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Abstract

Kauffman and Lomonaco (New J Phys 4:73.1-73.18, 2002. arXiv:quant-ph/0401090,
New J Phys 6:134.1-134.40, 2004) explored the idea of understanding quantum
entanglement (the non-local correlation of certain properties of particles) topolog-
ically by viewing unitary entangling operators as braiding operators. In Alagic et
al. (Yang—Baxter operators need quantum entanglement to distinguish knots, 2015.
arXiv:1507.05979v1), it is shown that entanglement is a necessary condition for form-
ing non-trivial invariants of knots from braid closures via solutions to the Yang—Baxter
equation. We show that the arguments used by Alagic et al. (2015) generalize to essen-
tially the same results for quantum invariant state summation models of knots. In one
case (the unoriented swap case) we give an example of a Yang—Baxter operator, and
associated quantum invariant, that can detect the Hopf link. Again this is analogous
to the results of Alagic et al. (2015). We also give a class of R matrices that are
entangling and are weak invariants of classical knots and links yet strong invariants
of virtual knots and links. We also give an example of an SU (2) representation of
the three-strand braid group that models the Jones polynomial for closures of three-
strand braids. This invariant is a quantum model for the Jones polynomial restricted to
three-strand braids, and it does not involve quantum entanglement. These relationships
between topological braiding and quantum entanglement can be used as a framework
for future work in understanding the properties of entangling gates in topological quan-
tum computing. The paper ends with a discussion of the Aravind hypothesis about the
direct relationship of knots and quantum entanglement and the ER = E P R hypothe-
sis about the relationship of quantum entanglement with the connectivity of space. We
describe how, given a background space and a quantum tensor network, to construct
a new topological space that welds the network and the background space together.
This construction embodies the principle that quantum entanglement and topological
connectivity are intimately related.
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1 Introduction

The purpose of this paper is to explore several phenomena that relate topology and
quantum entanglement. Braiding operators are topological objects, while unitary oper-
ators are primarily used in the realm of quantum mechanics. This paper establishes a
relationship between the two. We first examine a quantum gate R which is both entan-
gling and unitary. Such gates are useful for quantum computation. Second, we choose
an R that satisfies the Yang—Baxter equation and determine the relation between entan-
gling R’s and detecting knotting and linking. We show in this paper that non-entangling
Yang—Baxter operators cannot form non-trivial invariants of knots in the oriented and
unoriented cases of quantum state summations. There do exist cases where we can
construct non-trivial invariants of knots and links from unitary transformations where
the operators are not entangling. For example, the Jones polynomial [1,7-10] for three-
strand braids can be extracted from computations that involve only a single qubit [20].
See Sect. 5 of the present paper.

Section 2 of this paper explicates the relationship between unitary operators and
braiding operators, while also providing a brief introduction to the theory of quantum
link invariants. Section 3 shows that the results of [2] generalize to unoriented quantum
invariant state summations in the so-called product case. In the swap case, considered
in [2], the Markov trace method for constructing the proposed link invariant does not
generalize to a quantum summation of the kind we consider, but we nevertheless give
an example of a Yang—Baxter operator in this case that can detect the Hopf link. This
lack of correspondence is interesting in its own right and is discussed in this section.
Section 4 shows that non-trivial invariants with non-entangling Yang—Baxter operators
cannot be constructed in the oriented case. Section 5 describes how the Jones poly-
nomial can still arise in systems that lack quantum entanglement. Section 6 describes
how unitary R matrix solutions to the bracket state summation are unentangling. Sec-
tion 7 establishes a potential relationship between quantum entanglement and virtual
knots and links. Section 8 is wider discussion of the relationship between topology
and entanglement. We discuss the Aravind hypothesis that suggests that knots and
links themselves may be connected more directly with quantum entanglement, and
we discuss the ER = E P R hypothesis of Leonard Susskind and his collaborators that
suggests that the connectivity of space itself is directly related to quantum entangle-
ment. We illustrate these ideas of connectivity by showing how the tensor networks for
entangled states (in the sense of the networks used in the present paper) can be used
to both indicate this new connectivity and can be welded to the given space by adding
points for the entangled states and new neighborhoods to extend the topology. We
describe how, given a background space and a quantum tensor network, to construct a
new topological space that welds the network and the background space together. This
part of the paper is intended to be brief and will be expanded further in subsequent
work. Finally, Sect. 9 concludes the paper with a discussion of the ideas and concepts
that have arisen during the course of this research. “Appendix” proves an important
lemma for our analysis of link invariants in the earlier parts of the paper.
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Fig.1 The n-stranded braiding operators

Fig.2 Two-strand braid inverses

2 Characteristics of unitary operators and the Artin braid group

We begin by describing the Artin braid group [6]. Figure 1 shows the elements of this
group. An n-stranded braid is a collection of n strings extending from one row of n
points to another row of n points, with each cross section of the braid consisting of n
points. The n-strand braid group B,, is generated by o7, . .., 0,1 where o; is a twist of
the i and i 4 1 strands as shown in Fig. 1. The relations on these generators are given by
oi0j = 0ojo; for |i — j| > 1and 0;0;10; = 0;y10;0;41 fori =1,...,n — 2. Braid
multiplication is defined by attaching the initial points of one braid to the end points
of the other. Under topological equivalence, this multiplication operation gives the
Artin braid group B,, for n-stranded braids. Figure 2 shows two 2-strand braids and a
respective braid multiplication between them that demonstrates multiplicative inverse.

We can study quantum entanglement and topological quantum information by
examining unitary representations of the Artin braid group. In such a representation
each braid is mapped to a unitary operator. Given such a representation, we can exam-
ine the entangling capacity of the braiding operators. That is, we can calculate whether
they can take unentangled states to entangled states. It is also possible to use such a
braiding representation to create topological invariants of knots, links and braids. Thus
one can, in principle, compare the power of such a representation to detect knots and
links with the quantum entangling capacity of the operators in the representation.

Consider representations of the braid group such that for a single twist, as in the
lower half of Fig. 2, there is an associated operator

R:VQV->VQV.

In the above operator, V is a complex vector space. (In this case we take V' to be two
dimensional so that it can hold a single qubit of information. In general, the restriction
is not necessary.) The two input and two output lines in the braid (see R in Fig. 9)
are representative of the fact that the operator R is defined on the tensor product of
complex vector spaces. Thus, the top endpoints of R as shown in Fig. 9 represent
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Fig.3 The Yang—Baxter equation

V @ V as the domain of R, and the bottom endpoints of R represent V ® V as the
range of R. The diagram in Fig. 3 shows mappings of V® V ® V to itself. This relation
is the Yang—Baxter equation [5]. Algebraically with / representing the identity on V,
the equation reads as follows:

RINDUBSR(RII =UQR)(RQI)(I QR).

This equation represents the fundamental topological relation in the Artin braid group.
If R satisfies the Yang—Baxter equation and is invertible, then we can define a repre-
sentation 7 of the braid group by

(o) =1®---QIQRKI---®I,

where R occupies the k and k + 1 places in the above tensor product. If R is unitary,
then this is a unitary representation of the braid group. Since the basic operator R
operates on V ® V, a tensor product of qubit spaces, it is possible to measure whether
it is an entangling operator. In previous work [16] we found that there appears to be
a relationship between such entangling capacity and the ability to use R to produce a
non-trivial invariant of knots and links. Alagic et al. [2] proved, using Markov trace
models [6] for link invariants associated with braids, that if the operator R is not an
entangling operator, then the corresponding knot invariants are trivial. In this paper,
we corroborate their results for state sum models (defined on general link diagrams).

