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Abstract The spin-change dynamics of a model with ultra-cold hyperfine-spin-1
atoms confined in an optical superlattice is discussed. First, the disturbance of the
two-site dynamics by coupling the dimer to a spin-1 ancilla is analyzed. When the
dimer is coupled to the ancilla, even by a weak coupling, the significant changes in
the system’s time-evolution processes are observed. Next, we show that for the two-
particle case the total hyperfine-spin-singlet state is generated by exploiting a quadratic
Zeeman shift with realistic values of the strength of external magnetic field and evolu-
tion period of time. Moreover, even in a weak coupling regime, the proper choice of the
additional ancilla–dimer interaction results in generating the wave function which is
characteristic of the homogeneous three-site ring. In consequence, such wave function
exhibits translational invariance symmetry despite the strong asymmetry of the lattice.
Furthermore, we present our proposal for extracting various kinds of maximally entan-
gled states (MES) for three-site spin-1 systems, starting from initial product states. In
particular, we show that the type of generated MES can be unambiguously recognized
by the measurement performed on the ancilla.

Keywords Cold atoms · Optical lattices · Entanglement · Heisenberg model

1 Introduction

A key question of the solid-state quantum information processing is whether an engi-
neered system could display multipartite states with designed quantum properties
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necessary for many spectacular phenomena of quantum world, such as quantum
teleportation [1–5], quantum cryptography [6,7] or in general, indicating for the quan-
tumness of physical systems [8]. In particular, the multi-qudit entanglement (which
starts at the tripartite entanglement) necessary for quantum error correction effect has
been recently gaining increasing attention. As it has been shown, entangled qudits
are less affected by noise than entangled qubits [9,10], and in quantum cryptography
it is more secure to apply entangled qutrits or qudits against eavesdropping attacks,
than to use qubits [11–13]. For these reasons, the creation of higher-dimensional (i.e.,
containing more than two internal states) multipartite entangled states is not only a
fundamental scientific endeavor itself, but is also the way to improve the technology
of quantum information processing.

Recently, an impressive progress in the field of quantum states engineering has been
made. Models involving ultra-cold atoms trapped in optical lattices [14,15], ultra-cold
quantum gates [16], or coupled quantum dots [17–19] etc., are considered as toolboxes
for experimental realization and probing many-particle systems and their static and
dynamical properties. For instance, ultra-cold atomic systems offer unique freedom
allowing to engineer and manipulate quantum states. They can be tuned with a very
high degree of accuracy and versatility at single lattice sites, as well as collectively
within the whole lattice. Therefore, contrary to the ”classical” solid-state physics, it
becomes possible to manage all relevant parameters almost adiabatically, even in the
vicinity of the phase transitions [20,21], or controlling an atomic localization along
a lattice. This opportunity permits ultra-cold atomic systems to serve as quantum
simulators and opens completely new possibilities of answering fundamental questions
of quantum information theory related to transitions from the product to entangled
states. Consequently, some phenomena, which are very difficult or even impossible to
study in their natural appearance and environment of the canonical quantum solid-state
physics, can be explicitly reconstructed and modeled in ultra-cold atomic systems.

Based on all those facts, Huang et al. [22] have presented a very interesting exam-
ple of generation of bipartite total hyperfine-zero-singlet states using hyperfine-spin-1
particles confined in an optical lattice. In that paper, authors dealt with the ground
state of bosons confined in an one-dimensional lattice with one atom per site, when
the system was remaining in the Mott-insulator phase. For such a case, one can treat
the tunneling between two neighboring sites as a virtual process in the second order
of the perturbation theory [23] and hence describe the system by the Heisenberg spin
model with an additional biquadratic term (such model is called quadratic–biquadratic
Heisenberg (QBH) model [24–27]). As it was shown in [25,28], thanks to the proper
choice of the interaction between bosons, the lattice translational symmetry is spon-
taneously broken. In consequence, the ground state of the system is expected to be
in the dimerized phase, and it can be considered as a collection of isolated singlet
pairs. For such a system, a scheme allowing for the generation of the qutrit singlet
state, starting from completely unentangled states, was presented in [22]. Such scheme
can be summarized in the following way. It is known that for certain conditions (see
[22]) singlet state becomes a ground state of the system. For such situation, the initial
product state which is characterized by the zero value of the total Sz , automatically
becomes the singlet state (this process requires adiabatic changes of the external mag-
netic field). However, this simple mechanism does not work properly for more general
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cases. Therefore, Huang et al. have exploited the idea of spin-changing dynamics of
two interacting bosons in the presence of a quadratic Zeeman field. They have shown
that with a proper choice of the strength of magnetic field, the pure singlet state can be
prepared at some moment of time. Their result is especially important as a spin-singlet
state is considered to be one of the most entangled states of biqutrit systems.

