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Abstract We outline the general construction of three-player games with incomplete
information which fulfil the following conditions: (i) symmetry with respect to the
permutations of players; (ii) the existence of an upper bound for total payoff result-
ing from Bell inequalities; (iii) the existence of both fair and unfair Nash equilibria
saturating this bound. Conditions (i)–(iii) imply that we are dealing with conflicting
interest games. An explicit example of such a game is given. A quantum counterpart
of this game is considered. It is obtained by keeping the same utilities but replacing
classical advisor by a quantum one. It is shown that the quantum game possesses only
fair equilibria with strictly higher payoffs than in the classical case. This implies that
quantum nonlocality can be used to resolve the conflict between the players.

Keywords Bell inequality · Games with incomplete information · Nash equilibria ·
Fair and unfair equilibria

1 Introduction

One of the most important features of quantum theory is the nonlocality—the existence
of correlations that cannot be explained in the framework of any local realistic theory. In
particular, the correlations admitted by the latter must satisfy certain set of inequalities
which can be violated on the quantum level [1].

Violation of Bell inequalities has been confirmed experimentally [2]. Nonlocality
inherent to quantum physics appears to be useful in practice, in particular for infor-
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mation processing (see [3–5] and numerous other references). Bell inequalities can be
also discussed in the context of game theory. One can pose the question how the prop-
erties of the game are modified due to the existence of nonlocal correlations between
the players. The first attempts to construct the games based on quantum mechani-
cal correlations concerned those of complete information [6–10]. It appeared that the
quantum versions of classical games offer additional strategies which allow to resolve
dilemmas that occur in classical games (e.g. the Prisoner’s Dilemma). It has been also
shown that quantum games can be realized experimentally [11,12].

On the other hand the conclusion that the advantages of quantum counterparts
of classical games with complete information result from the specific properties of
quantum correlations has been much debated and criticized [13,14]. In order to make
the relation between quantum nonlocality and the advantages of quantum strategies
more transparent the quantum versions of games with incomplete information [15]
have been proposed [16]. In this way the connection has been established between the
Bell theorem and the Bayesian games. In order to understand it let us note that, as it is
nicely explained by Fine [17,18] (see also [19,20]), the violation of Bell inequalities
is directly related to the existence of noncommuting observables. Now, the unknown
elements of the game with incomplete information are represented by the concept of the
player type. On the quantum level the player types are, in turn, represented by different,
in general noncommuting, observables. This leads to the violation of Bell inequalities.
If the payoff functions of the players are related to Bell expressions, the players sharing
nonlocal resources can outperform the ones having access to classical resources only.

In the particular example proposed by Cheon and Iqbal [16], which is a mixture
of Battle of Sexes and Chicken games, the bound on classical payoffs is related to
Cereceda inequalities [21]. The ideas of Cheon and Iqbal were further developed
in the papers [22–25]. Quite recently Brunner and Linden [26] considered the more
general situation where nonlocal resources provide an advantage over any classical
strategy because the bounds on some combinations of payoff functions follow from
Bell inequalities.

The examples of games presented in [26] are the games of common interest. Pappa
et al. [27] gave an example of conflicting interest game where quantum mechanics
also offers an advantage over its classical counterpart. The game they consider is a
two-player one obtained as a combination of the Battle of Sexes and CHSH games.
It is symmetric with respect to the permutation of players although this property is
somewhat hidden due to the specific numbering of strategies and types used by the
authors. An important point is that, in the classical version of the game, the total
payoff (the sum of payoffs of both players) is bounded from above due to the Bell
inequality. This implies that it is a conflicting interest game provided that there exist
unfair equilibria saturating the bound resulting from Bell inequality. On the other
hand, on the quantum level all equilibria are the fair ones because the payoff functions
become equal. Moreover, there exist fair quantum equilibria where the parties have
strictly higher payoffs than for any classical fair equilibrium.

Further examples of conflicting interest games where quantum mechanics offers an
advantage were given by Situ [28]. Moreover, by a slight modification of the payoff
functions proposed in [27] Roy et. al [29] gave the examples of games where quantum
strategies can outperform even the unfair classical equilibrium strategies. Depending
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on the values of additional parameters entering the payoff functions their games have
only fair equilibria, both fair and unfair equilibria or only unfair ones.