It should be remarked that what we have above called Markov trace models for
link invariants are based on a fundamental theorem of Alexander [3] that states that
any knot or link has a representation as the closure of a braid. A braid, as depicted
above, can be closed by attaching the upper strands to the lower strands by a parallel
bundle of non-crossing strands that is positioned next to the given braid. The result of
the closure is that the diagram of the closed braid has the appearance of a bundle of
strands that proceeds circularly around an axis perpendicular to the plane. Alexander
shows how to isotope any knot of link into such a form. It is then the case that a given
link can be obtained as the closure of different braids. The Markov theorem [6] gives
an equivalence relation on braids so that two braids close to the same knot or link if
and only if they are Markov equivalent. By constructing functions on braids that are
invariant under the generating moves for Markov equivalence, one produces Markov
trace invariants of knots and links. Such invariants can be constructed from solutions
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Fig.4 The quantum link
invariant-based evaluation of a
circle in spacetime

= abMab

R to the Yang—Baxter equation and some extra information. This approach is used by
Alagic et al. [2].

In the next section, we describe quantum link invariants and prove theorems show-
ing their limitations when built with non-entangling solutions to the Yang—Baxter
equation. The class of quantum link invariant state sum models is very closely related
to Markov trace models, but one does not need to transform the knot or link to a closed
braid form.

2.1 Quantum Link Invariants

We now describe how invariants of knots and links can be constructed by arranging
knots and links with respect to a given direction in the plane denoted as time. Consider
the circle in a spacetime plane with time on the vertical axis and space on the horizontal
axis. This is shown in Fig. 4. The circle, under this paradigm, represents a vacuum
to vacuum process that depicts the creation of two particles and their subsequent
annihilation. The two parts of this process are represented by a creation cup (the
bottom half of the circle) and an annihilation cap (the top half of the circle). We can
then consider the amplitude of this process given by (cap|cup). Since the diagram
for the creation of the two particles ends in two separate points, it is natural to take
a vector space of the form V ® V as the target for the bra and as the domain of the
ket. We imagine at least one particle property being cataloged by each factor of the
tensor. We use this physical metaphor to describe the model. It is understood that the
model applies to mathematical or topological situations where time is just a convenient
parameter and particles are just matrix indices. Knot and link invariants built in this
framework are called quantum link invariants because the numerical value of the
invariant can be interpreted as a (generalized) amplitude for the vacuum to vacuum
process represented by the link diagram. We give the details of this formulation below.

We shall call a link diagram arranged with respect to a direction in time a Morse
diagram. Note that, generically, in a Morse diagram, a horizontal line in the plane
intersects the diagram transversely in a finite collection of points. Special points or
critical points consist in maxima and minima in the diagram, and the places where
a crossing appears in the diagram. We can transform any link diagram into a Morse
diagram by an isotopy of the plane, and so all knots and links are represented by Morse
diagrams. Before going further with Morse diagrams, we first recall that two diagrams,
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Fig.5 Classical Reidemeister RN
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regarded as projections of knots or links in three space, are equivalent by Reidemeister
moves as shown in Fig. 5. This result, due to Reidemeister et al. [29], implies that
the equivalence classes of diagrams generated by the Reidemeister moves classify the
topological types of knots and links in three-dimensional space. In order to work with
Morse diagrams, we use a reformulation of the Reidemeister theorem that utilizes the
move types shown in Fig. 6. The reformulation of the Reidemeister theorem [24,30-
32] states that two Morse link diagrams are equivalent via the Morse moves of Fig. 6 if
and only if they are regularly isotopic. A good reference for the details of this theorem
based on Reidemeister’s original approach can be found in the paper by Yetter [32].
Regular isotopy is the equivalence relation on diagrams generated by the second and
third Reidemeister moves. Thus Morse diagrams and their moves give a complete
formalism for the regular isotopy classification of standard knot and link diagrams.
Regular isotopy invariance is often the most convenient method for studying knots and
links. Invariants of regular isotopy can often be normalized to produce invariants of
ambient isotopy (the equivalence relation generated by all three Reidemeister moves).
In the following we shall detail how to use solutions of the Yang—Baxter equation to
produce invariants of regular isotopy for Morse diagrams.

The strategy for this method to produce invariants is illustrated in Figs. 7 and 8. In
the following we explain the use of Morse diagrams for producing link invariants. The
original approach, due to Reshetikhin and Turaev [30,31], is formulated using the ori-
ented tangle category. Our approach describes the analogous structure for unoriented
diagrams and can be used as well for oriented diagrams. We divide the Morse diagram
into parts that are the shape of a maxima, a minima or a crossing. We associate matrices
M to minima, M, to maxima and Rfé’ to crossings. Each choice of indices for any
matrix gives a scalar quantity for the corresponding matrix entry. The diagram yields,
as in Fig. 8, a product of these scalars with every index repeated twice. One then takes
the summation of these products over all choices of indices. The resulting state summa-
tion Zg is the quantum link amplitude. In our physical metaphor, this is the quantum
amplitude for the vacuum to vacuum process that involves the creation of particles via
minima, the interaction of particles at the crossings and annihilations of particles at
the maxima. The matrices must satisfy a collection of equations that correspond to the
moves on Morse diagrams. We detail these equations and the correspondences below.

All crossings in a link diagram are represented by transversal intersections. Any
non-self-intersecting differentiable curve (for embedded curves and for transversely
intersecting immersed curves) can be rigidly rotated until it is in general position with
respect to the vertical. A curve without intersections is then seen to decompose into an
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Fig.6 Regular isotopy with
respect to a vertical direction

Fig.7 Jordan curve amplitude

Fig.8 Amplitude for a Morse
diagram
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Fig.9 Cups, caps and crossings TN % y

Cap Cup R R

interconnection of minima and maxima. We can evaluate an amplitude for any curve
in this general position with respect to a vertical direction. Any simple closed curve in
the plane is isotopic to a circle, by the Jordan curve theorem. If these are topological
amplitudes, then the value for any simple closed curve should be equal to the amplitude
of the circle. In order to find conditions for the creation and annihilation operators
that ensure amplitudes that respect topological equivalence, isotopes of simple closed
curves are generated by the cancelation of adjacent maxima and minima. Specifically,
leteq, es, ..., e, beabasisfor V. Let ey, = e, ® e denote the elements of the tensor
basis for V ® V. Then, there are matrices M, and M?? such that

leup)(1) =Y M“eq,

with the summation taken over all values of a and b from 1 to n. Similarly, (cap| is
described by

(capl(eap) = Map.

Thus the amplitude for the circle is

(capleup)(1) = (cap| Y MPeay =Y " M®(capl(eas) = Y  M™ Mqp.

In general, the value of the amplitude on a simple closed curve is obtained by
translating it into an “abstract tensor expression” using M*” and M,;, and then sum-
ming over the products for all cases of repeated indices. Note that here the value “1”
corresponds to the vacuum. For example in Fig. 7 we write down a more complex
amplitude for a Jordan curve in the lower part of the figure. We also illustrate a topo-
logical relation on the matrices that will ensure that this evaluation is the same as the
circle evaluation above. This topological relation is just that the matrices M*” and
M 4 are inverses in the sense that

Y MuM? =35,
i

where 83 denotes the identity matrix. This equation is illustrated diagrammatically in
Fig. 7.