In this paper, we would like to extend the bipartite model analyzed in [22] to that
involving three sites. Considering the three-site QBH model describing three particles
trapped in an optical lattice, which can be treated as dedicated quantum simulator
of a spin system, we will concentrate on the wave function evolution leading to the
generation of tripartite entangled states with specifically designed quantum proper-
ties. In particular, we shall discuss the sensitivity of the bipartite system to the weak
interaction with the third (ancilla) particle. Our motivation arises from the fact that
whereas the entanglement of pure bipartite systems is well understood, apparently the
entanglement of pure tripartite quantum states is not a trivial extension of the entangle-
ment of bipartite systems [29,30]. Some results concerning the entanglement of pure
tripartite systems have been presented in [30–32] (and the references therein). In these
papers it was shown that for such systems a new kind of entanglement which cannot be
captured by the bipartite measurements can be detected. This type was referred to as a
genuine tripartite entanglement. At this point we would like to emphasize that it is not
our aim to present the analysis of the dynamics of various types of entanglements in
this paper. Instead, we shall show that even a weak disturbance of the bipartite system
can lead to the appearance of a genuine tripartite entanglement. This means that one
can design an experimental setup so that translational symmetry of the wave function
is reached despite strong asymmetry of the system and interatomic interactions. In
this sense the system can be recognized as homogeneous. Therefore, we would also
like to present our proposal allowing to extract bipartite singlet qutrit states from the
tripartite wave function describing our system.

Even if we ultimately cannot obtain experimentally a strongly asymmetric system
by fulfilling the condition of homogeneity, we believe that the studies of three-site
dynamics (and its potential relations with two-site evolution) will be helpful not only
in effective generation of the entangled states but also to better understanding various
quantum magnetism phenomena. It is known that for the low energy limit, the inter-
atomic interactions can be characterized by the s-wave scattering length which (in
general) depends on the spin states in the incoming and outcoming scattering chan-
nels. Such spin-dependent interactions favor various relative orientation of the atomic
spins, i.e., various spin configurations (for the spin-1 system, see for instance [33]).
Therefore, gaining information concerning the values of coupling parameters allows to
determine the nature of a ground state. Precise measurements of spin-dependent inter-
action strength have been presented for example in [34]. In that paper the Rabi-type
oscillations between two spin states of an ultra-cold pair of atoms trapped in optical
lattices were studied, which allowed for a direct determination of coupling parame-
ters and hence the differences in scattering lengths. By comparing them to theoretical
predictions, the experimental accuracy has been estimated at more than 80%.

Since our model can be recognized as spin-1 bosons (for example, 23-sodium or 87-
rubidium alkali atoms) confined in an optical trimerized superlattice, we believe that
the dynamics discussed in this paper could be useful for further analysis of nontrivial
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tripartite cases (especially in a context of proper choice of the values of spin-dependent
coupling parameters) and their experimental investigation. The trimerized superlattice
can be implemented by strong trimerized Kagomé latices [35–37], which are charac-
terized by a structure involving weakly coupled three-well potentials. Therefore, such
systems could be quite good arena for studying three-site dynamics. An alternative
approach for creation of replicated three-well systems has been proposed in [38]. In
the framework of that proposition, the laser beams propagate at angles 2π/3 to a
bichromatic lattices profile in the x–y plane, and all of them are polarized in the z
direction. As a result, one can receive a two-dimensional array of triangular rings.

2 Tripartite hyperfine-spin-1 system

2.1 Model

Analogously as in [22,34] we assume that two particles are confined in double-well
potentials and each of them are in the state | S, Sz〉 =| 1, 0〉. Both atoms remain
in the ground states of external potential throughout the whole process evolution. In
consequence, S is conserved and those particles have just one degree of freedom: Sz .
In other words, such system’s dynamics is related only to the changes of projection
of hyperfine spins. Thus, to simplify the notation the label S will be omitted here
and then the initial state | 0, 0〉 will denote the situation when particles on both sites
(further labeled as L and R) are characterized by Sz = 0. The dynamics of such a
system has already been studied (also experimentally) in order to generate the max-
imally entangled singlet state by changing the external magnetic field strength [22]
and to extract the spin-dependent interaction parameters (the spin-dependent s-wave
scattering lengths) [34].

