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Abstract We discuss a family of states describing three-qubit systems in a context
of quantum steering phenomena. We show that symmetric steering cannot appear
between two qubits—only asymmetric steering can appear in such systems. The main
aim of this paper is to discuss the possible relations between the entanglement measures
and steering parameter for two-mode mixed state corresponding to the qubit—qubit sub-
system. We have derived the conditions determining boundary values of the negativity
parametrized by concurrence. We show that two-qubit mixed state cannot be steer-
able when the negativity of such state is smaller than, or equal to, its boundary value.
Finally, we have found ranges of the values of the mixedness measure, parametrized
by concurrence and negativity for steerable and unsteerable two-qubit mixed states.

Keywords Quantum correlations - Quantum steering - Quantum entanglement -
Negativity - Concurrence - Three-qubit system

1 Introduction

Quantum steering belongs to a group of correlations which appears in quantum world
and does not have its counterpart in classical physics. The concept of steering was
introduced by Schrodinger in 1935 [1] as a generalization of the EPR paradox for-
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mulated by Einstein, Podolsky and Rosen [2]. In 2007 Wiseman et al. [3,4] showed
that not every nonseparable states are steerable and not every nonsteerable states are
nonlocal in a Bell sense. Thus, one can say that the steering represents some form of
nonlocality which is, from one side, weaker than the usual Bell nonlocality, and from
the other—stronger than nonseparability. Next, Oppenheimer and Weher showed that
steering with uncertainty principle determine the degree of nonlocality [5]. Nowadays,
steering phenomena are studied not only in space’s context, but also in time’s one (for
such situations we call it temporal steering). Such phenomena were considered not
only from theoretical point of view [6,7] but also first experiment studies of temporal
steering were proposed and performed [8]. Steering phenomena seem to be especially
relevant from the point of view of quantum information processing [9], including
quantum key distribution [10].

The first experimental observation of the EPR paradox was done by Ou et al. [11],
whereas experimental realization of steering was described in [8,12-18]. It should
be emphasized that generation of EPR steering was considered in a context of vari-
ous systems. For instance, they were three-mode optomechanical system composed
of an atomic ensemble located in a cavity with an oscillating mirror [19], double-
cavity optomechanical system with two separate electromagnetic fields mediated by
amechanical oscillator [20], system comprising optical cavity filled by an electromag-
netic field and the mechanical oscillator [21], model involving light beams generated
in time-modulated nondegenerate optical parametric oscillator [22] and many oth-
ers.

To discuss steering phenomena, the criterion which was proposed by Reid [23],then
developed by Cavalcanti and Reid [24], and by Walborn et al. [25] is usually applied.
However, at this point one should mention very latest work by Rutkowski et al. [26]
in which an experimentally feasible unbounded violation of a steering inequality was
proven. The universal form of such inequality was derived there with application of
the DeutschMaassenUffink entropic uncertainty relation.

In this work, we discuss steering properties of the states corresponding to a three-
qubits model. In particular, we consider the relations between steering in a two-qubit
subsystem and the entanglement described by the negativity and concurrence. The
paper consists of two parts. In the first one, we analyze the situation when in the
three-qubit system only one excitation is present, whereas in the second part we study
double excited system. For the both cases, we discuss the possibility of generation
symmetric steering between two qubits. We show what kind of steering (symmetric or
asymmetric) can be observed in our three-qubit systems, and which type of steering
will never appear for the given case. Moreover, applying entanglement measures such
as concurrence and negativity, we find the conditions (upper bound) determining when
unsteerable mixed states appear for qubit—qubit subsystem. In addition, we check how
the mixedness of the states characterized by the linear entropy is related to the steering
effect for the models discussed here. In particular, we identify ranges of the values
of the entropy for steerable states described by various values of the concurrence and
negativity. In this paper, we only shortly discuss cases when zero or three excitations
are present—such cases lead to not interesting conclusions and correspond to trivial
physical models.

@ Springer



Quantum steering borders in three-qubit systems Page 3 0of 23 175

2 Three-qubit system with one excitation

In this paper, we focus on the family of the states describing three-qubit systems in a
context of finding conditions determining which states are steerable. We do not discuss
here the influence of coupling among them leading to some particular time evolution.

In this article, we mostly concentrate on two cases. The first of them corresponds
to the situation when single excitation is present in a model, whereas the second one
concerns two excitations’ case. Obviously, there are two other situations—when we
have no excitations at all and when all three qubits are excited. However, if we assume
that the discussed model of three qubits does not interact with external systems, such
cases are trivial and can be neglected.

