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Abstract
We discuss the tomography of N -qubit states using collective measurements. The
method is exact for symmetric states, whereas for not completely symmetric states the
information accessible can be arranged as a mixture of irreducible SU(2) blocks. For
the fully symmetric sector, the reconstruction protocol can be reduced to projections
onto a canonically chosen set of pure states.

Keywords Quantum tomography · Quantum information · Collective
measurements · Symmetric states

1 Introduction

Continuous-variable tomography has been exhaustively explored, from both theoreti-
cal and experimental viewpoints [1]. However, the corresponding problem for discrete
systems stands as challenge [2]. If we look at the example of N qubits, which will be
our thread in this paper, one has to make at least 2N + 1 measurements in different
bases before to determine the state of an a priori unknown system [3–6]. With such
an exponential scaling, it is clear that only few-qubit states can be reconstructed in a
reasonable time [7,8].

As a result, alternative techniques are called for. A wide class of new protocols
are explicitly targeted for particular types of states. This includes states with low
rank [9–12], such as matrix product states (MPS) [13,14], or multiscale entanglement
renormalization ansatz (MERA) states [15]. The extra assumption of permutationally
invariance was also examined [16–20], reducing the scaling of the required setups
to N 3.
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In the same spirit of simplicity, one may be tempted to examine the case when
one can extract only partial information from the system under consideration. This
happens, e.g., in large multipartite systems, wherein addressing individual particles
turns out to be a formidable task. Bose–Einstein condensates constitute an archetype
of this situation: only collective spin observables can be efficiently measured through
detection of the spontaneous emission correlation functions [21,22].

By assessing collective spin operators, one can only access the SU(2) invariant
subspaces appearing in the decomposition of the N -qubit density matrix. The problem
of partial state tomography appears thus analogous to that of permutationally invariant
states.

In the present work, we show that one can obtain an explicit partial reconstruction
for the N -qubit density matrix in terms of average values of correlation functions of
approximately N 3 collective spin operators. In other words, we propose to arrange
O(N 3) experimental data points inside SU(2) invariant subspaces. As an illustration,
we analyze the fidelity of the reconstructed states for 2 and 3 qubits. In addition, we
demonstrate that when the state belongs to the fully symmetric (Dicke) subspace, the
tomographicmeasurements reduce to rank-one positive operator valuedmeasurements
(POVMs), and we find the corresponding operational expansion. As a bonus, we
introduce a new type of discrete special functions that might find further applications
in the analysis of N -qubit systems.

The paper is organized as follows. In Sect. 2we briefly recall the principal aspects of
discrete phase-space distribution functions and of the standard tomographic scheme. In
Sect. 3 we provide explicit expressions for the permutationally invariant tomography
for a N -qubit system, whereas in Sect. 4 an alternative scheme for fully symmetric
states is presented. Finally, Sect. 5 summarizes our main results.

2 Standard discrete tomography

For a system of N qubits, the Hilbert space is the tensor productC2⊗· · ·⊗C
2 = C

2N .
The generators of the Pauli group PN can be written as [23,24]

Ẑα = σ̂ α1
z ⊗ · · · ⊗ σ̂ αN

z , X̂β = σ̂ β1
x ⊗ · · · ⊗ σ̂ βN

x , (1)

so that they are labeled by N -tuples α = (α1, . . . , αN ) and β = (β1, . . . , βN ), with
α j , β j ∈ Z2. Here, σ̂z and σ̂x are the usual Pauli operators on the i th qubit: σ̂z =
|0〉〈0| − |1〉〈1| and σ̂x = |0〉〈1| + |1〉〈0| in the orthonormal computational basis
{|0〉, |1〉}.