One of our simplest choices is to take a 2 x 2 matrix M such that M 2 — I, where
I is the identity matrix. Then the entries of M can be used for both the cup and the
cap. The value for a loop is then equal to the sum of the squares of the entries of M:

(cap|cup) = ZMabMab = ZMabMab = Z Mgy,
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Any knot or link can be represented by a picture that is configured with respect
to a vertical direction in the plane. The picture decomposes into minima (creations),
maxima (annihilations) and crossings of the two types shown in Figs. 8 and 9. Here
the knots and links are unoriented. Any knot or link can be written as a composition of
these fragments, and consequently a choice of such mappings determines an amplitude
for knots and links. In order for such an amplitude to be topological (i.e., an invariant of
regular isotopy of the equivalence relation generated by the second and third classical
Reidemeister moves) we want it to be invariant under a list of local moves as shown
in Figs. 10, 11, 12 and 13.

We now give an explanation of the algebraic and topological equations shown in
these figures. Figure 10 is the cancelation of maxima and minima. Figure 11 cor-
responds to the second Reidemeister move. Figure 12 is the Yang—Baxter equation.
Figure 13 demonstrates that a line can move across a minimum. (Similar equations
can be formulated for a line moving across a maximum.) In each figure we have given
the corresponding equation for the cup, cap and crossing matrix elements. If these
equations are taken purely abstractly, then they indicate a necessary and sufficient
condition for a state sum of this type to be an invariant of regular isotopy. In order to
produce an invariant, it is sufficient that the matrices satisfy these conditions. Such an
invariant is not necessarily a complete invariant of regular isotopy, and to this date no
one has produced such a complete invariant other than the formalism itself.

Fig.10 M, M = o8 b
b
i =
a
a
Fig. 11 R/ R, = 823) a b a b
i J
c d c d
; b pi€ pik _
Fig. 12 .Rf’j R{gRl = a b ¢ a
be pal pki
Rj;Rekalg /

®
~
Q

®
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In the case of the Jones polynomial, we have all the algebra present to make the
model. It is easiest to indicate the model for the bracket polynomial as given in [13]:
let cup and cap be given by the 2 x 2 matrix M, described above so that M;; = M'/.
Let R and R be given by the equations

R = AMPM.q + A715285,
R = AT M Mg + AS2S).
In general, the inverse of a matrix R will be denoted by R throughout the discussion
in the remainder of the paper.

The bracket is normalized so that the value of a circle is — A%> — A~2. In this specific
case, we have the following matrix for M:

0 A
Mz[—iA—l 0]

This definition of the R matrices exactly parallels the diagrammatic expansion of the
bracket, and it is not hard to see, by either algebra or diagrams, that all the conditions
of the model are met. Thus, this R satisfies the Yang—Baxter equation. Other solutions
to the Yang—Baxter equation give invariants distinct from the Jones polynomial.

2.2 Entanglement

A unitary linear mapping G : VQV — V ®V where V is a two-dimensional complex
vector space and G is some operator is said to be entangling if there is a vector

laf) =) ®[B) e VRV

such that G|apB) is not decomposable as a tensor product of two qubits. Under these
circumstances, one says that G|ag) is entangled.

Example 2.1 A two-qubit pure state
|¢) = al00) + b|01) + ¢|10) 4 4d|11)

is entangled exactly when (ad — bc) # 0 as proved in [16]. It is easy to use this fact
to check when a specific matrix is, or is not, entangling.

@ Springer



Topological aspects of quantum entanglement Page 110f36 76

3 Unoriented state models given by non-entangling operators

In [2], the authors made use of the following theorem to characterize non-entangling
operators.

Theorem 3.1 Let V be a finite-dimensional complex vector space, and M € GL(V ®
V) be a non-entangling operator. Then there exist A, B € GL(V) such that either
M=ARBorM=(AQ® B)oS, where S(x®y) =y x.

The authors in [2] note that non-entangling operators are the invertible elements of
End(V ® V) which map product states to product states. The proof of this theorem is
given in [2]. We call the two cases of this theorem the product case for M = A ® B
and the swap case for M = (A ® B) o S. In the following, we discuss state summation
models for link invariants with respect to the two cases (Fig. 14).

3.1 The product case

We now examine state summation models constructed given that R = F ® G as shown
in Fig. 15. The goal is to show that when we decompose the R matrix in this fashion
the resulting state summation leads to a trivial invariant. In order to accomplish this
aim, we assume that R has the form given above, and analyze the effect that this must
have on the cup and cap evaluations. This means that we do not actually write cup
and cap matrices in doing the analysis. We deduce the form of the invariant from the
given conditions and show that it must be a trivial invariant. Thus, we go back to the
basic diagrammatic restrictions that are imposed in Figs. 10, 11, 12, 13 and deduce
conditions that are needed to produce an invariant. This same method of analysis is
used throughout the rest of the paper.

Our methods are based on the state summation models for knots and links described
in [13]. In the arguments given below, we assume that a state summation model is given,
using this R-matrix, and we deduce enough aspects of its structure to conclude that it
is a trivial invariant.

Fig. 14 This decomposition of
the Yang—Baxter equation Fe Ge oI o (3
implies that

F?=xF,G? =1G.

o oG = Fe (Ge

Fe G e oI o (3
Fig. 15 Topological relations for
the product case. R similarly
decomposes to F and G in the R = Jal G

same way /
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From the Yang—Baxter equation as shown in Fig. 14, we can deduce the fact that
F2 = xF and G? = tG. As F and G are invertible, then F = xI and G = ¢, where
I is the identity. Therefore, R = sI where s = xt. This fact is also demonstrated in
[2]. We now conclude that R = s/ and R = 51, where 5 = s~ L. The relations are

(X =5l
(X0 =l

We use the following lemmas to construct an invariant from the state summation given
by the above relations.

Lemma 3.2 ( H )= 32<x>~
Proof Note that the relation
K) = (XD

is independent of the particular choice of cup or cap matrices. This is analogous
to twisting R. By applying the smoothings associated to R and R, we arrive at the
following:

(1) =s(nY),
sy =s(%),
(1) =s*(X).

Corollary 3.3 (O)=5*(3)

2
Corollary 3.4 (00) = s7(C0).

Setting the value of the circle equal to 8, we have that s> = 1 and s> = §. We now
arrive at the fact that s* = 1.

Lemma 3.5 (The second Reidemeister move) Invariance of the state summation under
the second Reidemeister move follows from the formal properties we have given so

far.

Proof By applying our smoothing to the following diagram and then using Lemma
3.3 we get

() =R =00.
]

Lemma 3.6 (The third Reidemeister move) Invariance of the state summation under
the third Reidemeister move follows from the formal properties we have given so far.
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Proof The third Reidemeister move immediately follows by replacing one crossing
by a smoothing as shown just before Lemma 3.2, and then using Lemma 3.5. O

Lemma 3.7 (The first Reidemeister move) The state sum multiplies by s for positive
curls and by s for negative curls.

Proof Since the relations are

we can apply them to the curls.

(o) = s(10) = 58(>) = s*(D) = 5(>).

The other relation follows in the same fashion. O

Theorem 3.8 The quantum state summation given by R = F ® G is a trivial invariant
of unoriented knots.

Proof In order to get an ambient isotopy invariant fx for knots, we would need to
compensate for the extra factors that arise from performing the first Reidemeister
move. We accomplish this via writhe normalization as in [13]. For a knot K we define
fx by the equation

fr =sT"ENK).