This section is devoted to the situation when single excitation is present. As the
total number of photons/phonons in a physical system not interacting with external
reservoirs is conserved (and equal to the unity): (n) = (n1) + (n2) + (A3) = 1, where
the qubits considered here are labeled by 1, 2 and 3. For such a case, the wave function
describing our model can be written as:

[P} = Cont1001) + Co101010) + C10]100), M

and then, the corresponding density matrix is

0 0 0 0 0 0O 0 O
0 Poo1 Cio1Coto 0 Cip;Cio0 O 0 0O
0 Cg10Coo1 Poio 0 C35oCi00 0 0 0
0 CTOOCO(H CTOOCOW 0 Pioo 0O 0 O
0 0 0 0 0 0 0 O
0 0 0 0 0 0O 0 O
L 0 0 0 0 0 0 0 O

2
Obviously, C; i appearing here are the complex probability amplitudes corresponding
to the states |ijk), and they determine probabilities P;jx = Ci*j «Cijk- The symbol (1)
denotes that we study the system with a single excitation.

As a parameter allowing to determine the presence and strength of the steering
in the considered system, we apply that defined with application of Cavalcanti et al.
inequality [27]. Such parameter can be written in terms of the boson creation and
annihilation operators (a' and 4) as

S = (aa*)(&*a ) — <2ﬂa- (&*a» + 1>> 3)
ij =\did;|\4;d;j 4\

where indices i and j label the qubits. Qubit j steers qubit i when the parameter S;;
takes values greater than zero. If at the same time S;; > 0, then symmetric steering can
be observed. The second type of steering is present when only one of two parameters
(8ij or §j;) is greater than zero. For such a case, we are dealing with asymmetric
steering.
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For the system described by the wave function | (), steering parameters for each
pair of qubits can be expressed by the probabilities P;; and are:

SS) = Po10P100 — 0.5 P00,
Sé{) = Po10P1oo — 0.5 P10,
S](g) = Poo1 Pioo — 0.5 P10,
Sé? = Poo1 P1oo — 0.5 Poor,
Ség) = Poo1 Po1o — 0.5 P10,
Sgé) = Poo1 Po1o — 0.5Poor1. 4

We analyze here the system’s ability to produce symmetric steering. Thus, we can show
that this type of steering will never appear in systems described by the wave function
[ (D). Let us consider a pair of qubits (for instance, those labeled by 1 and 2) and

compare steering parameters corresponding to them:SS) and Sé?. From relations (4),

we see that the qubit 2 steers qubit 1 (S f? > (0) when

S = (Py1o — 0.5)Pigo > 0 )

In consequence, for such a situation the probabilities Pyjo and Pjgp should be different
from zero and additionally, Py1¢ must be greater than 0.5.
When we observe steering between the previously considered qubits, but in the

opposite direction, Sé{) > 0 and hence, the inequality
S5 = (Pioo = 0.5)Poio > 0 ©)

should be fulfilled. Then, the both probabilities Pyjg and Pjgg should be of nonzero
value too, and the probability Pjgo > 0.5.

Therefore, to get symmetric steering (Sg) > 0 and Sg) > 0) two probabilities
must take values greater than 0.5 what is not possible to occur. A similar situation we
get for other pairs of qubits. Then, we see that symmetric steering is impossible to
obtain in the system discussed here and the generated steering is always asymmetric.

If we carefully look at Eq. (4), we see that when we assume that Pjgp > 0.5 two
steering parameters are greater than Zero—Sg) and Sé{). For such situation, qubit 1
steers simultaneously the remaining two qubits, labeled by 2 and 3. Analogously, when
Po1o > 0.5 qubits 1 and 3 are steerable by qubit2 (Sg) > 0, Séé) > (),whereas when

Pyo1 > 0.5 qubit 3 steers those labeled by 1 and 2 (Sl(g) > 0, Sé? > (). From the
other side, if we look for the situation when two qubits steer the third one (for example,
when qubits 1 and 2 steer qubit 3) two steering parameters ( Sé? and Séé)) should be
positive, and hence, two probabilities: Pjgo and Pyio must exceed 0.5. Obviously such
situation is impossible. Therefore, for our three-qubit model, one qubit can steer two
qubits, whereas two qubits cannot steer the third qubit at the same time. This fact is
consistent with the monogamy results of Reid [28].
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The problems related to the nonlocality seems to be one of the most interesting
topics of the quantum theory and are discussed extensively in numerous papers (for
instance, see [3,4,29,30] and the references quoted therein). Steering and entangle-
ment phenomena are different types of quantum nonlocality. It is known that steerable
states are the subset of the set of entangled states [3,4]. Therefore, we shall find
relations among entanglement measures and the steering parameter present in our
model. As the measures of two-qubit entanglement, we will apply the negativity N
and concurrence C. In 2001 Verstraete et al. [31] checked the relations between the
negativity and concurrence and found upper and lower bounds of the negativity’s
value corresponding to a given concurrence. They proved that for two-qubit mixed
states the negativity takes values smaller or equal to the corresponding concurrence
C. Moreover, they have found that such negativity is always greater than or equal to
V(1 —C)2+C% — (1 — C). Obviously, if we are dealing with pure states and for
the Bell diagonal states, the negativity always is equal to the concurrence. In general,
the negativity takes its minimal value for very special mixed states. The degree of
entanglement of such states cannot be increased by any global unitary operation. The
example of such states are two-qubit mixed states defined as a mixtures of Bell and
separable states [32,33], named Werner states [34].