We next define the operators

�̂(s)(α, β) = 1

2N (s+3)/2

∑

γ,δ∈ZN
2

(−1)αδ+βγ+γ δ(1−s)/2〈ξ |Ẑγ X̂δ|ξ 〉−s Ẑγ X̂δ, (2)
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where s = ±1. From a physical perspective, the fiducial state |ξ 〉 can be chosen as a
factorized symmetric (with respect to particle permutations) state |ξ 〉 = ⊗N

i=1|ξ 〉i

|ξ 〉i = 1√
1 + |ξ |2 (|0〉i + ξ |1〉i ), (3)

and ξ =
√
3−1√
2
eiπ/4, which corresponds to a spin coherent state determined by the

normalized vector n = (1, 1, 1)/
√
3 on the Bloch sphere [25]. The operators �̂(s)

form a biorthogonal operator basis, namely

Tr
[
�̂(1)(α′, β ′) �̂(−1)(α, β)

]
= 2N δαα′δββ ′ . (4)

In complete analogy with the continuous case [26,27], any operator Â acting on the
Hilbert space C2N can be expanded in this basis as

Â =
∑

α,β∈ZN
2

QA(α, β) �̂(1)(α, β), (5)

where QA(α, β) = Tr[ Â �(−1)(α, β)].
Actually, the kernel �̂(−1)(α, β) can be represented as a rank-one projector

�̂(−1)(α, β) = |α, β〉〈α, β|. (6)

Here, |α, β〉 are discrete coherent states, constructed as [28–32]

|α, β〉 = exp[iχ(α, β)] Ẑα X̂β |ξ 〉, (7)

where exp[iχ(α, β)] is an appropriately chosen phase that is irrelevant for our purposes
here. Up to normalization, the set of projectors (6) forms an informationally complete
POVM [33,34] with the choice (3) for the fiducial state. They satisfy the condition

∑

α,β∈ZN
2

|α, β〉〈α, β| = 2N 11. (8)

In the single-qubit case they form a SIC-POVM with four elements, and for N
qubits, they correspond to tensor products of the single-qubit SIC-POVM elements.
Equation (5) can be thus interpreted as a tomographic reconstruction of the oper-
ator Â in terms of measured probabilities QA(α, β) = 〈α, β| Â|α, β〉. Moreover,
Q = Tr[ Â�(−1)] and P = Tr[ Â�(1)] are discrete analogous of their continuous
counterparts, defined in a 2N × 2N discrete phase space [35,36].
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3 Tomography from collective measurements

The representation (5) requires measuring the POVM (6) with 22N elements. This
provides a minimal complete tomography, but it is extremely demanding for N � 1.

As heralded in Sect. 1 to circumvent this problemwe restrict ourselves to collective
measurements. The information acquired from such measurements does not allow to
obtain complete information about the state of the system: operators that are invariant
under particle permutations (collective operators) “see” only irreducible subspaces
appearing in the tensor decomposition of SU(2)⊗N . Nonetheless, this still provides
nontrivial information.

Symmetric operators Âsym on N qubits are those invariant with respect to particle
permutations:

Âsym = �̂
†
i j Âsym �̂i j ∀i, j = 1, . . . , N , i 
= j, (9)

where �̂i j is the unitary operator that swaps particles i and j . The crucial observation
for what follows is that these operators possess a peculiar property: their symbols
PAsym(α, β) depend exclusively on the Hamming weights [37] of α, β, and their
binary sum α + β; that is,

PAsym(α, β) = PAsym

(
h(α), h(β), h(α + β)

)
, (10)

with h(κ) = |{i : i = 1, . . . , N |κi 
= 0}|, 0 ≤ h(κ) ≤ N .
Therefore, the whole information about any symmetric measurement 〈 Âsym〉 =

Tr(ρ̂ Âsym) is conveniently conveyed in the projected Q̃-function [38,39],

Q̃ρ(m, n, k) =
∑

α,β∈ZN
2

Qρ(α, β) δh(α),m δh(β),n δh(α+β),k, (11)

since, as it immediately follows from (5),

〈 Âsym〉 =
N∑

m,n=0

∑

k

PAsym(m, n, k) Q̃ρ(m, n, k), (12)

the index k running in steps of two: k = |m−n|, |m−n|+2, . . . ,min(m+n, N , 2N−
m − n).