In order to use this formula, orient the knot diagram and then smooth it in an oriented
way at every crossings. The result of this smoothing is the collection of Seifert circles
for the diagram. Let SC (K) denote the number of Seifert circles in K. Using the results
above including the writhe compensation it is easy to see that each crossing contributes
§2587() where sgn(c) denotes the sign of the crossing. The factor of 2 occurs because
both sign of crossing and smoothing of crossing each contribute s°¢"(¢). From this it
follows that

fK — S—Zwr(K)sSC(K) — (S—wr(K)—&-SC(K)-

The lemma in “Appendix” to this paper shows that
—wr(K)+ SC(K)=1 (mod 2).

Therefore, since §2 = 1, we conclude that fx = & for all knots K. This completes
the proof of the theorem (Fig. 16). O
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Fig. 16 In braid closures the
enhancement operator 4 must
correspond to a cup and a cap ’ ’

3.2 The Swap Case

In Fig. 17 we show the form of the braiding operator for the unoriented swap case.
We begin this section by analyzing the state sum models for operators of this form.
For an unoriented knot or link diagram K in Morse form, we will let the invariant of
regular isotopy associated with this braiding operator be denoted by Invar(K).

Theorem The state sum model Invar (K) for K in the unoriented swap case produces
only trivial invariants for knots (links of one component).

Proof First note that via Fig. 18 we have that the Yang—Baxter equation for R implies
that FG = GF in the swap case where F and G appear in R as in Fig. 17. Then
from Fig. 19 we conclude that F = F and G = G so that F> = 1 = G. Figure 19
shows that we can slide F' and G over maxima and minima in the diagram leaving
them unchanged. This means that in a knot diagram we can collect all algebra on a
diagram as a single product along a given arc. Since the number of F’s equals the
number of crossings, and the number of G’s equals the number of crossings, we have
that the algebraic expression can be written in the form F”"G" where n is the number
of crossings in the knot diagram. Since F2 = G> = 1, we can take the exponent 7
modulo two. We also know that § = n + 1 ( mod 2) where S denotes the number of
Seifert circuits in the knot diagram. This follows from the lemma in “Appendix” to this
paper. Furthermore, the Whitney degree of the underlying plane curve of the diagram
is congruent modulo two to S [11]. It follows that F"G" = FG when the Whitney
degree is even and F"G" = I when the Whitney degree is odd. Taking into account
the fact that every Reidemeister type one move contributes 1 to the Whitney degree
and contributes F'G to the algebraic part of the evaluation, we see that the evaluation
of any knot diagram is the same as the evaluation of a corresponding unknot diagram
with the same writhe and Whitney degree. This completes the proof that the knot
invariant cannot distinguish any knot from the unknot. O

LR

Fig. 17 Topological relations for the swap case
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Fig. 18 Third Reidemeister
move implies FG = GF

Invariance under third Reidemeister move
requires FG = GF in the swap case.

Fig. 19 Swi implies
I;% 19 Ggliglmove implies M ) y

It remains to discuss the possibility that the invariant could detect a link. For the
purpose of this discussion we shall take the cup and cap operators for this model to
be identity operators. That is, we shall assume that M, = 8,5 and M ab — §ab where
Sap = 8%¢ = 1if and only ifa = b and é, = 89 = 0 when a # b. From Fig. 20 we
see that if the evaluation of a loop of Whitney degree one, labeled with an algebraic
expression «, is denoted by Tr(«), then the evaluation of the Hopf link as shown
in this figure is T7r(FG)Tr(FG) = Tr(FG)?. The corresponding evaluation of an
unlink is 77 (1)%. We will now give an explicit example for F and G where these two
evaluations differ, showing that an invariant in the unoriented swap case can detect
linking even though the Yang—Baxter operator is not entangling. Consider the matrices
F and G shown below.

001 100 001
F=]1010(,6=({0-10]|,FG=|0-10
100 001 1 00

It is easy to verify that F> = G2 = I and that FG = G F. The state sum model
will use Tr(«) = Trace(o) where Trace denotes standard matrix trace. This gives a
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Fig. 20 Invariant of the Hopf
link

Invar(L) =
Tr(FG)Tr(FG)

Fig.21 Behavior under a Curl

consistent state model. Note that both F and G are symmetric matrices and that this
corresponds to the invariance of the slide over maxima and minima in Fig. 19. We then
have (since these are 3 x 3 matrices) that Tr(I) = 3, while Tr(FG) = — 1. Thus,
(Tr(FG))? = 1, while (Tr(1))? = 9, and so this invariant detects the Hopf link.

Remark Note that the result of doing a first Reidemeister move for the invariant under
discussion is to multiply the algebra element on the component on which the move
occurs by F'G. See Fig. 21. Since the algebra on a given component is either F'G or
the identity /, we see that the result of a first Reidemeister move is to switch the value
of the invariant on this component from 77(FG) = — 1 to Tr(I) = 3 or from 3 to
— 1. The simplest way to use the invariant as an invariant of ambient isotopy is to use
the fact: two links with the same Whitney degree and writhe (for each component) are
regularly isotopic if and only if they are ambient isotopic. See [12]. In this way we can
prepare diagrams for comparison. This is how we know that the Hopf link as shown in
Fig. 20 is shown to be non-trivial by this invariant. The two components of the Hopf
link diagram used in the calculation give results identical to two disjoint circles for
the unlink.

We have the following result:

Theorem The state sum model Invar(K) for links K of two components can detect
the modulo two linking number of any link of two components and is non-trivial for
links of odd linking number and trivial for links of even linking number.

Proof The proof follows from the discussion above and an easy analysis of the products
of algebra elements that occur on the link components. O
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Remark We underline the fact that we have constructed a state sum invariant of knots
and links, based on a non-entangling Yang—Baxter operator ( of swap type) that can
detect the Hopf link. This shows that the state sum models in this swap case have
a similar relationship with linking and quantum entanglement as do the enhanced
Yang—Baxter operators using Markov trace as in Section 3 of [2], where an example
of the detection of the Hopf link is given in a different way. The state sum that we have
described here does not fit into the braiding form with enhanced Yang—Baxter operator
that is used in [2], but our state sum is indeed based on a Yang—Baxter operator. The
examples in both cases show that non-entangling Yang—Baxter operators can detect
non-trivial topological linking.

We now compare the methods of [2] and our methods in this swap case. We rely
heavily on quantum link invariants in this part of the paper. The decomposition of an
R matrix in the swap S o (F ® G) is represented topologically for both R and R in
Fig. 17.

The proofin [2] relies on the use of enhanced Yang—Baxter operators defined below.

Definition 3.9 Let V be a finite-dimensional complex Hilbert space, R € GL(V Q V)
a Yang—Baxter operator, and u € End(V). If R commutes with © ® n and

TrR - n®@uw =TrnR n®w=u

then we say that the pair R = (R, ) is an enhanced Yang—Baxter operator. In that
case, given any braid b we define

Ir(b) = TripS(®) - u®".