Now, let us consider a situation when both particles can interact (in the same way)
with a third (ancilla) particle located at site A. We assume here that the whole system’s
dynamics is limited within a single triple-well superlattice. In other words, we assume
that tunneling amplitudes between potential trimers are weakened completely to zero.
In the Mott-insulator phase the interactions among bosons in such triple-wall lattice
can be described with the QBH model of the form [22,25,26]:

Ĥ = Ĥ0 + ĤA, (1)

where

Ĥ0 = J ŜL ŜR + K (ŜL ŜR)2 + q

(
(ŜzL)2 + (ŜzR)2

)
(2)

and

ĤA =J ′
(
ŜL ŜA + ŜR ŜA

)

+ K ′
(

(ŜL ŜA)2 + (ŜR ŜA)2
)

+ q(ŜzA)2, (3)
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with L , R, and A denoting lattice sites and Ŝi = (Ŝxi , Ŝ yi , Ŝzi ) for a spin S = 1
operator. The parameters J and J ′ refer to exchange interaction constants, while K
and K ′ describe biquadratic interactions. Since the values of the both couplings are
related to the optical lattice’s parameters (they depend on the strength and shape
of analyzed optical potential) and the kind of trapped atoms, a general formula for
coupling constants cannot be written in a direct form. An example of the exact formula
determining such constants for a simple homogeneous cubic lattice has been presented
in [25,26]. It was shown there that their values are proportional to s-wave scattering
lengths a0 and a2, where a0 and a2 correspond to scattering channels with a total spin
of colliding two particles equal S = 0 and S = 2, respectively. On the other hand, for
the bipartite case discussed in [22], the authors assumed arbitrary energy levels E0
and E2 (the lowest and the highest ones) of the Hamiltonian (2) with q = 0 rather than
J and K—the appropriate relation can be written as follows: E2 − E0 = 3(J − K ).
Furthermore, if one defines the spatial wave function as φ0(r), then energies ES =
4πaS
Ma

∫
d3r|φ0(r)|4 = aSŨ , where Ma is the mass of one atom and Ũ was defined as

in [34]. So, the coupling parameters can be considered as related to the spin-dependent
interactions in the sense mentioned before.

Regardless of a suitable form of all interaction constants, one can introduce the
standard parameterization J = J0 cos θ , K = J0 sin θ (J ′ = J ′

0 cos ϕ, K ′ = J ′
0 sin ϕ),

where J0 = √
J 2 + K 2 (J ′

0 = √
(J ′)2 + (K ′)2), for the Hamiltonian (1). From the

model point of view, the angle θ (ϕ) is confined within the interval (−π, π) and the
experimental scheme where a whole range of θ (ϕ) can be obtained was also proposed.
It can be done directly (for instance by using optical Feshbach resonances [39,40])
or by performing some kind of “quantum simulation” technique for which the system
is initially prepared in its excited state (as it was proposed in [24,33]). Therefore,
in contrast to the usual condensed matter systems, for ultra-cold atoms systems it
becomes possible to engineer experimental setups for which biquadratic coupling is
stronger than a quadratic one. For a one-dimensional chain of trapped atoms, the dimer
phase (discussed in the introduction) is expected for −3π/4 < θ = ϕ < −π/4. In
this article we will focus on the regime of the weak interactions between subsystem
LR and the additional site A. Therefore, we will assume here that the ratio

J ′
0/J0 � 1. (4)

Finally, the parameter q appearing in the Hamiltonian (1) refers to the magnitude
of the quadratic Zeeman shift given by q = q0B2, where B is external magnetic field
and q0 is a coefficient depending on the atom under consideration. As we see, the
sign of q is directly related to q0. However, it is important to mention that there are
experimental techniques allowing to alter the sign of the quadratic Zeeman shift [41].

2.2 System’s dynamics

As it is known, the Hamiltonian (1) exhibits the U (1) symmetry (conserves total
Sz). Thus, the Hilbert space of our system can be divided into mutually orthogonal
subspaces with respect to the total Sz . Since the initial bipartite state of subsystem
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LR is | 0, 0〉LR so it exhibits total Sz equal to 0, the appropriate Hilbert subspace for
tripartite system is designed by the value of SzA that can be −1, 0, 1. On the other hand,
in the absence of the linear Zeeman shift the results obtained for SzA = 1 have their
counterparts for SzA = −1. Therefore, without loss of generality, our analysis focuses
on two tripartite initial states |Ψ0(0)〉 =| 0, 0, 0〉 and |Ψ1(0)〉 =| 0, 0, 1〉.