If Q̃ρ(m, n, k) is available from measurements, one can lift it from the three-
dimensional (m, n, k) space into the full 2N × 2N discrete phase space according
to

Qlifted
ρ (α, β) = R−1

mnk

∑

m,n,k

δh(α),m δh(β),n δh(α+β),k Q̃ρ(m, n, k), (13)
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where

Rmnk =
∑

μ,λ∈ZN
2

δh(μ),mδh(λ),nδh(μ+λ),k

= N !
(m+n−k

2

)! ( 2N−m−n−k
2

)! ( n−m+k
2

)! (m−n+k
2

)! (14)

is a normalization factor fixed by the number of binary tuples λ,μ with Hamming
weights

(
h(λ), h(μ), h(λ + μ)

) = (m, n, k).
The reconstruction (13) of the Qρ(α, β) function from the projected one

Q̃ρ(m, n, k) is incomplete; i.e., the map (11) is not faithful. The lifting (13) is thus just
away of organizing information obtained from

(N+3
3

) = (N+1)(N+2)(N+3)/6 col-
lective measurements, corresponding to the total number of possible triplets (m, n, k)
of Hamming weights, in a 2N × 2N matrix.

By replacing Qρ(α, β) by Qlifted
ρ (α, β) in the reconstruction (5), we get

ρ̂rec =
∑

m,n,k

R−1
mnk Q̃ρ(m, n, k) �̂(1)(m, n, k), (15)

where the symmetric operators �̂(±1)(m, n, k) can be jotted down as

�̂(±1)(m, n, k) =
∑

α,β∈ZN
2

δh(α),m δh(β),nδh(α+β),k �̂(±1)(α, β)

= 2−(3±1)N/2
∑

m′,n′,k′
gmnk(m

′, n′, k′) 3±(m′+n′+k′)/4 F̂m′n′k′ . (16)

Here, F̂mnk stands for the orthonormal set of operators (see Appendix A for details)

F̂mnk =
∑

μ,λ∈ZN
2

δh(μ),m δh(λ),n δh(μ+λ)k (−i)μλ Ẑμ X̂λ, (17)

and

gmnk
(
h(α), h(β), h(α + β)

) =
∑

γ,δ∈ZN
2

(−1)αδ+βγ δh(γ ),m δh(δ),n δh(γ+δ),k (18)

are discrete functions, whose properties are explored in Appendix B.1. Observe that
(18) is independent of the choice of α and β: any other choice α′ and β ′ is related by
permutations, which can be applied to γ and δ as well.

Because of the properties of F̂mnk , the reconstruction (15) can be reduced to

ρ̂rec = 1

2N
∑

m,n,k

R−1
mnk〈F̂mnk〉 F̂mnk, (19)
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which is an explicit function of
(N+3

3

)
expectation values of collective operators.

Note, in passing, that the operators (17) can be always expanded in terms of col-
lective spin operators. For instance, by direct inspection one gets that in the simplest
cases n = 0 or m = 0, F̂mnk are diagonal in the computational basis:

F̂000 = 11 F̂101 = Ŝz, F̂202 = 1

2!
(
Ŝ2z − N11

)
,

F̂303 = 1

3!
[
Ŝ3z − (3N − 2)Ŝz

]
, (20)

where Ŝ j = ∑N
i=1 σ̂

(i)
j .

By construction, ρ̂rec is nonzero only inside SU(2) invariant blocks and coincides
with the true density matrix in the fully symmetric subspace. In all the other blocks,
ρ̂rec differs from the true value and, in particular, the irreducible subspaces of the same
dimension are indistinguishable in ρ̂rec.