For a braid closure, the enhancement operator is analogous to a product of cup
and cap matrices M?" and M,; taking b to be a point on the strand at the top of the
braid, a to be the corresponding point on the strand at the bottom of the braid, and i
to be the point in the middle dividing the cup and the cap. This analogy is shown in
Fig. 16. Note also that MY = M,; and M“ is the inverse of M,y. Therefore, note

that u = MY My; = (MM 7). Given M = (M“?) isacup and N = (M) is a cap
(they are inverses), in general we have that

1 —
M:[“b}, M—1=N=_[d b]
cd Al —c a
with A = ad — bc as M and N must be inverses of one another. Thus
1lab d —c 1 [ad —b* —ac+ab
_ T —_ -
w=(MN )“”_A[cd“—b a ] A[cd—bd—cz—i-ad]'

In [2], the authors found the following invertible p for constructing an invariant.
We will show that this u cannot be obtained by the cup and cap construction. (It is
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also the case that in [2] non-invertible u are considered and shown to be unnecessary,
but that is not the issue here.)
|1 o
F=lo-1]

If we try to set our derivation of x from cup and cap operators equal to theirs, we then
get matrix solutions that have a determinant of zero.

ad — b* = A,
—ac+ab =0,
cd — bd =0,
2 —ad = A.

Solving the above system of equations implies that d = %, which makes the deter-
minant of the matrix zero. Therefore, in general we cannot extend the models used in
[2] to quantum link invariants. This shows that we cannot always construct an anal-
ogous state summation model for the unoriented swap case. Nevertheless, we have
shown that all properties relative to non-entangling Yang—Baxter operators happen in
the same way in both of these categories of invariants.

Remark 3.10 We believe this is the first time an explicit difference has been shown
between the Markov trace and state summation methods of constructing invariants.

4 Oriented state models given by non-entangling operators

We now express the above arguments in the oriented case for quantum invariant state
summations. The results of [2] generalize easily in this case. See [14] for an account of
oriented state sum models for link invariants, based on solutions to the Yang—Baxter
equation. These models are essentially the same as the unoriented models, but have
orientations associated with the crossings, cups and caps. We begin with the simple
product decomposition of R.

4.1 The product case

Theorem 4.1 The state summation model given by R = F ® G is trivial for oriented
knots.

Proof For the oriented product case, we begin with the following equations, as given
in Sect. 3:

(X)) =s(11),
2y =3(11).
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We find the value of the loop by examining how the model behaves on the oriented
curls. We apply our oriented smoothing relations to determine what factors arise from
each curl:

(Q)=3(Q) =36(—)

(Q) =5(Q) = s6(),

taking § to be the value of the oriented loop. In order to satisfy the relation

Ty _ _
<9—‘o> = (") we need that (38)(s8) = 8% = 1. Thus, the absolute value of an
oriented loop is equal to one. To construct a model that is invariant under Reidemeis-
ter I we must multiply by a writhe corrective factor, so our final invariant has the
form

fie = (s8) 7" E)(K),

as s4 is the value that comes from using our oriented smoothing relations on a positive
writhe looped strand.

Note that if K is a given diagram, then we have an explicit formula for (K) via
smoothing in an oriented way at each crossing. The result of this smoothing is the set
of Seifert circles for the diagram weighted by s or s at each smoothing site. Thus, the
evaluation is given by the formula

(K> — Sw(K)SScfl .

Substituting,

fk — (S(S)_W(K)(K) — S_w(K)Sw(K)S_w(K)SSC_l — SSC—w(K)—l.

Here, SC stands for the number of Seifert circles produced from an oriented link
diagram. If § = 1, then the invariant is trivial. We now show that the invariant is still
trivial for —1 regardless of the number of Seifert circles or the writhe. To do this we
show that the number of Seifert circles minus the writhe of the knot is always odd.
Notice that the unknot has one Seifert circle and no writhe, sO fynknor = si=0-1 —
89 = 1. Similarly, note that the trefoil knot with w(K) = +3 produces two Seifert
circles, 80 firefoil = 82731 = §=2 — 4 1. The only question that concerns us is to
prove the congruence

SC—w(K)—1=0 (mod 2),

holds for all cases. This is implied by the lemma in “Appendix” to this paper.
Therefore, SC — w(K) — 1 is always even and

fk — 85C—w(K)—l — (Zl: I)SC—U)(K)—I — 1’
thus the invariant is trivial. O
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4.2 The swap case

Theorem 4.2 The state summation model given by R = (F ® G) o S is trivial for
oriented knots.

Proof We use the relationship given in Figs. 17 and 18 except with orientation going
upward such that the arrows are on the top endpoints. By using this decomposition of
the Yang—Baxter equation, we arrive at the fact that FG = GF. (See Fig. 18.) View
Fig. 22 and note that it follows that algebra elements can be moved along the lines of
the diagram and collected on a single arc, as we saw in the previous unoriented swap
case. (We have indicated one case of a number of cases that are verified in the same
way.) We also know that FG = G F and so we can interpret this freedom by saying
that for each crossing we can remove either FG or FG and collect it directly to an
algebra product that we accumulate from the crossing of the diagram. We can remove

lal
them from the diagram itself and write thit<‘/\> =FG('R ). For each R we then
have an F'G, and for each R we have an F'G. Note that an oriented R has a writhe of
+1. Therefore, we have that

(Q)=Fa(~).

For each positive writhe loop we output a FG. Our invariant has the form fx =
(FG)*®)(FG)N=F where P is the number of oriented R crossings and N is the
number of oriented R crossings. As all oriented R and R crossings have writhe +1
and writhe —1, respectively, this invariant becomes trivial as both (F G)w(K) and
(FG)N—P cancel each other out. o

5 The Jones Polynomial and Quantum Computation

We now review [20] which gives a local unitary representation that can be used to
compute the Jones polynomial [1,7-10] for closures of 3 braids. The quantum com-

Fig. 22 Oriented swing move
implies algebraic moveability [\/\ 5 Y\/
F —_
G =
F G
F G

A
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putation devolves into finding the trace of a unitary transformation. The result of this
construction is a quantum computational model for the Jones polynomial evaluation
on a significant class of knots and links that is not involved with quantum entanglement
since the unitary transformations are in SU (2). This result is very interesting to us,
even though it is a special case. We do not know how to obtain the Jones polynomial
for all knots and links in this way, avoiding entangling operators. The model given
here can be extended to the well-known Fibonacci model [17] for quantum computing,
but then the transformations are in other unitary groups, and it remains to analyze the
full role of quantum entanglement in these generalizations.

The idea behind this construction depends upon the algebra generated by two single-
qubit density matrices (ket-bras). Let |v) and |w) be two qubits in V, a complex vector
space of dimension two over the complex numbers. Let P = |v)(v| and Q = |w)(w|
be the corresponding ket-bras. Note that as

P = |*P,

0% = |w|*Q,
PQP = |(v|w)|*P,
QPQ = |(v|w)|*Q.

P and Q generate a representation of the Temperley—Lieb algebra. One can adjust
parameters to make a representation of the 3-strand braid group in the form

s1—>rP+sl,
sp) > tQ +ul,

where [ is the identity mapping on V and r, s, ¢, u are suitably chosen scalars. In the
following, we use this method to adjust such a representation so that it is unitary. Note
also that this is a local unitary representation of B3 to U(2). We leave it as an exercise
for the reader to verify that it fits into the general classification of such representations
as given in [18].

The representation depends on two symmetric but non-unitary matrices Uy and Us
with

Ui = [gg] = djuw) (ul,

i T
U = JI—d2 d—d-! =d|v)(vl,

where w = (1,0),and v = (d~', V1 —d—2), assuming the entries of v are real. Note
that U12 = dU; and U22 = dU;. Moreover, U1U,U; = U; and U,U U, = U;. This
is an example of a specific representation of the Temperley—Lieb algebra. The desired
representation of the Artin braid group is given on the two braid generators for the
3-strand braid group by the equations:
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D(s1) = Al + AUy,
D (s2) = Al + A~ U,

where I denotes the 2 x 2 identity matrix.