Here we will show that for steerable two-qubit mixed states the value of negativ-
ity is always larger than the value determined by its concurrence’s counterpart. As
previously, we consider a pair of qubits (denoted here by 1 and 2) and calculate the
both: negativity N1, and concurrence C1» describing the entanglement between them.
First, we must find reduced density matrix pg) which represents state of the two-qubit
subsystem. Such matrix can be derived from the full three-qubit density matrix by
tracing out one subsystem—the qubit 3.

Poo1 0 0 0

0 _ my_| O Poro  CgipCi00 O

ol =1 (o) =| g CloCo0 P00 M
0 0 0 0

The concurrence of qubit—qubit subsystem can be calculated with application of the
definition proposed by Hill and Wootters [35,36]

C(p):maX(/E—\/kll—m_m’O)' ®

The parameters A; are the eigenvalues of matrix R obtained from the relation R = pp,
where p is defined as p = 0y ® oyp*0, ® 0, and o, is 2 x 2 Pauli matrix. For the
qubits 1 and 2, we have calculated eigenvalues of the matrix Rj» = p12012 and found
three of four eigenvalues are zero, whereas the fourth one takes the following form

A = 4Py10P10o- )

Then, the concurrence Ci3 is given by
Ci2 = V4Pioo Poro- (10)
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Next, applying the Peres—Horodecki criterion [37,38]

N(p) = max <O, —2mlin)L1> (11)

where A; are the eigenvalues after partial transposition of the matrix p, we found the
formulas determining the negativity for the analyzed here pairs of qubits. They can be
expressed with the use of the following eigenvalues:

A1 = Poor,
A1 = Poio,
1
hiir = 5 <\/P0201 + 4 P1oo Poto + Pom) ,
1 2
Aty = 3 _\/Pom + 4 P10 Poro + Poot | - (12)

We see that nonzero negativity can be obtain when eigenvalue Ay is negative—the
remaining three eigenvalues are always non-negative. Then, the formula determining
the negativity can be written as follows:

Npp = \/Pozm + 4 P00 Poio — Pooi- (13)

Afterward, we make the following replacement in Eq. (13) using relation (10):
4 P1oo Po1o by C122. Hence, since the probability must be normalized, we obtain the
formula:

2

Niz = =1+ Poio + ‘12
4Po10
C? 1 ct
2 12 2 12 2
‘|’\/1 _2P010+PO]0_ F()l() EC]2+ 16P2 +C12 (14)
010

For unsteerable states, the maximal value of the steering parameter is equal to zero.
Such zero value is an upper bound for not steerable states. From relation (4), for the

pair of qubits 1 — 2, we see that S;é) = 0 when Pyj9 = 0.5, whereas Sé? = 0 when
P1oo = 0.5. Thus, replacing the probability Pyio by the boundary value 0.5 we obtain

Ni2 = C},. (15)
Analogous formulas can be derived for other pairs of qubits (1 — 3 and 2 — 3). In
general, for our model with a single excitation, when two qubits are not steerable,

the maximal possible value of the negativity for a given value of the concurrence is
determined by the following formula:

) 2
Nbound =C7, (16)

and the states are steerable when the value of negativity becomes greater than its
boundary value which is specified by Eq. (16).
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What is interesting, the qubit—qubit mixed states for which negativity takes its mini-
mal possible value determined by the Verstraete’s formula Nyin = +/(1 — C)2 4+ C2—
(1 — C) [31], and for which the degree of entanglement cannot be increased by any
global unitary operation are not steerable. For the situation discussed here, such states
are Werner states and they are mixtures of the Bell state |{r1) = % (|01)ij + |10)ij)
and the vacuum state |,) = |00);;, represented by the following two-qubit system
density matrix

l—a 0 0 O
oY =yl + (-l =| o 2 2 o a7
2 2
0 0 0 O

For the states represented by p‘%), the concurrence and negativity are equal to

(o) -
N(pf)=Vi=aP+a? - -w, (18)

respectively.