Let us illustrate the approach with a couple of basic examples. An arbitrary pure
two-qubit state can be parametrized as

|ψ〉 = sin θ |ψanti〉 + eiβ cos θ |ψsym〉, (21)

where |ψsym〉 and |ψanti〉 denote states from the symmetric and antisymmetric sub-
spaces correspondingly, represented in the computational basis as

|ψanti〉 = |01〉 − |10〉√
2

,

|ψsym〉 = sin α1|00〉 + eiγ1 cosα1 sin α2

( |01〉 + |10〉√
2

)

+eiγ2 cosα1 cosα2|11〉, (22)

0 ≤ α1, α2 ≤ π/2, 0 ≤ γ1, γ2 < 2π . The reconstructed density matrix is the
incoherent mixture

ρ̂rec = sin2 θ |ψanti〉〈ψanti| + cos2 θ |ψsym〉〈ψsym|. (23)

We quantify the accuracy of the reconstruction in terms of the fidelity [40,41]: F =
〈ψ |ρ̂rec|ψ〉, which for this example reads

F = 1

4
[3 + cos(4θ)], (24)

so it depends only on the single parameter θ that determines the projection onto the
symmetric and antisymmetric subspaces, respectively.TheminimumfidelityF = 1/2
corresponds to the case when the subspaces have the same weight, whereas for states
in the completely symmetric or antisymmetric subspace, the reconstruction is exact.
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Our next example corresponds to an arbitrary pure three-qubit state, which can be
written as

|ψ〉 = sin θ |ψsym〉 + eiβ cos θ sin α|ψ1〉 + eiγ cos θ cosα|ψ2〉, (25)

with 0 ≤ θ, α ≤ π/2 and 0 ≤ β, γ < 2π . |ψsym〉 is a state in the four-dimensional
symmetric subspace, whereas |ψ1〉 and |ψ2〉 are states in SU(2)-irreducible two-
dimensional subspaces. In the computational basis, they are:

|ψsym〉 = sin θ1|000〉 + eiβ1 cos θ1 sin α1
|100〉 + |010〉 + |001〉√

3

+ eiγ1 cos θ1 sin α1 sin α2
|110〉 + |101〉 + |011〉√

3

+ eiγ2 cos θ1 cosα1 cosα2|111〉,
|ψ1〉 = sin θ2

2|100〉 − |010〉 − |001〉√
6

+ eiβ2 cos θ2
|101〉 − 2|011〉 + |110〉√

6
,

|ψ2〉 = sin θ3
|001〉 − |010〉√

2
+ eiβ3 cos θ3

|101〉 − |110〉√
2

. (26)

The reconstructed density matrix is a mixed state, unless |ψ〉 is in the symmetric sub-
space. In particular, the blocks corresponding to two-dimensional SU(2)-irreducible
subspaces have the same form; viz,

ρ̂2 =
(
sin2 α sin2 θ2 + cos2 α sin2 θ3 c2

c∗
2 cos2 α cos2 θ3 + cos2 θ2 sin2 α

)
, (27)

where c2 = 1
2 [e−iβ2 sin2 α sin(2θ2) + e−iβ3 cos2 α sin(2θ3)] depends on the parame-

ters α and θ ’s describing the contributions from the three irreducible subspacesSsym,
S1, and S2 in (25). Thus, the reconstructed density matrix has the form

ρ̂rec = sin2 θ |ψsym〉〈ψsym| ⊕ cos2 θ

2
ρ̂2 ⊕ cos2 θ

2
ρ̂2. (28)

By averaging over the phases θ2, β2 and θ3, β3 that parameterize the states in the
nonsymmetric irreducible subspaces S1 and S2, we get the average fidelity that
determines the distribution between the SU(2)-irreducible subspaces:

F̄ = sin2 θ +
[
3

4
+ 1

4
cos2(2α)

]
cos2 θ. (29)