For any A withd = —A? — A~ these formulas define a representation of the braid
group. With A = ¢/?, we have d = — 2 cos(26). One finds a specific range of angles
6 in the following disjoint union of angular intervals

0 € [0, /6] U [r/3, 27/3] U [57/6, T /6] Ui [47/3, 57 /3] L [117/6, 27]

that give unitary representations of the 3-strand braid group. Thus, a specialization of
a more general representation of the braid group gives rise to a continuous family of
unitary representations of the braid group.

Note that the traces of these matrices are given by the formulas 7r(U;) = Tr(U,) =
d,while Tr(U1U,) = Tr(U,Uy) = 1.1If b is any braid, let 7 (b) denote the sum of the
exponents in the braid word that expresses b. For b a 3-strand braid, it follows that

o) = A"O1 + 1),

where [ is the 2 x 2 identity matrix and /7 (b) is a sum of products in the Temperley—
Lieb algebra involving Uy and U,. Since the Temperley—Lieb algebra in this dimension
is generated by I, Uy, Ua, U1 Uy and U, Uy, it follows that the value of the bracket
polynomial of the closure of the braid b, denoted (b), can be calculated directly from
the trace of this representation, except for the part involving the identity matrix. The
bracket polynomial evaluation depends upon the loop counts in the states of the clo-
sure of the braid, and these loop counts correspond to the traces of the non-identity
Temperley—Lieb algebra elements. Note that the closure of the 3-strand diagram for
the identity braid in B3 has bracket polynomial d2. The result is the equation

by = A'® g% + Tr(I1 (b)),

where b denotes the standard braid closure of b, and the sharp brackets denote the
bracket polynomial. Since the trace of the 2 x 2 identity matrix is 2, we see that

() = Tr(® (b)) + AIP@* - 2).

It follows from this calculation that the question of computing the bracket polyno-
mial for the closure of the 3-strand braid b is mathematically equivalent to the problem
of computing the trace of the unitary matrix @ (b). Therefore, we can define topologi-
cal invariants from quantum situations that lack any sort of entanglement at all as this
calculation depends solely on a single qubit.

By using the method we have described in this section, we show that there is indeed
a disparity between topological entanglement and entangling quantum gates. Once we
leave the Yang—Baxter formalism it is possible to construct strong topological invari-
ants from non-entangling quantum gates. This phenomenon needs further exploration,
particularly in regard to the Fibonacci model [17,21].
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6 Bracket quantum link invariants and quantum entanglement

Recall that our cup and cap matrices are given by the following matrix in the unoriented

case:
0 iA
M= [—iA‘l 0 }

Moreover, the bracket relation in [13] can be given in terms of quantum link invariants
as follows

R = AM® My + A7'5%85.

By substituting in our cup/cap matrix and the 2 x 2 identity matrix we can give an
explicit R as

ATt 0 00
R_| © ATl —A3A 0
0 A 00
0 0 o0A!

In order for R to be unitary, note that (A~' — A3)A~! = 0 or alternatively 1 = A*.
Therefore, choosing A = =i gives us a unitary, invertible matrix. However, given
these choices of A the matrix becomes unentangling as a matrix of the form

a000
0040
0c00
0005b

R =

is only entangling when ab # cd as shown in [16]. There is, therefore, no R matrix
solution to the bracket that can be an entangling operator.

7 Virtual knot theory and quantum entanglement

Take the matrix given below:

where A € S and R is unitary and a solution to the Yang—Baxter equation. We now
show that R is an entangling matrix. Take a decomposed state

[Y¥) = (x]0) + y|1)) ® (z]0) + w[1)) = xz|00) + yz|10) + xw|01) + yw|11).
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Now, we apply R to |/) to get
R|Y) = xzA|11) + yzAil [10) + xwA™! [01) + ywA|00).

From our definition of entanglement, we take the determinant of the resultant state

Ayw A" 'xw . 2 2
det[yzAl ZA ]—xyzw(A A7),

We must have that A = ¢/, which implies that

A2 _ A72 — eZi9 _ e*2i9
= cos(260) + i sin(20) — cos(26) + i sin(26)
= 2i sin(26),

which shows that sin(26) # 0. Therefore, there are a continuum of solutions such
that this given R matrix is entangling. In [15], R is shown to only detect the writhe
of classical knots; however, when R is applied to virtual knots it is a much stronger
invariant. Many of the arguments of this paper can be generalized to virtual knots.
Moreover, the relationship between physics and virtual knots has yet to be explored
in detail. For quantum computing, the virtual crossing can be modeled as a swap gate
(interchange qubits as in S|01) = |10)). Thus it is natural to use the virtual braid group
and its unitary representations for quantum computing. We will return to this subject
in a subsequent paper.

8 Topological entanglement and quantum entanglement

In this paper we have, so far, discussed topological entanglement and quantum entan-
glement by examining quantum operators that are solutions to the Yang—Baxter
equation. The operators R that we have considered are unitary solutions to the Yang—
Baxter equation that act on the tensor product of a single-qubit space V with itself.
Such an operator R : V. ® V. — V ® V can be an entangling operator in the quan-
tum sense. We have shown in this paper that such operators will produce non-trivial
invariants of knots and links (except in very special cases) only if they are quantum
entangling. This establishes a connection between the ability to detect topological
entanglement and entangled quantum states.

In this section of the paper we discuss more generally the theme of quantum entan-
glement and topological entanglement. We begin with the Aravind hypothesis [4]. The
Aravind hypothesis suggests that topological linking may be directly comparable to
quantum entanglement. We discuss the pros and cons of this hypothesis below. The
main work of this paper shows that there is a relationship between quantum entangling
operators and invariants of knots and links. The Aravind hypothesis suggests that there
may be a more direct relationship of topological and quantum entanglement.

We then discuss the relationship of space, spacetime and quantum entanglement
in the context of the hypothesis of Susskind and Malcedena [28]. Their ER = EPR
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hypothesis is based on the suggestion that the connectivity of spacetime is a phe-
nomenon of quantum entanglement. Susskind asserts that the entanglement of distant
particles is equivalent to the existence of an Einstein—Rosen bridge connecting them.
If this hypothesis is true, then there is indeed a topological underpinning for quantum
entanglement. Here we will make foundational comments on the £ER = E P R hypoth-
esis. In the discussion below we examine entanglement and teleportation in relation
to the construction of a space that is augmented by quantum states that are made into
part of theltopological connectedness of the new space. Since an entangled state such

as |8) = —2(|01) + [10)) is formulated without any background space, we point out

that it is possible graphically to form a new space from the given space or spacetime S
of the physics by attaching a corresponding quantum network to S. The new space S’
has connectivity related to the entanglement. This construction can then be considered
as a precursor to the spacetime with an Einstein—Rosen bridge connecting the sites of
the entangled particles.