To check the correctness of our formula determining the upper bound of negativity
for unsteerable qubit—qubit mixed states, we have performed numerical simulations.
We generated randomly ~10° three-qubit states defined by the density matrix p)
(Eq. 2). Next, according to the method described previously, we have calculated two-
qubit density matrix traced out third subsystem, and for each qubit—qubit state we
calculated the concurrence C(,oi(jl )) and negativity N (,ofjl)). The results are shown in
Fig. 1, where red (upper) region corresponds to the states which are steerable, whereas
the turquoise area corresponds to the unsteerable states. Black solid line represents
the border defined by Eq. (16). We see that the upper bound of unsteerable states
determined by our formula agrees with that obtained by numerical calculations. From
the other side, the dashed line shown in Fig. 1 corresponds to the minimal values of

the negativity Ny, = N (,0(1)) The states determined by such values of the negativity

and concurrence are Werner states ,0( )

For the same set of generated randomly states, we have shown in Fig. 2 how the
value of steering parameter depends on the values of the concurrence and negativity.
For a given value of the concurrence, the steering parameter takes its maximal value
when N (,ol & )= C(pl 0 ); see Fig. 2a. For these situations, steering parameter can be
expressed as

1
S{j’)zz(cz—1+\/1—c2). (19)

In Fig. 2a, the maximal value of steering parameter is represented by black line.
When the value of negativity is smaller than its concurrence’s counterpart, the steering
parameter takes value smaller than that defined by Eq. (19). What is interesting, the

strongest steering appears when the condition C (,0(1)) =N (,0(1)) = 3 s fulfilled.
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1
0.8f
06t steerable states
=
Z o4}
0.2 1
unsteerable states
0 : ; ; ;
0 0.2 0.4 0.6 0.8 1

Cloy)

Fig. 1 The negativity N(,oi(jl)) versus concurrence C (,oi(j”) for the steerable (red area) and unsteerable

i('l)’ calculated numerically. Black lines

(solid and dashed) are plotted with application of derived here formulas (Color figure online)

(turquoise area) two-qubit states described by the density matrix p

For such situation, the density matrix describing system’s state takes the following
form:

,ol.(jl)(S = max)

(Valon) + vT=al10}) (Va(ol| + VT =a(10])

0 0 0 0
0 o Ja(l—a) 0
0 Ja(l—a) l—«a 01’
0 0 0 0

where « is equal to the one of two values: % or %.

Figure 2b shows which values can reach the steering parameter for a given nega-

tivity for steerable state. The black line shown there represents maximal values of the

steering parameter. For the negativity greater than \/LE’ the range of steering parameter

for steerable states is the same as for the concurrence and the parameter S;; takes

(20)

maximum value when N (pi(j[)) =C (,oi(jl)). When the negativity is smaller or equal to

\/Li’ maximal value of the steering parameter is defined by the following equation:
1
Sg)zzTg<—24—v§——2N¥%v60-+2A0)(—2N¥FV§N>. Q1)

Such parameter can be found when the state of our system is described by the density
matrix:

l—a—=B 0 0 0
Als=mo=| o A VPOl @)
0 0 0 0
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ij

S(p;.

N(p) = C(pl))

0 0.2 0.4 0.6 0.8 1
cio))

0.07

0 0.2 0.4 0.6 0.8 1
N(o)

Fig.2 Steering parameter Sl.(;) versus the concurrence C(,ol.(;)) (top) and the negativity N (pi(j[)) (bottom).

Red area corresponds to the set of steerable states. Black border line denotes the states for which C (pi(jl)) =

N (pi(jl)) (Color figure online)

where the probabilities obey the relation |« — 8| = %

As the upper bound for the steerable states was previously found for the qubit—
qubit mixed states, it seems to be natural to compare entanglement measures and
steering parameter with degree of the mixedness for discussed states. As a measure
of mixedness, we will apply the linear entropy defined with application of the purity

[39] as:

E(p) = % [1 —Tr (p2>] , (23)
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0 | I I i I i i
0 0.2 0.4 0.6 0.8 1

Cel

Fig. 3 Linear entropy E (pi(jl)) versus concurrence C (pi(jl)) for the both: steerable (top) and unsteerable

(bottom) states. Colored areas correspond to all possible randomly chosen states, whereas solid and dashed
lines were plotted with application of derived here conditions (Color figure online)

where D denotes dimension of p. The linear entropy takes values from zero to unity. It
is equal to zero for a pure states, whereas it reaches unity for maximally mixed states.
For two-qubit states, dimension D = 4 and linear entropy takes the following form:

E(pij) = g [1 —Tr (pfj)] . (24)

In Fig. 3, we show ranges of the linear entropy E (pi(jl)) for a given value of con-

currence C(,oi(jl)) for the qubit—qubit mixed states (all states are generated randomly,

the same way as in the previous figure, whereas border lines were determined by the
formulas derived below). Figure 3a presents results for steerable states, whereas the
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results for unsteerable states are shown in Fig. 3b. We see that for some values of
concurrence and linear entropy the both: steerable and unsteerable states can exist.
To find upper bound of degree of mixedness for steerables state, we will compare
concurrence, linear entropy and steering parameter. As previously, we consider qubits
labeled by 1 and 2, and calculate linear entropy for the states described by the density

matrix pl(é). Thus, the entropy is given by:

4
E (P§§)> =3 (1 - (Pozm + Piio + Piop + 2P010P100>) , (25)

Some of the above probabilities can be replaced by the concurrence (see Eq. 10), and
applying normalization condition for the probabilities we get

4 c C?
E( “))E— 1—(1+c? 2 _ =12 _opoo+2P2 ). @6
P12 3 + Cih + 8P1200 2Pioo 100 + 2Pjgo (26)

Next, replacing probability Pjpo by previously derived its boundary value 0.5, we
obtain

2 2
E(p)) =5 -5Ch @7)

The derived above condition is represented by the solid line limiting the area for
steerable state in Fig. 3a. Obviously, we can perform the analogous derivation for
other pairs of qubits, and hence, the indices 1 and 2 can be omitted.