In final instance all physics behind any example of quantum game with incomplete
information is related to quantum nonlocality manifesting in violation of some Bell
inequalities. The advantages of quantum strategies are the consequence of quantum
entanglement built into the game.

In the multipartite case the structure of nonlocal correlations is richer and less under-
stood [30]. There exist different definitions of nonlocality which refine the bipartite
definition. Therefore, it is advantageous to consider the three- or multiparty general-
izations of quantum Bayesian games. One example of three-party (three-player) game
has been provided by Situ et al. [31]. It is based on Svetlichny inequality [32] and
allows to analyse the advantages of the game based on fully quantum correlations
over the one where the correlations can be reduced to the mixtures of two-player ones
related locally to the third player.

In the present paper we consider the three-player counterpart of the game considered
in Ref. [27]. In Sect. 2 we outline the general construction of the three-player games
with incomplete information possessing the upper bound for total payoff following
from Bell inequalities and both fair and unfair equilibria saturating this bound. As
we have mentioned above such games are automatically conflicting interest games. In
Sect. 3 we provide an explicit example of such a game. As a next step we consider in
Sect. 4 a quantum counterpart of our game, i.e. we keep the utilities intact but replace
the classical advisor by a quantum one. It appears that the quantum game possesses
only fair equilibria and the corresponding payoffs are strictly higher than the classical
ones. We show that the nonlocality inherent in quantum mechanics plays the twofold
role: it raises, due to violation of Bell inequalities, the payoffs corresponding to fair
equilibria and excludes the unfair ones.

To conclude this section let us note that the game theoretic language has much wider
range of applications and is a very convenient tool for describing the peculiar properties
of quantum correlations. It can be used, for example, to study the entanglement in spin
systems [33,34] or decoherence phenomena [35–37].

2 Three-player games

We define a three-player Bayesian game following the analogous discussion of two-
player case by Pappa et al. [27] (see also [26]). There are three players: Alice (A),
Bob (B) and Charlie (C); each player acquires a type xi , i ∈ {A, B,C}, xi ∈ {0, 1},
according to the probability distribution P(x) ≡ P (xA, xB, xC ). They decide on
their actions yi , yi ∈ {0, 1}, according to a chosen strategy. The average payoff of
each player reads

Fi =
∑

(x,y)

P
(
x
)
p

(
y|x

)
ui

(
x, y

)
(1)

where p(y|x) ≡ p(yA, yB , yC |xA, xB , xC ) is the probability the players choose
actions y ≡ (yA, yB , yC ) given that their types were x ≡ (xA, xB , xC ); ui (x, y)
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are the utility functions determining the gains of players depending on their types and
actions. The properties of the game are determined by the form of utility functions
and the restrictions imposed on the probabilities p(y|x).

In order to set the question of fair and unfair equilibria in the proper framework we
consider the games symmetric with respect to the permutations of players. This implies
the relations (which hold up to a possible renumbering of types and/or strategies)

uA (xA, xB, xC , yA, yB , yC ) = uB (xB, xA, xC , yB , yA, yC )

uC (xA, xB, xC , yA, yB , yC ) = uC (xB, xA, xC , yB, yA, yC ) (2)

together with the similar relations obtained by choosing the remaining two pairs of
players. As far as the probabilities p(y|x) are concerned we assume they obey the
no-signalling conditions [30]

∑

yC

p (yA, yB, yC |xA, xB , xC ) =
∑

yC

p
(
yA, yB, yC |xA, xB, x ′

C

)
(3)

and similar conditions for the remaining two players. Apart from Eq. (3) we have the
normalization conditions

∑

y

p
(
y|x

)
= 1 for all x . (4)

Given no-signalling condition we consider two types of probability distributions:

(i) the classical case one assumes further constraints on p(y|x) in the form of
Bell inequalities [30,38,39]. According to Fine [17–20] this leads to the hid-
den variables representation of the relevant probabilities (actually, Fine’s theorem
concerns two-party case, but we assume it holds for three parties as well):

p (yA, yB , yC |xA, xB , xC ) =
∫

dλρ(λ)pA (yA|xA, λ) · pB (yB |xB , λ) · pC (yC |xC , λ)