The minimum F̄min = 3/4 corresponds to the situation |ψ〉 = (|ψ1〉 + |ψ2〉)/
√
2

(α = π/4, θ = 0)when the state is homogeneously distributed betweennot completely
symmetric subspaces S1 and S2. The maximum fidelity is reached for symmetric
states, |ψ〉 = |ψsym〉.
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4 Symmetric overcomplete tomography: canonical projection

The outstanding case of fully symmetric (Dicke) states [42] deserves special attention
as they are widely used in numerous applications (see, e.g. [43–45]) and, in addition,
they are efficiently generated in the laboratory [46–49]. For Dicke states, the recon-
struction (19) is exact, but requires O(N 3)measurements of collective operators,while
the density matrix contains at most N 2 + 2N independent parameters. Obviously, not
all such collective measurements are independent. This redundancy can be fixed by
representing the reconstructed density matrix via rank-one projectors.

For a fully symmetric density matrix, it follows from (5) that

ρ̂sym = �̂sym

⎛

⎜⎝
∑

α,β∈ZN
2

Qρsym(α, β) �̂(1)(α, β)

⎞

⎟⎠ �̂sym

=
∑

α,β∈ZN
2

Tr[ρ̂sym �̂(−1)
sym (α, β)] �̂(1)

sym, (30)

with �̂
(±1)
sym (α, β) = �̂sym �̂(±1)(α, β) �̂sym and �̂sym = ∑N

�=0 |�, N 〉〈�, N | is the
projection onto the Dicke subspace {|�, N 〉 : � = 0, . . . , N } of N qubits. It is shown
in Appendix C.1 that �̂(−1)

sym (α, β) is a symmetric function and actually it is a rank-one
tensor

�̂(−1)
sym (α, β) = |�h(α),h(β),h(α+β)〉〈�h(α),h(β),h(α+β)|. (31)

The unnormalized states |�h(α),h(β),h(α+β)〉 have the following expansion in the Dicke
basis

|�h(α),h(β),h(α+β)〉 = 1

(1 + |ξ |2)N/2

N∑

�=0

(
N

�

)−1/2
ψ�

(
h(α), h(β), h(α + β); ξ

)|�, N 〉,

(32)

ψ�(h(α), h(β), h(α + β); ξ) being a discrete function discussed in Appendix B.3.
The operators (31) form an informationally complete POVM

∑

m,n,k

N 2
mnk Rmnk |�̂mnk〉〈�̂mnk | = 2N �̂sym, (33)

where |�̂mnk〉 = N−1
mnk |�mnk〉 and

N 2
mnk = 1

(1 + |ξ |2)N
N∑

�=0

(
N

�

)−1

|ψ�(m, n, k; ξ)|2. (34)
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For a given (N + 1)-dimensional Dicke subspace, there are only N different normal-
ization factors Nmnk .

In terms of the projection of �̂
(1)
sym(α, β), in Appendix C.1 we arrive at the compact

result

ρ̂sym =
∑

m,n,k

pmnk Rmnk K̂mnk, (35)

where pmnk = 〈�̂mnk |ρ̂sym|�̂mnk〉 and

K̂mnk = 2−2N
∑

m′,n,′k′
3(m′+n′+k′)/4 i (k

′−m′−n′)/2 gm′n′k′(m, n, k) Âm′n′k′ , (36)

where Âmnk are also given in Appendix C.1.
In this protocol, the total number of projections (31) required for reconstruction of

symmetric states is
(N+3

3

) = (N + 1)(N + 2)(N + 3)/6. However, it immediately
follows from (35) that the probabilities pmnk are not linearly independent as they
satisfy the conditions

pm′n′k′ =
∑

m,n,k

pmnk ωm′n′k′
mnk , (37)

where ωm′n′k′
mnk = Rmnk 〈�m′n′k′ |K̂mnk |�m′n′k′ 〉 and

ωm′n′k′
mnk = Rmnk

(1 + |ξ |2)N
N∑

�,�′=0

(
N

�

)−1/2 (
N

�′

)−1/2

×ψ�(m, n, k; ξ) ψ∗
�′(m, n, k; ξ) f��′(m′, k′, n′). (38)