Next, we will find condition which corresponds to the dashed border line limiting
the area for unsteerable state in Fig. 3b. States corresponding to this curve are the
states for which the negativity takes its minimal value and are described by the density
matrix p%); see Eq. (17). For such a case, applying Eq. (18), linear entropy can be
written as

E (pl.(jl)) - g (c - c2) . (28)

Thus, when the concurrence C < +/(2) — 1, the states are steerable, and hence,

linear entropy should obey the condition E (pl.(jl)) < % (C — CZ). When the entropy

He- ) < Bulf

whereas for E (,ol.(jl)) > % — %Cz all states are unsteerable. From the other side, for

)) < % — %C 2 discussed states can be steerable or unsteerable,

the cases when the concurrence C > /(2) — 1 we always observe steering when
E(,oi(jl)) < % — %Cz. However, when E (,ol.(jl)) > % — %Cz steering cannot appear. All
above situations are listed in Table 1.

Figure 4 shows the same as Fig. 3, but the concurrence was replaced there by the
negativity. Again, the red region represents steerable states (Fig. 4a), whereas the
turquoise area corresponds to unsteerable states (Fig. 4b). When we compare Fig. 4a,
b we see that for the values of linear entropy corresponding to the area confined by
solid and dashed lines, the both steerable and unsteerable states can appear.

Applying Egs. (13) and (25), we are able to determine the borders represented by
solid lines in Fig. 4. The formula defining them can be written as:
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Table1 The range of linear entropy for given values of the concurrence for steerable and unsteerable states

Concurrence Linear entropy Generated states
C<J2) -1 E ( 1(11)) < % (C - CZ) Only steerable states
(1) 8 _c2?
E ( bij ) >3 (C C ) Steerable or unsteerable states
) 2 _ 202
andE( pjj ><§7§C
( (1)) > % %Cz Only unsteerable states
C>J2) -1 ( (1)) < % %C2 Only steerable states
(,0(1)) > % %Cz Only unsteerable states
DY — _2 (2
E(p)=-5(¥~1). (29)

Thus, the states can be steerable when the entropy reaches the values smaller than
those determined by (29). As we compare Fig. 4a, b, we see that such condition is a
necessary, not always sufficient condition—from Fig. 4b follows that although there
are states for which E (,oi(jl)) is smaller than such boundary value (depicted in Fig. 4a),
we can find there unsteerable states (corresponding to the turquoise region below solid
line in Fig. 4b).

Next, we find equation describing the border of the area of unsteerable states rep-
resented by the dashed line shown in Fig. 4b. The states corresponding to the line
are those described by the density matrix pW) (Eq. 17). Applying relation (18) which
describes the negativity and Eq. (25), we obtain the formula which expresses the linear
entropy as a function of the negativity

E <pf]”) = —g (—1 ~N+V2(N + N2)> (-N +V2(N + N2)) . Q0

For N < % the states are steerable when the linear entropy fulfills the condition

E(,ol.(jl)) < —% (N 2 1). When linear entropy is greater than or equal to the value
defined by Eq. (30) or is smaller than the value described by Eq. (29), the states can
be the both: steerable or unsteerable (Table 2).

3 Three-qubit system with two excitations

The second case considered in this paper concerns the situation when two excitations
are present in the system i.e., (n) = (n1) + (n2) + (n3) = 2. For such situation, the
wave function describing the system can be written in the following form

‘¢(11)>=C011|011>+C101|101)+C110|110>7 (31)
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0.7

0.8 ——

0.7

0

0 0.2 0.4

0.6

NG

Fig.4 The linear entropy versus negativity for randomly generated states. Colored areas correspond to all
possible states—red area (top) denotes steerable, whereas turquoise (bottom) unsteerable states. Solid and
dashed lines depict derived and discussed in the text boundary conditions (Color figure online)

and the corresponding density matrix is

[0 0 0 0

0 0 O 0

0O 0 O 0
11 11 11 0 0 0 Por1
2 )_“”( )><‘”( )“ 000 0

0 0 0 CiyCon

0 0 0 ChyCon

000 0

ecNeoBoNoNeoloNeRe

C()k“ClOl

Poi
ClioCro1

Cg11Cio

CloiCio
Prio

[=ReoNeololoNoRoXe]