The time-dependent wave function of the three spin-1 bosons can be written as

| Ψ (t)〉 =
∑

α,β,γ∈{−1,0,1}
aα,β,γ (t) | α, β, γ 〉, (5)

where aα,β,γ (t) are complex probability amplitudes related to the situation when all
particles are in the states when SzL = α, SzR = β and SzA = γ .

Time-evolution of the wave function (5) and hence probability amplitudes can be
found with use of standard procedure applying Schrödinger equation written in the
form (we use units h̄ = 1):

〈α, β, γ | i d

dt
| Ψ (t)〉 = 〈α, β, γ | Ĥ | Ψ (t)〉, (6)

where α, β, γ ∈ {−1, 0, 1} as before.
For instance, if one considers |Ψ0(0)〉 to be the initial state and puts q = 0, the

following set of independent equations can be derived (see “Appendix 1” for details):

ia′
1,0,−1(t) = (J + K − J ′ + 4K ′) a1,0,−1(t)

+ J ′ a1,−1,0(t) + (J ′ − K ′) a0,0,0(t),

ia′
1,−1,0(t) = 2J ′ a1,0,−1(t) − (J − 3K − 2K ′)a1,−1,0(t)

+ (J − K ) a0,0,0(t),

ia′
0,0,0(t) = 4(J ′ − K ′) a1,0,−1(t) + 2(J − K )a1,−1,0(t)

+ 2(K + 2K ′) a0,0,0(t). (7)

Then, the solutions for all nonzero probability amplitudes can be written as follows

a1,0,−1(t) = −e−2i K t

10

(
− 2 e−iω1t + (

1 − A1
)

e
i t
2 (ω2+Z)

+ (
1 + A1

)
e
i t
2 (ω2−Z)

)
,

a1,−1,0(t) = −e−2i K t

10

(
− 2 e−iω1t + (

1 − A2
)

e
i t
2 (ω2+Z)

+ (
1 + A2

)
e
i t
2 (ω2−Z)

)
,
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a0,0,0(t) = e−2i K t

10

(
4 e−iω1t + (

3 − A4
)

e
i t
2 (ω2+Z)

+ (
3 + A4

)
e
i t
2 (ω2−Z)

)
, (8)

and

a1,0,−1(t) = a0,1,−1(t) = a−1,0,1(t) = a0,−1,1(t),

a1,−1,0(t) = a−1,1,0(t), (9)

where the amplitudes Ai and frequencies ωi are given by

ω1 = J − K + 2(J ′ + K ′),
ω2 = J − K + 3J ′ − 8K ′,
A1 = 3(J − K − J ′ + 2K ′)/Z,

A2 = (−7(J − K ) + 7J ′ − 4K ′)/Z,

A4 = (−J + K + J ′ + 8K ′)/Z, (10)

and Z = (
9(J − K )2 + 2(8K ′ − 9J ′)(J − K ) + 9(J ′)2 − 16K ′ J ′ + 16(K ′)2

)1/2.
Although we have presented here exact analytical results, one should keep in mind

that for other more general cases the analytical solutions can take a much more com-
plicated form, and therefore, they will not be presented in the text. For such cases the
results considered here can be derived with use of numerical calculations. In order to
do this, an unitary evolution operator Û (t) = exp(−i Ĥ t) should be created, where
the Hamiltonian (1) is used. Then, the time-dependent wave function | Ψ (t)〉 can be
found according to equation

| Ψ (t)〉 = Û (t) | Ψk(0)〉, (11)

where | Ψk(0)〉 is one of the initial states mentioned earlier.

3 Results and discussion

3.1 Weak interaction J ′
0/J0 limit

To understand the impact of weak interaction between the bipartite subsystem and the
ancilla particle, described by the Hamiltonian (3), it is useful to start by considering a
two-site problem, i.e., when the interaction is suppressed to zero. Such a situation has
been well described in [22,34]. In our model it can be achieved by putting J ′ = K ′ = 0
(alternatively J ′

0 = 0) to the general equations (29) and (32). In this subsection we are
going to focus on the |Ψ0(0)〉 initial states, although similar results can be obtained
for |Ψ1(0)〉, too.