8.1 The Aravind hypothesis

Link diagrams can be used as holders of information. Aravind [4] proposed that the
topological entanglement of a link should correspond to the quantum entanglement
of a state. Each link component would correspond to a tensor factor of the state.
Measurement of a link would be modeled by deleting one component of the link.
A key example is the Borromean rings. See Fig. 23. Deleting any component of the
Borromean rings yields a remaining pair of unlinked rings. The three Borromean rings
are entangled, but any two of them are unentangled. In this sense the Borromean rings
are analogous to the GHZ state |GHZ) = (1/«/5)(|000) + |111)). Measurement
in any factor of the GH Z yields an unentangled state. Aravind points out that this
property is basis dependent. Kauffman and Lomonaco pointed out [16] that there are
states whose entanglement after measurement is a matter of probability (via quantum
amplitudes). Consider for example the state

l¥) = [001) + |010) + [100).

Measurement in any coordinate yields probabilistically an entangled or an unentangled
state. For example

[¥) = 10)(101) + [10)) + [1)]00).

Fig. 23 Borromean rings

]
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so that projecting to |1) in the first coordinate yields an unentangled state, while
projecting to |0) yields an entangled state.

New ways to use link diagrams must be invented to map the properties of such
states. One direction is to consider appropriate notions of quantum knots so that one
can formulate superpositions of topological types as in [22]. But one needs to go
deeper in this consideration.

The relationship of topology and physics needs to be examined carefully. Topo-
logical properties of systems are properties that remain invariant under certain
transformations that are identified as “topological equivalences.” In making quantum
physical models, these equivalences should correspond to unitary transformations of
an appropriate Hilbert space. Accordingly, Kauffman and Lomonaco formulated a
model for quantum knots [23,25-27] that meets these requirements. A quantum knot
system represents the “quantum embodiment” of a closed knotted physical piece of
rope. A quantum knot is an element |K) lying in an appropriate Hilbert space H,,
as a state of this system. The quantum knot represents a state analogous to a knotted
closed piece of rope, that is, the particular spatial configuration of the knot tied in the
rope. Associated with a quantum knot system is a group of unitary transformations
Ay, called the ambient group, which represents all possible ways of moving the rope
around (without cutting the rope, and without letting the rope pass through itself).
Unlike a classical closed piece of rope, a quantum knot can exhibit non-classical
behavior, such as quantum superposition and quantum entanglement. The knot type
of a quantum knot |K) is the orbit of the quantum knot under the action of the ambi-
ent group A,. This leads to new questions connecting quantum computing and knot
theory.

8.2 Space, time, quantum networks and entanglement

Here is a summary for understanding quantum teleportation. Take

1
8) = —(|01 10
16) ﬁ(l ) +110))

as arepresentative entangled state. Regard |§) as representing the state of two particles
that we shall call L (left) and R (right) corresponding to §’s right and left tensor factors.
Measuring |§) results either in |01) or |10). If an observer measures the left particle and
sees 0, then an observer who will measure the right particle must see 1 and vice versa.
Nowhere in the quantum state |§) is there any information about the distance between
the particles L and R or any information about the relative times for measurements to
occur at the locales for these particles.

Note that the entangled state |§) is in the tensor product V & V where V is a qubit
space spanned by |0) and |1). A general element in V ® V has the form

|A) = a0l00) 4 ao1|01) + aio|10) + ai1[11),
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and can presented as a 2 X 2 matrix

apo a
A= 00 4ol )
ao ai

Thus the matrix for |8) is the identity matrix

-3

By the same token, a successful measurement on two tensor lines can be represented
in the dual basis spanned by elementary bras as

(M| = moo(00] 4 mo1 (01| + m1o(10[ + m 11 (11],

with corresponding matrix

_ |:m00 mo1 ]

~ Lmiomu |
Now consider Fig. 24 where we have indicated an initial qubit state |¢) tensored with
the entangled state |§). A successful measurement has been made on the first two
tensor lines. We assert that the state on the final tensor line is given by M|¢) where
this denotes the action of the matrix M of the measurement (M| on the vector |¢).
The reader will find the details of this calculation in [19]. This means that if Alice
is at the site of the left particle and performs the measurement (M|, then she knows
that Bob (at the site of the right particle) will have the quantum state M|¢). If the
matrix M is invertible and unitary, Alice can phone Bob and tell him to apply M~! to
the state that he has. The result will be that Bob will then have a perfect copy of the
original state |¢). This is the key to teleportation. Specific teleportation protocols use
an orthonormal measurement basis (for example the so-called Bell basis) such that all
the matrices of the basis elements are unitary. Then this teleportation protocol can be
applied whenever Alice measures, at her end, the two left tensor lines. It is as if the
wiggle in the line in Fig. 24 is pulled straight and the new straightened line represents
the transformation M. There is a geometry in the tensor diagrams for the teleportation
procedure. It is this geometry that we wish to pursue to understand the geometry and
topology of entanglement.

In Fig. 25 we illustrate the general case for a single-qubit teleportation. The entan-
gled state now has matrix E, not necessarily the identity, as the measurement has
matrix M. We then see from the figure that |1/’) = EM|v). The matrix E of an entan-
gled state is necessarily invertible, and so when E and M are unitary, our previous
description of the teleportation procedure goes over mutatis mutandis. Using indices,
the description of the state transformation is given by the equation

W = ' M;; E/*,
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Fig. 24 A teleportation scenario Ml o>

<M]

[N\

|6>
o>
Fig. 25 Teleportation tensors Iy'> M
<M i J K
IE> E
\
[y>
Ko wim. ek
ly'’> = EMly> W) = v'M;E

The important point to note about this index version of the equation is that it is an
exact translation of the structure of the tensor network given on the right part of the
figure. This tensor network is the detailed expression of the tensor diagram on the left
part of Fig. 25. This transformation from (y*) to ()% = v M;; EJ¥ can be described
by following the connectivity of the tensor network from Alice’s locale to Bob’s
locale. The successful measurement (M| completes the connection and transforms
the quantum information at |¢), located with Alice to |') = EM|y), located with
Bob. It is a transfer of quantum information, a transfer of quantum states. To obtain
observed information transfer one would need to control both measurement at Alice’s
end and corresponding measurement at Bob’s end. Nevertheless, the tensor network
for the entanglement can be viewed as a way to augment the simple space between
Alice and Bob. This extra connectivity between Alice and Bob resides in the entangled
state | E') that they share.

We formalize the idea that the tensor network for quantum entanglement can
augment the original physical space to create a new connectivity. Let S be the
given background space for the physical locations of observers. The locations of the
observers, for these locations, can be specified when the entangled quantum state is
distributed. Thus one may speak of two observers, one in San Francisco and the other
in New York. In our illustrations, the space will be taken to be one dimensional. This
can be generalized to spaces of any dimension. For each entangled state | E') with cor-
responding observers located at points L and R in the space S associate a new point E
and a new open neighborhood {L, E, R} for this new point E. Think of this new point
as a generic point on a graphical edge that connects the two points L and R. However,
we do not add a real line interval as is customary in the modeling of graphs. Rather
we add a new point to the given space S and give a neighborhood of that point. Let
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I—
y)

Fig.26 Augmented space

S
Space S.
Points L,Rin S.
EPR Tensor E.

|E >
L R
SI
E

New space S' with one more point E.
{L,E,R} is the new open neighborhood of
E.

S’ be the new space with topology generated by these new neighborhoods of points
corresponding to the entangled states and pairs of observers for them. We call §’ the
quantum tensor space associated with § and its quantum network. See Fig. 26 for an
illustration of this concept.