(32)
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Table 2 The ranges of the values of linear entropy and negativity for steerable and unsteerable states

Negativity Linear entropy Generated states
N < % E (pfj.”) < - ( — N ++/2(N + N?) ) Only steerable states
(N+ﬂw+m)
E (p;j.”) > — ( — N ++/2(N +N?) ) Steerable or unsteerable states
( 2N + Nz))
andE(())< %(Nz—l)
E (pfj”) > —% (N 2 1) Only unsteerable states
N > % E (pfj.”) < 7% (N2 - l) Only steerable states
E (pfj.”) > —% (N2 - 1) Only unsteerable states

Analogously as in the previous section, we can derive the expressions describing
steering parameters for each pair of qubits expressed by the probabilities as:

an 3
Sip 7 = Po11 Pio1 + §P011 + Pio1 —
(1 3
Sy1 7 = PoirPro1 + §P101 + Po11 —
3
S< D = Py P+ EPon + P110 —
an 3
S3 —P011P110+§P110+P011—

(n 3
Sy3 7 = Pro1Prio + §P101 + P10 —

(33)

W WRN W W W W

3
S< D = Py P + §P110 + Pio1 —

Next, to check the system’s ability to produce symmetric steering, we consider the
first and second qubits and compare two steering parameters S(”) and S(”) (due to
the symmetry of the model we omit here discussion of other pairs of qublts). From
relations (33), we see that qubit 2 steers qubit 1 (S, SENS 0) when the probabilities Py
and Pjq; are of nonzero values and additionally, Py11 Pio1 + %Po“ + Pio1 > % When
steering in opposite direction is present (i.e., S, (”) > () ,the both probabilities Pyig
and Pjoo should be greater than zero, and P011P101 + %Plol + Po11 > % To satisfy

the conditions for the presence of steering in two directions, the following inequalities
should be fulfilled:

1 3 —3Ppy11
0< Poi1 < = P e
< Io11 = ) 101 > 2+2P011
or
L p<1 Py > o 2hon (34)
- << >
) 011 = 101 3+2P011
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However, as the sum of probabilities Pyjo and Pjgg can not be greater than 1, con-
ditions (34) will never be satisfied. Thus, symmetric steering never appears in the
double excited system of three qubits—the discussed here case and for the double
excited three-qubit system the generated steering is always asymmetric.

As we have shown in the previous section, for the case of single excited system
one qubit can steer two others simultaneously. For double excited systems, such type
of steering can not appear. Let us analyze situations when the first qubit steers two
other. For such a case, two steering parameters must be greater than zero Sé{l) >
0, Sgl) > 0. From relations (33), we obtain that two conditions must be satisfied
simultaneously: Po11 Pio1 + 3 Piot + Po11 > 3 and Poi1 Piio + 3 Piio + Poir > 3.
Unfortunately, the system of these two inequalities for the probabilities has no solution
and, in consequence, one subsystem cannot steers two others.

Next, we concentrate on the situation when two qubits steer the third one—for
example, when qubits 1 and 3 steer qubit 2. For such situation parameters Sgl) and
S%I) should be greater than zero. In consequence, Po11 P1o1 + %PIOI + Po1q > % and
Pio1 Prio + %PIOI + P10 > %, and it leads to the inequalities:

1 P 0 3—-2Pp11 P 1(3 2Po11) ]4\/1 28 P 4 P2
_ =< < —_— << << — — + — .
) 011 342Po1 101 4 011 011 011

(35)

where the probabilities are negative and the solution is not physical. Therefore, for
double excited system, the situation when two qubits steer the third one at the same
time cannot be possible.

Again, as for the single excited system, we can find boundary values of the negativity
for unsteerable states. Thus, we consider a pair of qubits (labeled her as 1 and 2)
and calculate two entanglement’s measures: the negativity and concurrence. To do it,
we find the reduced density matrix pl(él) which represents a state of the two-qubit
subsystem

0 0 0 0
) (an 0 Pori C511Cio1 0
- o) - :
P12 3\ P123 0 CiyCor Pio; 0 (36)
0 0 0 Prio

Next, we calculate the concurrence

CchD = /4Py, Pios, 37)

and the negativity

1
N = \/Plzlo +4Po11 Pro1 — Prio. (38)

We know that for unsteerable states the maximal value of the steering parameter is
equal to zero. Knowing that the sum of all probabilities should be normalized and
applying conditions for the steering (Eqs. 37, 38), we obtain the following formula
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Fig. 5 The negativity N (pi(j”)) versus concurrence C(,ol.(j“)) for 10° randomly chosen three-qubit states.