In the case of a suppressed interaction, the value of the projection of SA remains
constant during the whole process. Therefore, the wave function (27) can be factorized
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as | Ψ (t)〉 =| Ψ (t)〉LR⊗ | 0〉A, where the time-dependent part related to the bipartite
subsystem LR takes form:

| Ψ (t)〉LR = 1

N (t)
(| 1,−1〉 + Λ(t) | 0, 0〉+ | −1, 1〉). (12)

Appearing here N (t) = (2 + Λ(t)Λ̄(t))1/2 is appropriate norm constant, whereas the
probability amplitude Λ(t) is given by

Λ(t) = J − K − 2q + iΩ cot(Ωt/2)

2(J − K )
(13)

with the Rabi frequency

Ω =
√

9(J − K )2 − 4(J − K )q + 4q2. (14)

It is straightforward to show that for t0 = 0, 2π
Ω

, . . ., we have | Ψ (t0)〉LR ≈| 0, 0〉.
Moreover, with a suitable choice of q = q∗, where

q∗ = 3(J − K )

2
(15)

(and only this one) we can find that Ω = 6|J−K |√
3

, and hence, at time t∗ = π(2k+1)
Ω

the
singlet state is generated

| Ψ (t∗)〉LR = 1√
3
(| 1,−1〉− | 0, 0〉+ | −1, 1〉). (16)

Presented here results are consistent with those derived in [22], and they represent
a vary useful scenario for creating singlet states when adiabatic processes cannot be
involved. However, it is important to mention that the above procedure of generation
the total hyperfine-spin-singlet state requires the same signs of q and (J − K ).

Now, let us introduce an interaction with the ancilla site A and verify how it can
influence the dynamics of the subsystem LR. To do this, we define the reduced density
matrix σ(t) = [

TrA|Ψ (t)〉〈Ψ (t)|]J ′
0=0, which describes the time-evolution of the

subsystem LR. This matrix will be treated as a reference point in our analysis. We
expect that if the presence of site A can be treated as a tiny perturbation (for J ′

0/J0 � 1)
then the dynamics of subsystem LR should be carried out in the way almost identical
as previously described (for the two-site case), and considerable differences should
appear for time t longer than one period (or even several periods) T0 = 2π/Ω . In
other words, if t ≤ T0 the state described by the reduced density matrix, ρ(t) =
TrA|Ψ (t)〉〈Ψ (t)|J ′

0 �=0, should not differ significantly from the state σ(t).
There are many methods to determine the distance between quantum states [42].

One of them is based on fidelity F between two states ρ and σ given by

F(ρ, σ ) = Tr(
√√

ρσ
√

ρ)2. (17)
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Fig. 1 Results for J = 1 and K = 0.98. The interactions with ancilla site have been parameterized as
follows: J ′ = J ′

0 cos(ϕ) and K ′ = J ′
0 sin(ϕ), where φ = −0.358π and a J ′

0 = 0, b J ′
0 = 0.001, c

J ′
0 = 0.005, d J ′

0 = 0.015, e J ′
0 = 0.02, f J ′

0 = 0.05. Black lines refer to time-dependent fidelity F(ρ, σ ),
whereas red lines denote trace distance D(ρ, σ ). The matrices ρ and σ refer to the three- and two-site
systems, respectively (Color figure online)

It can be shown that 0 ≤ F(ρ, σ ) ≤ 1, and F(ρ, σ ) = 1 if and only if ρ = σ .
Thus, the fidelity is not a metric as such, but serves rather as a generalized measure of
the overlap between two quantum states. The fidelity is also symmetric in its inputs,
F(ρ, σ ) = F(σ, ρ).

Another good measure of distance between quantum states is a trace distance [43].
The trace distance between density matrices ρ and σ is defined by

D(ρ, σ ) = 1

2
||ρ − σ ||1, (18)

where ||A||1 = Tr(
√
A†A) is a trace norm. According to this definition, the trace

distance is a genuine metric on quantum states, with 0 ≤ D(ρ, σ ) ≤ 1. The trace dis-
tance has a compelling physical interpretation as a measure of state distinguishability,
so D(ρ, σ ) = 0 if and only if ρ = σ .