(5)
λ being a set of hidden variables distributed with probability density ρ(λ). Note
that since there are only two possible actions per player it is sufficient to con-
sider only hidden variables providing three bits so that λ ≡ (λA, λB, λC ),
pA(yA|xA, λ) = pA(yA|xA, λA), etc.
In game theoretic language one says that the players receive advice from a classical
source that is independent of the inputs x ; ρ (λ) can be viewed as characterizing
an advisor. In particular, if the strategies of the players are uniquely determined
by their types and advices they received (deterministic hidden variable model),

yA = cA (xA, λ) , etc. (6)

one finds
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Fi =
∑

x

P(x)
∫

dλρ(λ)ui (xA, xB, xC , cA (xA, λ) , cB (xB, λ) , cC (xC , λ))

(7)

On the other hand if the players are insensitive to the advisor suggestions,
pA (yA|xA, λ) = pA (yA|xA), etc., the probability factorizes

p (yA, yB, yC |xA, xB, xC ) = pA (yA|xA) pB (yB |xB) pC (yC |xC ) (8)

(ii) the quantum case quantum probabilities (a quantum source/advisor) are defined
by the choice of tripartite density matrix ρ (which characterizes an advisor) and
the choice of three pairs of observables Ax , Bx and Cx , x = 0, 1, acting in
two-dimensional Hilbert spaces of individual players and admitting the spectral
decompositions

Ax = 1 · A1
x + (−1) · A0

x , 1 = A1
x + A0

x , etc. (9)

with Ay
x , etc. being the corresponding projectors. The resulting payoffs read

Fi =
∑

x,y

P
(
x
)

Tr
(
ρ

(
AyA
xA ⊗ ByB

xB ⊗ CyC
xC

))
ui

(
x, y

)
. (10)

Note that the general form of our quantum variables reads

Ax = �n(A)
x · �σ (11)

where �σ are Pauli matrices while �nA
0,1, the unit vectors, �n(A)

x = (sin θ A
x cos ϕA

x , sin θ A
x

sin ϕA
x , cos θ A

x ); similar formulae are valid for B and C .
In principle we could also consider superquantum no-signalling distributions [40];

however, we shall not dwell on this question.
In what follows we assume that the distribution of the player types is uniform,

P
(
x
) = 1

8
for all x = (xA, xB, xC ) . (12)

In order to construct the examples of games with conflicting interests which possess fair
quantum equilibria with higher payoffs than those corresponding to classical equilibria
we start with the utility functions ui (x, y), i ∈ {A, B,C}. We demand they obey the
symmetry conditions (2). Moreover, we assume that the sum of payoffs FA+FB+FC is
expressible in terms of the expression(s) entering the Bell inequality(ies). The relevant
Bell inequality reads [30,38,39]

|〈A0B1C1〉 + 〈A1B0C1〉 + 〈A1B1C0〉 − 〈A0B0C0〉| ≤ 2 (13)

where Ax , Bx and Cx acquire the values ±1. Rewriting the above inequality in terms
of relevant probabilities and comparing the resulting expression with FA + FB + FC
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one finds the conditions on utility functions. However, there is an important difference
between two- and three-player cases. In the latter one the resulting equations are more
stringent and imply that the utility functions lead to a trivial game. This can be cured
as follows. Note that the properties of a game (i.e. the structure of its Nash equilibria)
are invariant under the transformations

ui
(
x, y

)
→ αui

(
x, y

)
+ β (14)

with arbitrary α and β. Therefore, if the constraints on u′
i s are not invariant under (14)

their solutions must be so special that they lead to a trivial game.
However, note that we have eight Bell inequalities at our disposal. In fact the

remaining ones are obtained from (13) by making the replacement 0 ↔ 1 for one, two
and three players. In particular in the latter case we arrive at the inequality

|〈A1B0C0〉 + 〈A0B1C0〉 + 〈A0B0C1〉 − 〈A1B1C1〉| ≤ 2. (15)

By demanding that FA + FB + FC is expressible in terms of the linear combination
(actually, the difference) of expressions entering (13) and (15) one finds much more
reasonable conditions on utility functions [in particular, they are invariant under the
transformations (14)].

