction of key
caused by the synchronization process for the typical QBER value is not very high.
Even for small parameter L—i.e., TPMs with L = 2 used for verification in the next
section)—the reduction is a dozen or so percent. When Alice and Bob convert the
weights back into bits, they may shorten the final key using a hash function and a
proper value of the security parameter S (regarding Eq. 1). In this way, Alice and
Bob reduce Eve’s knowledge of the key, which can be collected by eavesdropping
in the quantum channel and public channel during the bit error estimation and key
reconciliation steps.

Additionally, the proposed solution is characterized by higher security than current
neural cryptography solutions, where we use TPMmachines to establish cryptography
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key between users. In the new solution, we have much faster synchronization because
the strings are very similar at the beginning of the synchronization process. Therefore,
Alice and Bob need fewer iterations to synchronize their neural networks. However,
error correction based on TPMs is able to equalize every number of incompatible bits
between Alice and Bob’s strings of bits and it works on any value of QBER. Also, it
is worth remembering that we should use high values for TPM parameters (N , K , L)
to ensure an even higher level of protection [39].

5 Verification

Security and efficiencyof every key reconciliationmethod are the crucial requirements.
It also applies to the proposed error correction based on mutual synchronization of
artificial neural networks. The number of iterations during the synchronization of
TPMs influences the security and efficiency. If the synchronization of Alice and Bob’s
TPMs is fast, the level of security will be high. Therefore, the scenarios of TPMs
synchronization process with typical values of QBER are tested in this section.

5.1 The security of error correction based on TPMs

The number of steps during the synchronization of TPMs directly influences the secu-
rity level. However, the synchronization of an eavesdropper’s TPMmachine is slower
than the synchronization of the users’ TPMs, but the initial synchronization addition-
ally increases the level of security. To verify the behavior of the initially synchronized
TPMs, a number of simulations have been conducted. The results were compared to
typical TPMs used in neural cryptography (artificial neural networks with randomly
chosen weights).

Figures 3 and 4 present the synchronizations of TPMs in two scenarios—with
weights randomly generated and with 95% of synchronized weights at the beginning
of the synchronization process, respectively. The points in the graph are mean values
(synchronizations repeated 5000–10,000 times) and were connected by dotted lines
in order to help in comparison of differences. The results were presented for the range
N = [20, 25], parameter L = 2 and Hebbian learning algorithm. The number of
iterations in synchronization process strongly depends on the value of the K parameter
(the figures contain three example values: K = 6, K = 8 and K = 10).

According to predictions, the number of iterations which are needed to synchro-
nize TPMs is much smaller in scenario with ANN initially synchronized (3–4 times
smaller). Artificial neural networks with random chosen weights need significantly
more iterations to synchronize their weights.

Additionally, numerous simulationswere performedwith synchronization of bigger
ANNs in scenarios with QBER = 3% and QBER = 1%. Figure 5 presents the
comparison of speed of TPMs synchronization depending on parameter K in two
scenarios: with random weights and with 97% synchronized weights at the beginning
of the TPMs synchronization process (both for N = 30). Figure 6 presents results for
bigger TPMs (N = 50) and allows differences between the synchronization of TPMs
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Fig. 3 Synchronization of TPMs with randomly chosen weights

Fig. 4 Synchronization of TPMs with 95% of synchronized weights at the beginning of the synchronization
process

with randomly chosen weights and TPMs with very similar weights (differences at
1%) to be compared.

All the presented scenarios confirm that initially synchronized TPMs require far
fewer iterations than artificial neural networks with randomly chosen weights. This
feature increases the level of security significantly. The proposed solution ismuchmore
secure than neural cryptography where TPMs are used to establish cryptographic keys
using random strings at the beginning of synchronization process.
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Fig. 5 Synchronization of TPMs with parameter N = 30 (L = 2, Hebbian learning algorithm)

Fig. 6 Synchronization of TPMs with parameter N = 50 (L = 2, Hebbian learning algorithm)

5.2 The efficiency of error correction based on TPMs

In order to compare the efficiency of the newTPM-based approachwith other error cor-
rection algorithms (BBBSS [13] and Cascade [14]), additional tests were performed.
Following recommendation [14], it was assumed that the block size for the BBBSS
algorithm should have 0.73

QBER bits. The blocks in the first pass of the Cascade algorithm
are of the same length. Tests were performed for different distributions of errors in
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Table 1 Comparison of the error correction algorithms

BBBSS Cascade TPM-based

Number of iterations (Key length = 500 bits, QBER = 5%) 213 181 120

Number of iterations (Key length = 600 bits, QBER = 3%) 189 150 98

the key. It was also assumed that both algorithms corrected all errors after four passes.
Verifying the efficiency of the tested algorithms, two different keys were chosen:

• key length = 500 bits with QBER = 5% and
• key length = 600 bits with QBER = 3%.

The results are presented in Table 1. The table contains the average number of itera-
tions for each tested error correction algorithm. In the case of BBBSS and Cascade
algorithms, the iteration means a parity check of a single block. The values for TPM-
based error correction come from Fig. 4 (TPM parameters: N = 25, K = 10, L = 2)
and Fig. 5 (TPM parameters: N = 30, K = 10, L = 2). For both key lengths tested,
the number of iterations is significantly lower for the new TPM-based approach than
the BBBSS and Cascade algorithms.

6 Conclusions

In this article, a new idea for the key reconciliationmethod in quantum cryptography is
presented. The proposal assumes that artificial neural networks (TPM machines) can
be used to correct errors occurring in the quantumchannel.Unlike neural cryptography,
the new solution is characterized by fast synchronization of TPM machines. Typical
values of QBER do not exceed a few percent; therefore, users need to correct only a
small part of the key. This means that the TPM machines used for this purpose are
close to synchronization and the learning process can finish quickly.

It was shown that the synchronization process in the new solution is much faster
than in the case where TPM weights are chosen randomly (the typical scenario of
neural cryptography). When the QBER value does not exceed a few percent, the
synchronization process is several times faster. This significantly increases the level
of security because of the problem with fast synchronization of eavesdropper’s TPMs
which must start from randomly generated weights. Therefore, the key reconciliation
based on the synchronization of TPMmachines can be a secure and efficient solution.
The presented solution can replace the error correction algorithms currently used in
the quantum key distribution process.

Although the risk of information leakage in the proposed solution is low, additional
mechanisms should be used to increase the level of security. First of all, the use of the
privacy amplification process after the error correction process is still recommended.
Also, users can consider dividing a long key into shorter strings and perform error
correction processes separately for each string. After that, the privacy amplification
process should be performed on the whole key (concatenated by all the strings). This
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approach decreases the risk of information leakage, even if an eavesdropper could get
some information about a selected string.

Although TPM machines are not used for error correction of digital information,
this approach can be used for key reconciliation in quantum cryptography.Mutual syn-
chronization of TPMs dynamically adjusts their weights; therefore, the final weights
are not predictable. Fortunately, this is a big advantage of key distribution, because a
secure key for cryptographic purposes should be a random string of bits. It is a very
special case when artificial neural networks can be used to correct errors.

Additionally, it is worthmentioning that error correction based on TPMs is resistant
to currently known attacks using a quantum computer. This feature is likely to be
particularly important in the near future.
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