In Fig. 1 the results for some exemplary set of the parameters are shown. We have
assumed there that J = 1 and K = 0.98 (causing the J0 = 1.4). The weak interaction
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has been parameterized as J ′ = J ′
0 cos(ϕ) i K ′ = J ′

0 sin(ϕ), where ϕ = −0.358π

and J ′
0 turns into the range 0–0.05. For simplicity, we have assumed that q = 0, and

hence, the wave function | Ψ (t)〉 is fully described by the probability amplitudes (8)
and (9). For the chosen here values of the parameters, it is easy to find the period T0
which is given by T0 = 2π/(3|J − K |) ≈ 105. As we can see, even for J ′

0 = 0.001,
the fidelity F(ρ, σ ) decreases by ∼10% at time t = T0 (similarly the trace distance
D(ρ, σ ) increases by ∼10% at time t = T0). When J ′

0 grows to 0.005 it results in
decreasing (increasing) of the fidelity (trace distance) to about 50%. Such behavior
is a result of the fact that the presence of even a weak interaction described by J ′

0
leads to the appearance of additional “magnetic” states of the subsystem LR (such
as [| 1, 0〉− | 0, 1〉]LR). For such states the nonzero total spin (SzL + SzR �= 0) is
compensated by the particle at site A so that the conservation of total Sz is fulfilled.
From the presence of rapidly decreasing fidelity (rapidly increasing trace distance),
we can conclude that those states become so important that they cannot be neglected.
Moreover, further growth of J ′

0 causes even faster (often irregular) oscillations of
F(ρ, σ ) and D(ρ, σ ). It suggests significant changes of the Rabi frequency for the
state ρ, so both states ρ and σ exhibit considerable different oscillations’ periods. Since
the ratio between them is not a rational number, the irregular oscillations are observed.
Therefore, we can say that even for a small values of the interaction parameter J ′

0, our
system’s dynamics cannot be regarded as close to its bipartite counterpart.

Now, we want to show how important the “magnetic” states are, so we reverse
the previous question and ask how far the state ρ(t) is from the state coming from
the tripartite homogeneous system, σ ′(t) = [

TrA|Ψ (t)〉〈Ψ (t)|]J=J ′,K=K ′ . As we see
from Fig. 2, the fast irregular oscillations of F(ρ, σ ′) and D(ρ, σ ′) are also present
there. However, with a suitable choice of J ′

0 (Fig. 2d) one can find such situations
when F(ρ, σ ′) = 1 and D(ρ, σ ′) = 0 for any time t . So, both states are identical,
ρ(t) = σ ′(t). This outcome can be observed whenever the following condition is
satisfied:

J − K = J ′ − K ′. (19)

The above equality is a generalized condition of homogeneity (by contrast to the
standard one, J = J ′ and K = K ′). It shows that the closer both interactions J and
K are, the weaker interactions J ′ and K ′ are necessary to make the tripartite system’s
dynamics similar to that for the homogeneous system case. If one parameterizes all
interactions as it was done before, Eq. (19) can be written in the form J0(cos θ −
sin θ) = J ′

0(cos ϕ − sin ϕ). Now, it is easy to see that the left side of this equality tends
to zero for θ = . . . ,− 3π

4 , π
4 , . . . , so when angle θ becomes close to the dimer phase

borders.
It should also be emphasized that the generalized condition (19) determining homo-

geneity of the system is not unambiguous and it can be fulfilled for various sets of
parameters, even if one of its sides is fixed. Moreover, it does not require a specific rela-
tionships between various types of interactions, such as K ′/K . Thus, the same results
(with the precision up to the phase factor) can be obtained even for the extreme cases
when one of the parameters was eliminated. It is enough if the remaining parameters
still satisfy the above condition of homogeneity.

123



Symmetry restoring and ancilla-driven entanglement for… Page 11 of 21 6

0
0,2
0,4
0,6
0,8

1

0
0,2
0,4
0,6
0,8

1

0
0,2
0,4
0,6
0,8

1

0
0,2
0,4
0,6
0,8

1

0 200 400 600
t

0
0,2
0,4
0,6
0,8

1

0 200 400 600
t

0
0,2
0,4
0,6
0,8

1

(a) (b)

(c) (d)

(e) (f)

Fig. 2 Results for the same sample set of parameters as in Fig. 1. As previously, black lines refer to the
fidelity F(ρ, σ ′), whereas the red lines denote trace distance D(ρ, σ ′). As a reference point the tripartite
homogeneous system (described by the reduced density matrix σ ′) has been taken (Color figure online)

Finally, it is important to mention that the above results are also true for other sets
of parameters, also for q �= 0. Therefore, the procedure described in [22] cannot be
successfully used even in the weak interaction J ′

0/J0 limit. Moreover, one can reach
the generalized condition of the homogeneity not only for initial states |Ψ0(0)〉 and
|Ψ1(0)〉 but also for other states demonstrating the indistinguishability between sites
L and R.