These restrictions can be represented in a matrix form

(�̂ − 11)p = 0, (39)

wherep is the
(N+3

3

)
-dimensional probability vector and �̂ is an appropriately arranged

matrix (38). We have numerically found that the rank of the matrix (�̂−11) is N (N 2−
1)/6. Then, taking into account that the probabilities also satisfy the normalization
condition Tr(ρ̂sym) = 1, we obtain that only N 2 + 2N projections are needed for the
reconstruction of fully symmetric states.

5 Concluding remarks

In short, we have proposed a tomographic protocol based on measuring
(N+3

3

) =
(N + 1)(N + 2)(N + 3)/6 expectation values of collective operators. The advantage

123
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of the present approach with respect to previously discussed (and experimentally ver-
ified) methods is given by the explicit expressions (19) for the reconstructed density
matrix from experimental data. In addition, we have shown that restricting ourselves
to fully symmetric states, the tomographic protocol is reduced to projections from an
overcomplete set of pure states (32), which still allows to obtain an explicit reconstruc-
tion expression (35). Such a set of states has been worked out from the first principles
of state reconstruction in an 2N -dimensional Hilbert space.
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A Properties of the symmetric operators F̂mnk

The operators F̂mnk can be expressed in terms of a special discrete function. Taking
into account the action of the monomials Ẑα X̂β on the computational basis states
{|κ〉 : κ ∈ Z

N
2 },

Ẑα|κ〉 = (−1)ακ |κ〉, X̂β |κ〉 = |κ + β〉, (40)

we immediately obtain for the matrix elements

〈δ|F̂mnk |γ 〉 = (−i)
1
2 (m+n−k) δn,h(δ+γ ) fmk

(
h(δ), h(γ ), h(γ + δ)

)
, (41)

with

fmk
(
h(δ), h(γ ), h(γ + δ)

) =
∑

μ∈ZN
2

δh(μ),m δh(μ+γ+δ),k (−1)μδ. (42)

The function fmk
(
h(δ), h(γ ), h(γ + δ)

)
will be further analyzed below.

By taking into account that Tr(Ẑμ X̂λ Ẑμ′ X̂λ′) = 2N (−1)λμ′
δμ,μ′δλ,λ′ , we get

Tr
(
F̂mnk F̂m′n′k′

)
= 2N δm,m′ δn,n′ δk,k′

∑

μ,λ∈ZN
2

δh(μ),m δh(λ),n δh(μ+λ),k

= 2N Rmnk δm,m′ δn,n′ δk,k′ , (43)

which shows the orthogonality used in the paper.
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B Special functions

In this Appendix we discuss some relevant properties of the functions used in the
derivation of our results.

B.1 Function gmnk

The discrete function (18)

gmnk
(
h(μ), h(λ), h(μ + λ)

)=
∑

α,β∈ZN
2

(−1)μβ+λαδh(α),m δh(β),n δh(α+β),k (44)

can be represented in the integral form

gmnk
(
h(μ), h(λ), h(μ + λ)

)

= 1

(2π)3

∮ ∮ ∮
dω1dω2dω3

ωm+1
1 ωn+1

2 ωk+1
3

(1 + ω1ω2 + ω1ω3 + ω2ω3)
N− 1

2 [h(δ)+h(γ )+h(δ+γ )]

×[1 − ω1ω2 − ω1ω3 + ω2ω3] 1
2 [−h(μ)+h(λ)+h(μ+λ)]

×[1 − ω1ω2 + ω1ω3 − ω2ω3] 1
2 [h(μ)−h(λ)+h(μ+λ)]

