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Abstract In this note, we report two versions of Gilbert–Varshamov-type existential
bounds for asymmetric quantum error-correcting codes.
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1 Introduction

Quantum error-correcting codes (QECCs) are important for construction of quantum
computers, as the fault-tolerant quantum computation is based on QECC [13]. There
are two kinds of errors in quantum information: One is called a bit error, and the other
is called a phase error. Steane [16] first studied the asymmetry between probabilities
of the bit and the phase errors, and he also considered QECC for asymmetric quan-
tum errors, which are called asymmetric quantum error-correcting codes (AQECC).
Research on AQECC has become very active recently; see [7,9,16] and the references
therein.

On the other hand, in the study of error-correcting codes, it is important to know
the optimal performance of codes. For classical error-correcting codes, the Gilbert–
Varshamov (GV) bound [11] is a sufficient condition for existence of codes whose
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parameters satisfies the GV bound. By the GV bound, one can know that the optimal
performance of classical codes is at least as good as the GV bound.

For QECC, Ekert and Macchiavello obtained a GV-type existential bound for gen-
eral QECCs. An important subclass of general QECCs is the stabilizer codes [2,3,8], as
they enable efficient encoding and decoding. Calderbank et al. [2] obtained a GV-type
existential bound for the stabilizer QECCs. After that, Feng and Ma [6] and Jin and
Xing [10] obtained improved versions of GV-type bounds for the stabilizer QECCs.

The Calderbank–Shor–Steane (CSS) QECCs [4,15] are an important subclass of
the stabilizer QECCs, as the CSS codes enable more efficient implementation of the
fault-tolerant quantum computation than the stabilizer codes.

Those existential bounds [2,4–6,10] did not consider the asymmetric quantum
errors, while the asymmetry in quantum errors is important in practice [14]. As far as
the author knows, nobody has reported existential bounds for the stabilizer or the CSS
QECC for asymmetric quantum errors. In this note, we report such ones. Our proof
arguments are similar to ones in [2,4].

2 A GV-type existential bound for the CSS codes

An [[n, k, dx , dz]]q QECC encodes k q-ary qudits into n q-ary qudits and detects up
to dx bit errors and up to dz phase errors. It is known [1,3] that a nested classical code
C2 ⊂ C1 ⊂ Fn

q with dimensions k2 and k1 can construct an [[n, dim C1 − dim C2]]q
CSS code, where Fq is a finite field with q elements. A quantum error can be expressed
as a pair (ex , ez), where ex ∈ Fn

q corresponds to the bit error component of a quantum
error and ex ∈ Fn

q does to the phase error component.
Let GLn(Fq) be the group of n × n invertible matrices over Fq . Let Bn = {(C1,

C2) | C2 ⊂ C1 ⊂ Fn
q , dim C1 = k1, dim C2 = k2}. For a nonzero vector e ∈ Fn

q ,
let Bn,x (e) (resp. Bn,z(e)) be the set of nested code pairs that cannot detect e as a bit
error (resp. a phase error), that is, Bn,x (e) = {(C1,C2) ∈ Bn | e ∈ C1\C2} (resp.
Bn,z(e) = {(C1,C2) ∈ Bn | e ∈ C⊥

2 \C⊥
1 }), where C⊥

1 is the dual code of C1 with
respect to the standard inner product.

Lemma 1 For nonzero e, we have

�Bn,x (e) = qk1 − qk2

qn − 1
�Bn,

�Bn,z(e) = qn−k2 − qn−k1

qn − 1
�Bn .

Proof As each pair C2 ⊂ C1 has �C1\C2 = qk1 − qk2 undetectable errors, we have

∑
0 �=e∈Fn

q
�Bn,x (e)

�Bn
= qk1 − qk2 .
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For nonzero e1, e2 ∈ Fn
q , we claim �Bn,x (e1) = �Bn,x (e)2. Assuming the claim, we

have

∑

0 �=e∈Fn
q

�Bn,x (e) = (qn − 1)�Bn,x (e).

Combining these two equalities, we have

�Bn,x (e) = qk1 − qk2

qn − 1
�Bn .

We finish the proof by proving the claim. Let e1, e2 be nonzero vectors. We have

�Bn,x (e1) = �{(C1,C2) ∈ Bn | e1 ∈ C1\C2}
= �{(τC1, τC2) | τ ∈ GLn(Fq), e1 ∈ C1\C2}
= �{(τC1, τC2) | τ ∈ GLn(Fq), τ

′e1 ∈ C1\C2}
= �{(C1,C2) ∈ Bn | τ ′e1 ∈ C1\C2}
= �Bn,x (τ

′e1),

where τ ′ ∈ GLn(Fq) such that τ ′e1 = e2.
For phase errors, we can make a similar argument with C⊥

2 ⊃ C⊥
1 . �	

Theorem 2 Let n, k1, k2, dx and dz be positive integers such that

qk1 − qk2

qn − 1

dx−1∑

i=1

(
n

i

)

(q − 1)i + qn−k2 − qn−k1

qn − 1

dz−1∑

i=1

(
n

i

)

(q − 1)i < 1, (1)

then an [[n, k1 − k2, dx , dz]]q CSS QECC exists.

Proof Recall that each quantum error can be expressed by its bit error component
ex ∈ Fn

q and its phase error component ez ∈ Fn
q . The bit error component ex cannot be

detected by codes in Bn,x (ex ), and the phase error component ez cannot be detected
by codes in Bn,z(ez). The detectabilities of the bit errors and the phase errors are
independent of each other. Therefore, if Eq. (1) holds, then there exists at least one
(C1,C2) ∈ Bn that can detect all the bit errors with weight up to dx − 1 and all the
phase errors with weight up to dz − 1, which implies it is an [[n, k1 − k2, dx , dz]]q
quantum code. �	

Classical coding theorists often have interest in asymptotic versions of GV-type
existential bounds [11]. They are stated in terms of information rate and relative dis-
tance of classical error-correcting codes. In the classical error correction, information
rate is the ratio of the number of information symbols to the code length, and relative
distance is the ratio of the minimum distance to the code length.