The symmetry conditions (2) and the one imposed on FA + FB + FC allow us
to express the utilities ui (x, y) in terms of a number of independent parameters. As
a next step we select some set of strategies as the candidates for nonfair classical
equilibria. Additionally, we demand that, for these equilibria, the sum FA + FB + FC
saturates the upper bound following from Bell inequalities. If this is the case we can
take for granted that, for any fair equilibrium, at least one player will gain smaller
payoff than for the unfair one. The resulting general conditions (derived with the help
of MATHEMATICA) are too complicated to present them here explicitly. Instead, we
give an example of a game sharing the properties discussed above.

3 The example of three-player game

The utilities in our example are presented in Table 1.
The elements of the matrices entering Table 1 are indexed by xA (rows) and yA

(columns). Some elements of the utility functions above are negative (loss instead of
gain), but this can be easily cured, if necessary, using the symmetry transformations
(14). The resulting game may seem slightly complicated, but the underlying principles
are very simple: (i) symmetry with respect to the permutations of players, (ii) express-
ibility of the total payoff FA + FB + FC in terms of Bell operators and (iii) saturation
of the bound for total payoff following from Bell inequalities. The latter reads in our
example

FA + FB + FC ≤ 9

4
. (16)
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Table 1 Utilities of players

yC = 0 yC = 1

yB = 0 yB = 1 yB = 0 yB = 1

uA
(
x, y

)

xC = 0

xB = 0

[
2 0
2 1

] [ 3
2 1
0 2

] [ 3
2 1
0 2

] [
4 1
4 19

3

]

xB = 1

[
0 −1
−1 1

] [ − 1
2 2

1 0

] [
1 −1
1
2 0

] [
−2 − 19

6
−1 − 1

2

]

xC = 1

xB = 0

[
0 −1
−1 1

] [
1 −1
1
2 0

] [ − 1
2 2

1 0

] [
−2 − 19

6
−1 − 1

2

]

xB = 1

[
2 2
0 −2

] [
1 1
2 1

2

] [
1 1
2 1

2

] [
0 4
−1 2

3

]

uB
(
x, y

)

xC = 0

xB = 0

[
2 3

2
0 − 1

2

] [
0 1
−1 2

] [ 3
2 4
1 −2

] [
1 1
−1 − 19

6

]

xB = 1

[
2 0
−1 1

] [
1 2
1 0

] [
0 4
1
2 −1

] [
2 19

3
0 − 1

2

]

xC = 1

xB = 0

[
0 1
2 1

] [ −1 −1
2 1

] [ − 1
2 −2

1 0

] [
2 − 19

6
1 4

]

xB = 1

[ −1 1
2

0 2

] [
1 0
−2 1

2

] [
1 −1
2 −1

] [
0 − 1

2
1
2

2
3

]

uC
(
x, y

)

xC = 0

xB = 0

[
2 3

2
0 − 1

2

] [ 3
2 4
1 −2

] [
0 1
−1 2

] [
1 1
−1 − 19

6

]

xB = 1

[
0 1
2 1

] [ − 1
2 −2

1 0

] [ −1 −1
2 1

] [
2 − 19

6
1 4

]

xC = 1

xB = 0

[
2 0
−1 1

] [
0 4
1
2 −1

] [
1 2
1 0

] [
2 19

3
0 − 1

2

]

xB = 1

[ −1 1
2

0 2

] [
1 −1
2 −1

] [
1 0
−2 1

2

] [
0 − 1

2
1
2

2
3

]
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Table 2 “Pure” Nash equilibria

yA yB yC FA FB FC

(0, 1) (0, 0) (0, 0) 5
8

13
16

13
16

(0, 0) (0, 1) (0, 0) 13
16

5
8

13
16

(0, 0) (0, 0) (0, 1) 13
16

13
16

5
8

(1, 0) (0, 1) (0, 1) 11
8

7
16

7
16

(0, 1) (1, 0) (0, 1) 7
16

11
8

7
16

(0, 1) (0, 1) (1, 0) 7
16

7
16

11
8

(0, 1) (1, 1) (1, 1) 3
4

3
4

3
4

(1, 1) (0, 1) (1, 1) 3
4

3
4

3
4

(1, 1) (1, 1) (0, 1) 3
4

3
4

3
4

Actually, in order to obtain the utilities presented in Table 1, we have used still one
constraint to be discussed below.