×[1 + ω1ω2 − ω1ω3 − ω2ω3] 1
2 [h(μ)+h(λ)−h(μ+λ)], (45)

where we have used the following representation of the Kronecker delta function

∑

κ∈ZN
2

δh(κ),m = 1

2π

∫ 2π

0
dxe−i xm

∏

i

∑

κi

ei xκi . (46)

The above integrals can be easily computed, leading to a quite cumbersome expression
in terms of finite sums:

gmnk
(
h(μ), h(λ), h(μ + λ)

) =
∑

j1,..., j10

(−1) j3+ j4+ j6+ j5− j1− j7δk,n+m−2 j1−2 j5−2 j9−2 j10

=
(
j2
j6

)(
j3
j7

)(
j4
j8

)(
j6
j10

)(
j7
j5

)(
j8
j1

)(
N − 1

2 (h(μ) + h(λ) + h(μ + λ))

n − ( j1 + j2 + j3 + j4 + j5 + j9 + j10 − m)

)

×
( 1
2 (−h (μ) + h (λ) + h (μ + λ))

j2

)( 1
2 (h(μ) − h(λ) + h(μ + λ))

j3

)

×
( 1
2 (h(μ) + h(λ) − h(μ + λ))

j4

)

×
(
n − ( j1 + j2 + j3 + j4 + j5 + j9 + j10 − m)

m − ( j6 + j7 + j8)

)(
m − ( j6 + j7 + j8)

j9

)
. (47)
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They satisfy the following dual orthogonality relations

∑

m′,n′,k′
gmnk(m

′, n′, k′) gm′′n′′k′′(m′, n′, k′) Rm′n′k′ = 22N Rmnk δm,m′′ δn,n′′ δk,k′′ ,

∑

m′,n′,k′
gm′n′k′(m, n, k) gm′n′k′(m′′, n′′, k′′) R−1

m′n′k′ = 22N R−1
mnk δm,m′′ δn,n′′ δk,k′′ .

(48)

B.2 Function fmk

Following a similar procedure, we can represent the function (42) in the integral form,

fmk
(
h(δ), h(γ ), h(γ + δ)

) = 1

(2π)2

∮ ∮
dω1dω2

ωm+1
1 ωk+1

2

(1 + ω1ω2)
N− 1

2 [h(δ)+h(γ )+h(δ+γ )]

×(ω1 + ω2)
1
2 [h(γ )−h(δ)+h(δ+γ )](ω2 − ω1)

1
2 [h(δ)−h(γ )+h(δ+γ )](1 − ω1ω2)

1
2 [h(δ)+h(γ )−h(δ+γ )].

(49)

Computing the integral (49) and rearranging the corresponding sums of binomial
coefficients, we obtain

fmk
(
h(δ), h(γ ), h(γ + δ)

) = (−1)m
( 1
2

[
h(δ) + h(γ ) − n

]

1
2 (m − n + k)

)( 1
2

[
h(δ) − h(γ ) + n

]

1
2 (m + n − k)

)

δ 1
2 (m+n−k)∈Z δ 1

2 (m−n+k)∈Z

× 2F1

(
h(δ) + h(γ ) + n

2
− N , −m − n + k

2
, 1 + h(δ) + h(γ ) − m − k

2
; −1

)

× 2F1

(−h(δ) + h(γ ) + n

2
, −m + n − k

2
, 1 + h(δ) − h(γ ) − m + k

2
; −1

)
, (50)

where 2F1 is the hypergeometric function. It isworth noting that fmk
(
h(δ), h(γ ), h(γ+

δ)
)
can be obtained by a reduction from gmnk

(
h(δ), h(γ ), h(γ + δ)

)
.