3.2 Preparation of the singlet state for the initial state |Ψ0(0)〉

As it was shown in the previous subsection, for the model considered here even a small
interaction can lead to the homogeneous tripartite system’s behavior. Therefore, both
three-site dynamics and possibility of generating maximally entangled states in the
framework of a homogeneous system seem to be worth discussing. Below we present
a procedure to extract various types of bipartite maximally entangled states from the
wave function describing our system, in particular the singlet state.
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Due to the presence of symmetry between sites L and R, both sites become indis-
tinguishable, and hence, the wave function (27) describing the tripartite system (for
the initial state |Ψ0(0)〉) can be written as follows:

| Ψ (t)〉 = α(t) (| 0,−1〉+ | −1, 0〉)LR ⊗ | 1〉A
+β(t)(| 1,−1〉 + ϑ(t) | 0, 0〉+ | −1, 1〉)LR ⊗ | 0〉A
+ γ (t) (| 1, 0〉+ | 0, 1〉)LR ⊗ | −1〉A, (20)

where the parameters, α(t) = a0,−1,1(t) = a−1,0,1(t), γ (t) = a0,1,−1(t) = a1,0,−1(t),

β(t) = a1,−1,0(t) = a−1,1,0(t) and ϑ(t) = a0,0,0(t)
β(t) , are functions of both time and the

Zeeman shift q.
After some straightforward calculations (see “Appendix 1”) for the homogeneous

system one can find that

ϑ(t) = − J ′ − K ′ + 2q − iD cot( 1
2Dt)

2(J ′ − K ′)
, (21)

with D = √
25(J ′ − K ′)2 + 4(J ′ − K ′)q + 4q2. Moreover, all probability ampli-

tudes are equal to each other α(t) = β(t) = γ (t), where

γ (t) =
−2(J ′ − K ′) sin

( 1
2Dt

) (
1 − i tan

(
J ′+11K ′+2q

4 t
))

D
(
−i + tan

(
J ′+11K ′+2q

4 t
)) . (22)

The last equality of three probability amplitudes implies that Eq. (20) can be
rewritten in the same form while taking the site L or R as a focus point instead
of site A. This means that for such a case, the same reduced density matrices will be
achieved regardless which site is traced out,

[
TrA|Ψ (t)〉〈Ψ (t)| = TrL |Ψ (t)〉〈Ψ (t)| =

TrR |Ψ (t)〉〈Ψ (t)|]J=J ′,K=K ′ , and hence, the two-site dynamics will be identical for all
bipartite subsystems. Since the homogeneous system can be created even for a strong
asymmetry of the internal interactions [Eq. (19)], we can see that for such situation the
wave function conserves the translational symmetry despite the couplings asymmetry.

In order to create the singlet states, first we require that ϑ(t) = −1. This particular
condition can be achieved if one puts q = q ′

q ′ = J ′ − K ′

2
. (23)

Then, the above requirement is satisfied when the time

t ′ = π(1 + 2k)

2
√

7|J ′ − K ′| . (24)

If we put q ′ and t ′ to Eqs. (20)–(22), we will find that the subsystem LR can be in
one of the three maximally entangled states depending on the SzA state: triplet qubit
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states if SzA = ±1 and singlet qutrit state for SzA = 0. In other words, by measuring
the state of site A at time t ′, we can predict what type of the state is generated in
the subsystem LR. Moreover, if we could set SzA = 0 and simultaneously switch off
the external field in z direction (to “freeze” the eigenstate of the system), the stable
hyperfine-singlet state will be achieved in deterministic way. Such procedure could
be done in analogous way as that applied for the preparation of the initial state, i.e.,
by applying some ultrashort interaction with an external and local magnetic field. In
consequence, SzA can be transformed such a way that it become equal to 0.

Applying expressions (15) and (23) to the generalized condition of homogeneity
(19), one can find that q ′ = q∗/3. In the same way the moments of time when the

singlet state is produced can be written as t ′ =
√

3
7 t∗. So, in comparison to the two-

site system, for tripartite systems the weaker field and a shorter time are necessary for
the creation of the singlet state. Moreover, based on those relations, we can see that it
becomes possible to deduce the values ofq ′ (hence, the required magnetic field denoted
as B ′), as well as the time t ′ which would be suitable in the potential experimental
implementations of the tripartite homogeneous case, despite the lack of exact form for
J ′ and K ′. It becomes sufficient to determine the appropriate values for q∗ and t∗. As
an example let us consider 23Na atoms in their hyperfine-spin-1 state. By analogy to
[22], we can replace J − K by the relevant energy levels (E2 − E0)/3. Moreover, if
we use the relation Ei = ai Ũ , we immediately obtain that J − K = Ũ (a2 − a1)/3.
Given that for 23Na atoms a2 −a1 = 3.5 aB , where aB is the Bohr radius and q0 = 278
Hz/G2, if one chooses Ũ = 2π × 30 Hz/aB (see [34]), then the required magnetic
field is B ′ = ( J−K