We can also derive an asymptotic version of Theorem 2. For an [[n, k, dx , dz]]q
AQECC, we may define the relative distance δx for bit errors as dx/n and the relative
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distance δz for bit errors as dz/n. The information rate of an [[n, k]]q QECC is defined
as k/n [13].

Recall [11] that for 0 ≤ δ ≤ 1 − 1/q we have

�nδ�∑

i=1

(
n

i

)

(q − 1)i ≤ qnhq (δ), (2)

where hq(δ) = δ logq(q − 1) − δ logq δ − (1 − δ) logq(1 − δ).

Corollary 3 Let δx and δz be real numbers such that 0 ≤ δx ≤ 1−1/q and 0 ≤ δz ≤
1 − 1/q. If

hq(δx ) < 1 − R1, (3)

hq(δz) < R2, and

0 ≤ R1 − R2, (4)

then, for sufficiently large n, there exists an [[n, �nR1�− nR2�, �nδx�, �nδz�]]q CSS
QECC exists.

In Corollary 3, R1 is the information rate of classical ECC C1, and R2 is the
information rate of classical ECC C2. The corresponding quantum CSS code has
information rate R1 − R2, relative distance δx for bit errors, and relative distance δz
for phase errors.

Proof Assume that Eq. (3) holds. Then for sufficiently large n, we have

nhq(δx ) < n − nR1

⇒ qnhq (δx ) < (1/2)
qn

qnR1

⇒ qnR1

qn
qnhq (δx ) < 1/2

⇒ q�nR1� − qnR2�

qn − 1

�nδx �−1∑

i=1

(
n

i

)

(q − 1)i < 1/2. (5)

Similarly, for sufficiently large n Eq. (4) implies

nhq(δz) < nR2

⇒ qnhq (δz) < (1/2)
qn

qn(1−R2)

⇒ qn(1−R2)

qn
qnhq (δz) < 1/2

⇒ qn−nR2� − qn−�nR1�

qn − 1

�nδz�−1∑

i=1

(
n

i

)

(q − 1)i < 1/2. (6)
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Equations (5) and (6) imply that the assumption of Theorem 2 becomes true for
sufficiently large n, which shows Corollary 3. �	

3 A GV-type existential bound for the stabilizer codes

LetC ⊂ F2n
q be a Fq -linear space of dimension n−k self-orthogonal with respect to the

standard symplectic inner product in F2n
q . C can be viewed as an [[n, k]]q stabilizer

QECC. Let An be the set of all such C’s. A nonzero e ∈ F2n
q can be viewed as a

quantum error on n qudits. Let An(e) be the set of stabilizer codes that cannot detect
e as an error, that is, An(e) = {C ∈ An | e ∈ C⊥s\C}, where C⊥s is the dual of C

with respect to the symplectic inner product. Then �An(e) ≤ 1−q−2k

1−q−2n · 1
qn−k �An [12,

Lemma 9].
Recall that, for C to be [[n, k, dx , dz]]q , C must be able to detect all dx or less bit

errors and all dz or less phase errors. The number of such errors is

dx−1∑

i=1

(
n

i

)

(q − 1)i ×
dz−1∑

i=1

(
n

i

)

(q − 1)i .

By the same argument as [12, Remark 10] (or as the last section), we have the following
theorem:

Theorem 4 Let n, k1, k2, dx and dz be positive integers such that

1 − q−2k

1 − q−2n · 1

qn−k

dx−1∑

i=1

(
n

i

)

(q − 1)i ×
dz−1∑

i=1

(
n

i

)

(q − 1)i < 1

then there exists an [[n, k, dx , dz]]q stabilizer QECC. �	
By almost the same argument as Corollary 3, we can derive the following asymptotic

version of Theorem 4.

Corollary 5 Let δx and δz be real numbers such that 0 ≤ δx ≤ 1−1/q and 0 ≤ δz ≤
1 − 1/q. If

hq(δx ) + hq(δz) < 1 − R ≤ 1, (7)

then, for sufficiently large n, there exists an [[n, �nR�, �nδx�, �nδz�]]q stabilizer
QECC. �	

The quantum stabilizer code in Corollary 5 has information rate R, relative distance
δx for bit errors, and relative distance δz for phase errors.

By the relation between the CSS and the stabilizer QECCs [3], we see that the
assumption in Corollary 3 is less demanding than that in Corollary 5 for the same n,
R = R1 − R2, δx and δz , which means that Corollary 5 is a stronger existential bound
than Corollary 3.
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Remark 6 Theorems 2 and 4 and Corollaries 3 and 5 do not admit direct comparisons
against previously known GV-type bounds even when dx = dz . The reason is as
follows: For a binary QECC to be [[n, k, 2, 2]]2, it must detect at least n2 different
errors. On the other hand, for a binary [[n, k]]2 QECC to detect all single symmetric
errors, it only has to detect 3n errors, which is generally much fewer than n2. The above
example shows that the number of asymmetric quantum errors is much different from
that of corresponding symmetric quantum errors, even if we assume the same number
of bit errors and phase errors in asymmetric quantum errors.

In addition, the famous [[5, 1, 3]]2 binary stabilizer code in [3,8] can detect up to
four bit errors if there is no phase error, and can detect up to four phase errors if there
is no bit error. Thus, it is simultaneously both [[5, 1, 1, 5]]2 AQECC and [[5, 1, 5, 1]]2
AQECC. This phenomenon makes the direct comparison even more difficult.
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