Red region corresponds to the steerable states, whereas turquoise to unsteerable ones (Color figure online)

which allows to determine maximal possible value of the negativity for a given value
of the concurrence for unsteerable states

NID () =

un (6-5C% = A+v2/13CT = 6(~6 + 4) + 5C2(48 + A))
(39
where A = +/C* — 36C? + 36. The states are steerable when negativity takes values
greater than the boundary negativity defined by above equation. Obviously, analogous
equations can be derived for other pairs of qubits.
The correctness of the analytical formulas derived here we check by numerical sim-
ulation. We generated randomly 10° three-qubit states defined by the density matrix
oD (Eq.32). Next, we calculated the elements of two-qubit density matrix tracing out

the third subsystem, and then we calculated the concurrence C (p l.(jl

1
24

1)) and the negativ-

ity N (p,~(j”)) for each qubit—qubit subsystems. The results are shown in Fig. 5, where
red and turquoise regions correspond to the steerable and unsteerable states, respec-
tively. Solid black line in Fig. 5 represents the border between steerable and unsteerable
states defined by Eq. (39). We see that the derived here analytical formula determining
upper bound of unsteerable states is correct. What is interesting, the area of region
corresponding to the steerable states is much smaller than its counterpart correspond-
ing to unsteerable states. We see that for three-qubit system with double excitation
steerability is more difficult to obtain than for the case considered in previous section—
”amount” of states for which steering is generated is smaller than for three-qubit system
with single excitation. Dashed line shown in Fig. 5 corresponds to the situations when
negativity takes its minimal possible values Ny, = +/(1 — C)%2 4+ C% — (1 —C) [31].
For such a case, the states belong to the family of Werner states which are mixtures
of the Bell state |[y) = %@ (|01),-j + |10),~j) and the state [2) = [11);; and can be

represented by the following two-qubit density matrix
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Fig. 6 Simulations of steerable two-qubit states pi(j”) for the steering parameter Si(jH Versus concurrence

C(pi(in)) or negativity N(pi(j”))

(40)

S O O

pal = aly) (Wil + (1 — @) [Y2) (2] =

S O OO
OnIRNIR O
OnIRNIR O

1l—«a

For states described by the density matrix p‘(}é”, concurrence and negativity are equal

(") =
N(,o‘();l)) —Vl-a)?+a?—(1-a). (41)

Next, we analyze the ranges of possible values of the steering parameter according
to a given concurrence or negativity for steerable states. From Fig. 6, we see that for
steerable states such range for a given concurrence is the same as that for the negativity.
What is important, the same as for the system with a single excitation, the steering
parameters for given values of the concurrence take here their maximal values when
N (pi(j”)) =C (p,gfl)) and such values are equal to those defined by Eq. (19). The

strongest steering appears for C (p({l)

i ) =N (,ol.(j”)) = JT§’ and the density matrix
describing the system’s state takes the form presented by matrix (20).

To find how the mixedness is related to the entanglement in our system, we inspect
ranges of the values of linear entropy E (pi(j”)) for a given concurrence (Fig. 7) and
negativity (Fig. 8), respectively. The red regions shown in figures correspond to steer-
able states, whereas the turquoise ones denote the regions of unsteerable states. For
the both situations, we see that for some values of the linear entropy and concur-
rence/negativity we observe only steerable states. To find the upper bound of steerable
states determined by the degree of mixedness for a given concurrence, we consider

qubits 1 and 2 and calculate the linear entropy for the state pfél)
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Fig.7 Phase diagram for the steerable (red region) and unsteerable (turquoise region) 100 randomly chosen
two-qubit states described by the density matrix ,ol.(jl D Solid line denotes the border between two considered
here classes of states (Color figure online)
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Fig. 8 The same as in Fig. 7 but for the negativity instead of concurrence

8
E (pgl)) =3 (—Po211 + Poi1 — Piy, + Pio1 — 2P011P101) . (42)

then, applying formula (37) we can express (42) in the following form:

2
E <p(11)) _ (-6+An+Ch)
2 6(—18 + C% + App)?

x (—240+56A12+236C%2—18A120%2—3601‘2+A1201‘2+c?2),
(43)
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where Ay = \/ C}, —36C%, + 36. Obviously, for other pairs of qubits we obtain
analogous results, and hence, the indices appearing in (43) can be omitted. Moreover,
from Figs. 7 and 8 we see that not only the areas of regions corresponding to the
steerable states are smaller than those for unsteerable ones, but also the values of
entropy for a given concurrence and negativity are greater for unsteerable states than
those for steerable ones.

As Fig. 8 depicts the same situation as that shown in Fig. 7 but for the negativity
instead of concurrence, we can derive the formula determining the border between
two discussed here families of the states as a function of the negativity. Thus, Eq. (43)
can be expressed by the negativity as

bl

(44)

. ( (,,)> 54— 15N — 50N? + 23N3 + 2N* — 2N + A(=9 + N + 2N?)
Pij )= —54 + 63N — 24N2 + 3N3

where A = +/N* + 14N3 — 35N2 — 12N + 36.