The game defined by the utilities given in Table 1 possesses the correlated Nash
equilibria described in Table 2. The rows in first three columns present the values of
y’s for x = 0 and x = 1.

In order to show that the configurations presented in Table 2 provide the Nash
equilibria we note first that the relevant probabilities are of the form (5). Consider,
for example, the first row in Table 2. The probabilities corresponding to the strategies
entering it read

pA (yA|xA, λ) = δyA,xA

pB (yB |xB, λ) = δyB ,0

pC (yC |xC , λ) = δyC ,0. (17)

Equation (17) defines an equilibrium. To see this consider the Alice payoff. Equa-
tions (5) and (17) yield

p
(
y|x

)
= δyB ,0δyC ,0

∫
dλρ (λ) pA (yA|xA, λ) ≡ pA (yA|xA) δyB ,0δyC ,0 (18)

and, consequently,

FA = 1

8

∑

(xA,yA)

pA (yA|xA)
∑

xB ,xC

uA (xA, xB , xC , yA, 0, 0)

≡ 1

8

∑

xA,yA

pA (yA|xA) uA (xA, yA) . (19)
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FA should be maximized on the convex set
∑
yA

pA (yA|xA) = 1, xA = 0, 1; FA acquires

maximum on some of extremal points of this set. The same reasoning applies to Bob
and Charlie. So it remains to check the equilibrium condition on 26 strategies yi (xi ),
i ∈ {A, B,C}.

By inspecting Table 2 we see that we have 3 groups, each containing 3 equilibria;
each set is invariant under the permutation of players. Two sets represent unfair equi-
libria; the remaining one contains fair ones. The game is a conflicting interest one as it
is clearly seen from Table 2: there is no common equilibrium preferred by all players.
In fact, even if some mixed (i.e. the one with some 0 < p(y|x) < 1) fair equilibrium

existed, the payoff of each player could not exceed 3
4 due to the bound on the total

payoff following from Bell inequalities.

4 The quantum counterpart of three-player game

Let us now pass to the quantum case. The density matrix ρ entering Eq. (10) is chosen
as

ρ = |
〉 〈
| (20)

where |
〉 is the GHZ state

|
〉 = 1√
2

(|111〉 + i |000〉) . (21)

The choice of ρ determines the properties of advisor while the players strategies are
described by the probabilities p(y|x) which, in turn, are determined by choosing the

unit vectors �n(A)
x , �n(B)

x and �n(C)
x ; one needs twelve angles to characterize them. This

makes the problem complicated. Therefore, we restrict ourselves to the special case
θ A
x = θ B

x = θCx = π
2 . Let us denote by (ϕ1, ϕ2), (ϕ3, ϕ4) and (ϕ5, ϕ6) the angles

characterizing the observables Ax , Bx and Cx , respectively. It is then not difficult to
find the relevant payoffs

F ≡ FA,B,C = 1

48
(26 + 3 sin (ϕ1 + ϕ3 + ϕ5) + 2 sin (ϕ2 + ϕ3 + ϕ5)

+ 2 sin (ϕ1 + ϕ4 + ϕ5) − 3 sin (ϕ2 + ϕ4 + ϕ5) + 2 sin (ϕ1 + ϕ3 + ϕ6)

− 3 sin (ϕ2 + ϕ3 + ϕ6) − 3 sin (ϕ1 + ϕ4 + ϕ6) − 2 sin (ϕ2 + ϕ4 + ϕ6)) . (22)

We have fixed the values of utility functions in such a way that all payoff functions are
equal; this is the additional condition we have mentioned before. Due to this property
all Nash equilibria must be fair.