B.3 FunctionÃ�

The function ψ� is defined as

ψ�

(
h(α), h(β), h(α + β); ξ

) =
∑

κ∈ZN
2

ξ h(κ+β)(−1)ακδh(κ),� (51)

and it can be recast as

ψ�

(
h(α), h(β), h(α + β), ξ

)= ξ h(β)
∑

κ∈ZN
2

ξ h(κ)−2
∑

i βiκi (−1)ακδh(κ),�
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= ξ h(β)

∫
dω

ω1+�

N∏

i

1∑

κi=0

ξκi−2βiκi (−1)αiκi ωκi (52)

= ξ h(β)

∫
dω

ω1+�
(1 + ξω)N− 1

2 [h(α)+h(β)+h(α+β)](1 − ξω)
1
2 [h(α)−h(β)+h(α+β)]

×(1 + ξ−1ω)
1
2 [−h(α)+h(β)+h(α+β)](1 − ξ−1ω)

1
2 [h(α)+h(β)−h(α+β)], (53)

which leads to the following expression in terms of finite sums

ψ�

(
h(α), h(β), h(α + β), ξ

)

= ξ l+h(β)
∑

j2, j3, j4

(−1) j3+ j4ξ−2( j2+ j4)
(
N − 1

2 [h(α) + h(β) + h(α + β)]
l − j2 − j3 − j4

)

×
( 1

2 [−h(α) + h(β) + h(α + β)]
j2

)( 1
2 [h(α) − h(β) + h(α + β)]

j3

)

×
( 1

2 [h(α) + h(β) − h(α + β)]
j4

)
.

(54)

C Canonical projection

In this section we find projections of the kernels �̂(±1)(α, β) onto the Dicke subspace.

C.1 Projection of 1̂(−1)(˛,ˇ)

Taking into account the representation of the Dicke states in the logical basis,

|�, N 〉 = 1√(N
�

)
∑

κ∈ZN
2

h(κ)=�

|κ〉, (55)

we obtain

�̂(−1)
sym =

∑

�,�′

1
(N

�

)(N
�′
)

∑

κ,κ1∈ZN
2

h(κ)=�
h(κ1)=�

∑

κ ′,κ ′
1∈ZN

2
h(κ ′)=�′
h(κ ′

1)=�′

|κ〉〈κ1|α, β〉〈α, β|κ ′〉〈κ ′
1|, (56)
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where the discrete coherent states |α, β〉 are defined in (7). Using the expansion of the
fiducial state (3) in the logical basis

|ξ 〉 = 1

(1 + |ξ |2)N/2

∑

κ∈Z2
n

ξ h(κ)|κ〉, (57)

we get

〈κ|α, β〉 = 1

(1 + |ξ |2)N/2 ξ h(κ+β)(−1)ακ . (58)

By substituting (58) into (56), we arrive at (31).
The operator �̂

(1)
sym(α, β) can also be expressed as

�̂(1)
sym(h(α), h(β), h(α + β)) = 1

22N
∑

m,n,k

3(m+n+k)/4i (k−m−n)/2

gmnk
(
h(α), h(β), h(α + β)

)
Âmnk, (59)

where gmnk
(
h(α), h(β), h(α + β)

)
is defined in (18), and the matrix elements of the

operators Âmnk in the Dicke basis are

〈�′, N | Âmnk |�, N 〉 = 1√(N
�

)(N
�′
) f��′(m, k, n). (60)

Finally, using the summation rule

∑

α,β∈ZN
2

f (α, β) =
∑

m,n,k

∑

α,β∈ZN
2

δh(α),m δh(β),n δh(α+β),k f (α, β) , (61)

we get the explicit expression (35).

C.2 Projection of monomials 5̂symẐ˛X̂ˇ5̂sym

It follows immediately from (40) that the matrix elements of the monomial Ẑα X̂β in
the Dicke basis (55) have the form

〈�, N |�̂sym Ẑα X̂β�̂sym|�′, N 〉 = 1√(N
�

)(N
�′
)

∑

μ∈ZN
2

(−1)αμδh(μ),�δh(μ+β),�′

= f��′
(
h(α), h(α + β), h(β)

)
√(N

�

)(N
�′
) , (62)

where the function f��′ is defined in (42).
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