At this point, we would like to mention two other possible situations—when there
are no excitations in the system or three excitations are present. For such cases, the
system remains in the state |[000) or [111), respectively. Since we assumed here that
all qubits do not interact with other systems, we deal here with trivial situations for
which all steering parameters remain equal to zero or are negative. In consequence,
for all states describing such systems the steering phenomenon does not appear.

It would be also desirable to mention here the problem of physical realization of the
ideas presented in the last two sections. As we discuss here three-qubits states, we are
looking for physical models which could be good candidates for systems described
by such states. In particular, they should be two-level systems such as two-level atoms
[40], two-state spin systems [41] or systems which can be treated as the so-called quan-
tum scissors [42] (systems generally described in infinite Hilbert space but under some
conditions their evolution remains closed within a finite set of the states—here we deal
with two states |0) and |1)). Such scissors can lead to photon(phonon) blockade [43,44]
effects, and hence, considered system can evolve within two states. The examples of
such scissors system can be found in a group of the optical Kerr or Kerr-like systems
[45—48]. Another interesting proposals are those related to the atoms trapped in optical
lattices [49] (even in 3D lattices [50]), superconducting circuits [51,52], quantum dot
systems [53,54], optomechanical models [19,55] and other. What is important, the
systems mentioned here were not only considered theoretically but also were applied
in various experiments. Thus, measurements of qubits in molecular single-ion magnet
were presented in [56], whereas three-qubit entanglement in a superconducting circuit
was achieved experimentally by DiCarlo et al. [57] and by Neely et al. [58]. From
other side, Neumann et al. presented the creation of (bipartite and tripartite) entangled
quantum states in a tiny quantum register built from individual '3C nuclei located in
a diamond lattice [59]. The blockade effects have also been observed successfully in
experiments. In particular, one should mention at this point Santa Barbara experiment
[60] in which photon blockade has been observed for a single atom trapped inside
optical cavity [61]. Moreover, quantum scissors system which was based on the Kerr
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media effect, leading to the single-photon states generation, has been accomplished
and experimentally observed by Kirchmair et al. [62].

If we look at the results concerning two models discussed here (those comprising
one or two excitations), we can ask which of them is more feasible experimentally and
which can lead to more interesting results. When we compare the map presented in
Fig. 1 with its counterpart from Fig. 5, we see that the range of steerable states is wider
for the situation when we deal with systems involving only single excitation. Thus, such
systems seem to be more interesting and promising from the point of view of steerable
states generation. From other side, if we look at the current progress in the field of
experiments, systems for which single-photon (phonon) blockade can appear, seem
to be more attainable experimentally than those where two or more photons blockade
can be achieved. Additionally, for systems based on the trapped atoms, manipulation
of a single atom seems to be easier than of groups of them. For the situation when we
are dealing with two atoms, we should avoid the situation when both of them will be
located at the same site. Since our system should be described in only two states basis
(that defined by one-atom and no-atoms states), maximally one atom can be located
at a given site. Therefore, models with single excitations seem to be more promising
and interesting than those with two excitations.

4 Summary

In this work, we discussed the properties of a family of three-qubit states, especially in
the context of quantum steerability. In particular, we have concentrated on two cases—
(1) one qubit was in its upper state (one excitation was present in physical system)
and (ii) two qubits were excited. Applying the parameters based on the Cavalcanti
inequality, we analyzed the possibility of appearance of the steering between two
qubits for the both situations.

We have shown that for the discussed model symmetric steering cannot appear—
only asymmetric one can be observed. Moreover, we proved that for the single excited
model one qubit can simultaneously steer two qubits. However, this type of steering
we cannot observe for double excited cases. Additionally, it was proved that two qubits
cannot steer simultaneously the remaining one.

It is known that the value of negativity for two-qubit system can not be greater than
that for the corresponding concurrence. The negativity always exceeds or is equal to
the bound found by Verstraete et al. [31]. In this paper, we have also compared the
values of negativity, concurrence, linear entropy characterizing mixedness of the state
and steering parameter. Such parameters were calculated for the states corresponding
to the two-qubit subsystem. As a result, we have found the upper bound of unsteer-
able two-qubit mixed state for the states corresponding to the model with single and
double excitations. We showed that if the negativity is greater than its boundary value,
which was derived here, the discussed states are steerable. Moreover, we have found
a condition when the considered here states are characterized by the strongest steer-
ing; see Eq. (20). It was also shown here that for a given value of concurrence the
steering parameter reaches its maximal value when the negativity is equal to that of
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concurrence. In addition, maximal values of steering parameter for a given concurrence
(Eq. 19) and for given negativity (Eq. 21) were found here.

Finally, we discussed how mixedness of the considered here states is related to the
steering phenomenon. We have found linear entropy and conditions defining bounds
between the regions corresponding to the steerable states and unsteerable ones. Those
conditions were determined by formulas for the linear entropy parametrized by (i) the
concurrence and (ii) the negativity. All derived here conditions were derived for the
both cases—states with single and two excitations.
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