To construct the quantum tensor space, we introduce a topological structure that can
produce the special connection between L and R. Note that the new topology connects
L and R by the neighborhood of E that must contain both L and R. This produces
a (non-Hausdorff) topological connection between the two points. Note that the new
space has non-Hausdorff points for each entangled state. The neighborhood {L, E, R}
is a combinatorial topological analogue of an Einstein—Rosen bridge connecting L and
R. The analogy is important. An observer in the space S’ cannot move continuously
from L to E without invoking an open neighborhood of E and the least such neigh-
borhood contains R. Letting Alice be the observer at L and Bob the observer at R, we
can say that Alice and Bob can meet together at the connecting point E in the analogue
black hole. The point E is the analogue of the event horizon of an Einstein—Rosen
bridge between L and R. We will explore the analogies between connectivity in the
quantum tensor spaces and connectivity via Einstein—Rosen bridges in a later paper.
It is possible that for larger networks and states with many particles these precursors
to Einstein—Rosen bridges will approximate the bridges in the continuum spacetime.
For our purposes, we introduce this formalism to show how it is possible to weld a
combinatorial quantum tensor network to a given background space.

Figure 27 illustrates the procedure known as entanglement swapping. Locations A
and B are connected by a entangled state | E), and locations B and C are connected by
an entangled state |E’). By performing a measurement (M| at B we connect the two
entangled states and make a new entangled state that connects A with C. In the process,
the entanglement connection with B is lost. This example shows how the topology
of the quantum tensor space will change under the act of measurement. Just as the
quantum network undergoes graphical cut and rejoin operations under measurement,
the corresponding quantum space, made by the prescription above, will change its
connectivity properties. The actions on our simple spaces are easy to understand. In
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Fig. 27 Entanglement swap A B c

the case of the ER = E P R hypothesis it will be very interesting to see what is the
meaning of a procedure such as entanglement swapping.

The purpose of this section of the paper has been to show how topological con-
nectivity in the form of knots and in the form of spatially realized quantum networks
can be used to make new points of view about quantum entanglement. These points
of view shed new light on both the Aravind hypothesis and the Susskind ER = EPR
hypothesis. In our opinion the Susskind hypothesis is the deeper of the two and most
likely to lead to new physics. Nevertheless, the connections between knot theory and
the structure of quantum information are very strong and deserve further investigation.

9 Summary

We have shown that entanglement is a necessary condition for forming invariants from
R matrices from state summation models in the oriented case, while the arguments
used by [2] do not generalize to the unoriented case for state summation models.
We must highlight the fact that this appears to be the first time that the two methods
(combinatorial and enhanced Yang—Baxter operators) have been shown to differ. We
also have found that there is a potential relationship between virtual knots and quan-
tum entanglement that could elucidate more about the relationship between topology
and quantum entanglement. However, there exist quantum algorithms for forming
topological invariants of knots that rely on no entanglement at all, as in the quantum
algorithm described here for computing the Jones polynomial on three-strand braids,
which depends only on a single qubit. In conclusion, by studying the boundary between
topological and quantum entanglement we can construct a correspondence between
topological invariants and entangling R matrices that may have a significant impact on
the study of quantum computing. In the final section of the paper we have discussed
relations between the ideas of this paper and the entanglement hypotheses of Aravind
and the ER = EPR hypothesis of Susskind and his collaborators. In the light of the
latter hypothesis we have shown how to augment a space to a new space that contains
a topological version of the tensor networks describing its quantum structure.
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Appendix

Recall that w(K) is the writhe of an oriented diagram K and that SC(K) denotes the
number of Seifert circuits obtained from the diagram K by smoothing all crossings
in an oriented manner, and cr(K) is the number of crossings in the diagram K.

Furthermore, P and N denote the number of positive and negative crossings of K.
We shall prove the following

Lemma For an oriented link diagram K,
SC(K) —w(K)—1=0 (mod 2).
Proof The above equation implies that
SC(K)=w(K)+1 (mod 2).
Note that the parity of the writhe of a knot and its crossing number are the same, as
w(K)=P—-N=P+ N =cr(K) (mod?2).

Thus, we wish to prove that SC(K) = cr(K) + 1. From now on, we write SC for
SC(K).

Consider a knot diagram where the crossings have been replaced with flat nodes.
Note that by Euler’s theorem we have that

v+2 =R,

where R is the number of regions in the diagram and v is the number of nodes (cr (K) =
v). This theorem implies that

v=R (mod?2).
It follows that
SC=R+1 (mod?2).
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For the unknot, R = 2 and SC = 1, as shown below.

Imagine that each of the following diagrams is a subsection of a much larger diagram.

Take the oriented loop,

Suppose that in this diagram we had that SC = R + 1 (mod 2). After we apply our
smoothing we get the following diagram.

| O

Note that this diagram has SC + 1 Seifert circles and R + 2 regions, so
SC+1=R+1)+1 (mod 2).

We now assign the following diagram the value of R and SC. We want to show that
the fact that R — SC =1 (mod 2) is true does not change under regular isotopy.

e

The next diagram represents the oriented Reidemeister II move with the orientation of
each strand pointing in the same direction. It has been given values R’ and SC’. Note
that R = R +2 and SC’ = SC in this diagram. Therefore, R’ — SC' = R — SC + 2,
soR"—SC'=1 (mod 2).

Rl
sc’

The next diagram is the oriented Reidemeister II move with the orientations in the
opposite direction.

R/
sc’
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For this diagram, we must show that two separate cases hold true. In the first case we
must check that the relation remains the same if the bottom left strand connects to the
top left and the top right strand connects to the bottom right (so R’ = 3 and SC’ = 2).
It is easy to see that this case results in R” = 2 and SC’ = 1. In the second case, we
connect the bottom left strand to the bottom right and the top right strand to the top
left (R" = 2 and SC’ = 1). This case results in R’ = 3 and SC’ = 2. In all of these
cases we have that

R—SC'=1=R—S (mod2).

We now present the Reidemeister III move. The strands are labeled in the diagram
below. There are several cases for this move as shown below.

1 2
6 % 3. %}
5 4
Case 1 Suppose that 1 connects to 2, 3 connects to 4, and 5 connects to 6. We use the

notation (12)(34)(56) to represent the connections. The resulting diagrams for each
side of the relation would be

@OQ

In this case, on the left side R” =3 and SC’ =2so R’ — SC’ =1 (mod 2). For the
right side, R" = 5and SC' =4s0 R — SC' =1 (mod 2) too.

Case 2 (12)(36)(45)
e

In this case, on the left R = 4 and SC’ = 3 and on the right R" = 4 and SC’ = 3.
Both sides satisfy the relation.
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Case 3 (16)(32)(45)

)
o™

O,

The left side has R" = 5 and SC’ = 4, and the right side has R’ = 3 and SC’ = 2.
Case 4 (14)(32)(56)

LG,

The left side has R" = 4 and SC’ = 3, and the right side has R’ =4 and SC’ = 3
Case 5 (52)(16)(34)

NG

The left side has R" = 4 and SC’ = 3, and the right side has R’ = 4 and SC’ = 3.
Case 6 (54)(16)(23)

)
o™

@,

The left side of the diagram has R’ = 5 and SC’ = 4. The right side of the diagram
has R" = 3 and SC’ = 2.
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The left side of the diagram has R’ = 4 and SC’ = 3, while the right side of the
diagram has R’ = 4 and SC’" = 3.

In every case we have shown that the parity of SC and w(K) is different. Therefore,
SC — w(K) — 1 is always even. This completes the proof of the lemma. O

Case 7 (54)(16)(23)

R
O
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