F is invariant under the transformations

ϕ1 → ϕ1 + χ1, ϕ2 → ϕ2 + χ1, ϕ3 → ϕ3 + χ2, ϕ4 → ϕ4 + χ2

ϕ5 → ϕ5 + χ3, ϕ6 → ϕ6 + χ3 (23)
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provided χ1 + χ2 + χ3 = 2nπ . This follows from the relation

ei
χ1
2 σ3 ⊗ ei

χ2
2 σ3 ⊗ ei

χ3
2 σ3 |GHZ〉 = (−1)n |GHZ〉 . (24)

Maximizing F one obtains the Nash equilibrium. Due to the symmetry (23) we get two
parameter family of equilibria. To fix one we put ϕ1 = ϕ3 = 0. Then the remaining
angles (obtained numerically) read ϕ2 = −π

2 , ϕ4 = −π
2 , ϕ5 = 2.1588, ϕ6 = 0.5880

(up to the multiples of 2π ). The corresponding gain of each player is

FA = FB = FC = 0.842 (25)

We conclude that the quantum version of the game possesses only fair equilibria and the
corresponding payoffs are higher than in any classical fair equilibrium which, due to the
inequality (16), cannot exceed 0,75. Let us note that our game is genuinely a quantum
one (in spite of the restriction θ ix = π

2 imposed) since the strategies are represented by,
in general, noncommuting observables. However, the result obtained (the existence of
only fair equilibria) might occur as a consequence of artificial constraint imposed on the
θ angles. To get some feeling what is going on consider the general quantum game with
no constraints on θ ′s. Let us take into account the unfair equilibrium corresponding to
the first row of Table 2. It is defined by the probabilities p(y|x) which cannot appear

on quantum level. In fact, assume we have six pairs of one-dimensional projectors Ay
x ,

By
x and Cy

x obeying

〈
| (AyA
xA ⊗ ByB

xB ⊗ CyC
xC

) |
〉 = δyA,xAδyB ,0δyC ,0. (26)

Summing over yA and yB yields

〈
| (1 ⊗ 1 ⊗ CyC
xC

) |
〉 = δyC ,0. (27)

Now, 1 ⊗ 1 ⊗ CyC
xC is a projector so that

(
1 ⊗ 1 ⊗ CyC

xC

) |
〉 = |
〉 (28)

which is impossible (|
〉 ≡ |GHZ〉).
We conclude that not all classical strategies can be reproduced on quantum level. In

particular this concerns strategies leading to unfair equilibria. One can say that quantum
entanglement plays here twofold role: it excludes at least some (unfair) equilibria and
raises the payoffs corresponding to fair equilibria.

Finally let us note that our results concern the case of uniform distribution of the
player types [cf. Eq. (12)]. If this condition is relaxed new interesting possibilities arise.
In the nice recent paper [41] Auletta et al. presented some examples of three-party GHZ
games with nonuniform distributions of types; in particular, they constructed a game
with the following feature: no no-signalling (superquantum) distribution can help to
achieve a better fair equilibrium than that achieved by a quantum strategy. However,
it should be stressed that the assumption concerning the nonuniform distribution of
types is here crucial.
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5 Conclusions

We have outlined the construction of general three-player game with incomplete infor-
mation such that: (i) it is symmetric under the permutation of players, (i i) the upper
bound on the total payoff results from Bell inequalities and (i i i) there exist both fair and
unfair Nash equilibria saturating this bound. Such games are necessarily conflicting
interest ones. Although the general formulae are rather involved, the basic assump-
tions and the algorithm for constructing the game are clearly described which allows
to produce easily numerous examples. One example is presented in detail. Contrary to
the case of two-player game [27–29] one has to combine at least two Bell inequalities
to obtain a nontrivial game.

A quantum counterpart of the game is obtained by keeping the same utility functions
but replacing the classical advisor by a quantum one. As it has been already shown by
Pappa et al. [27] the quantum strategies can outperform the classical ones due to the
quantum phenomenon of entanglement which leads to the violation of Bell inequalities.
The description of entanglement in the three-partite (and multipartite) case is more
complicated than in two-partite one (see, for example, Ref. [30]). One can consider,
for example, the three-partite correlations which are the mixtures of quantum and
classical ones [32] and construct a three-player game based on Svetlichny inequalities
[31]. It is desirable to construct also the three-player games based on Bell inequalities.
In such a case one has to use more than one Bell inequality. Another important point
which should be mentioned is that in order to ensure the violation of Bell inequalities
(which allows the quantum strategies to outperform the classical ones) one has to
choose a particular form of quantum advisor. It appears that it can be chosen in such
a way that the payoff functions of the players coincide. This happens to be the case
in the example considered in Ref. [27] as well as in the one described in the present
paper. The quantum game possesses then only fair equilibria.
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