6q0
)1/2 = 0.628 G. The shortest possible time of creating the singlet

state is equal t ′ = 2.7 ms.
It should be noted that the procedure of the singlet state extraction can be also

done for inhomogeneous systems. It is enough to obtain the state |0〉 for the ancilla
when ϑ(t) = −1. For such situation the probability amplitudes of Eq. (20) for inho-
mogeneous case have been found numerically, and the values of q and t leading to
the singlet state generation have been estimated for various coupling parameters. The
results are presented in Fig. 3, where variable j refers to the dimensionless interac-
tion distributions, i.e., j = J ′

0 · (cos ϕ−sin ϕ)
J−K , with fixed values of both angle ϕ and

difference J − K . In particular, j = 0 refers to the two-site system (when J ′
0 = 0).

Such situation is discussed in [22] and is denoted in Fig. 3 by q∗ and t∗. From other
side, points corresponding to j = 1 and indicated by q ′ and t ′ refer to the three-site
homogeneous system. For such a case, from Eq. (19) we have J ′

0 = J−K
(cos ϕ−sin ϕ)

. As
we can see, a dimensionless Zeeman shift (q/|J − K |) and time (t · |J − K |) as a
function of j exhibit an universal angle-dependent behavior. Depending on whether
cos ϕ > sin ϕ, i.e., J ′ > K ′ or not (cos ϕ < sin ϕ what is equivalent to J ′ < K ′
), both dimensionless quantities tend toward more round (flat) changes, regardless of
the J and K values themselves. Moreover, all curves overlap at j = 1 as it can be
concluded from Eq. (23).
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Fig. 3 Sets of solutions for q and t as a function of the interaction distributions j = J ′
0 · (cos ϕ−sin ϕ)

J−K .
Lines and symbols correspond to various J and K giving (J −K ) equal to 0.02 and 0.0133(3), respectively.
Squares (red line) refer to ϕ = −0.5π , circles (black line) to ϕ = −0.358π , diamonds (green line) to
ϕ = −0.142π and triangles (blue line) to ϕ = 0 (Color figure online)

3.3 Other initial states

Additionally, one can consider the possibility of the singlet state generation for the
cases when |Ψ1(0)〉 is assumed as the initial state. For such situation the system’s
dynamics is confined within the Hilbert subspace corresponding to the total Sz = 1.
Thus, the appropriate wave function can be written as:

| Ψ (t)〉 = b1,0,0(t) (| 1, 0〉+ | 0, 1〉)LR ⊗ | 0〉A
+ b1,−1,1(t)(| 1,−1〉 + χ(t) | 0, 0〉+ | −1, 1〉)LR ⊗ | 1〉A
+ b1,1,−1(t) | 1, 1〉)LR ⊗ | −1〉A, (25)

where χ(t) = b0,0,1(t)
b1,−1,1(t)

. For the special case when q = 0, the analytical formulas
corresponding to the probability amplitudes are given by Eqs. (33) and (34) (see
“Appendix 2”). However, for more general cases, the numerical calculations should
be performed.

Similarly to the scenario discussed before, in order to create a singlet state, we need
to prepare the state (25) with χ(t) = −1. In Fig. 4 the possible solutions for q and t
as functions of j meeting the above requirements are shown. As we can see, contrary
to the previously discussed results (see Fig. 3), various curves do not converge each
other for j = 1, which is especially evident for t |J −K | (see Fig. 4, right). This means
that for the homogeneous case the expected values of q and t are not just functions
of (J − K ) (or equivalently (J ′ − K ′)), but they depend on the accurate values of
coupling constants. To proof this fact, let us consider the homogeneous system and
rewrite the condition χ(t) = −1 in the equivalent form as:
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Fig. 4 Same as in Fig. 3 but for the initial state |Ψ1(0)〉

(ei tQ(3(J ′ − K ′) − 2q + D) Q
− ei t (D+Q)(3(J ′ − K ′) − 2q − D) Q
+ 2e

3
2 i t (J

′+K ′)((Q − q) D + e2i tQ(Q + q)
) D

= −(J ′ − K ′)
(

e
3
2 i t (J

′+K ′)(e
1
2 i tD − e

1
2 i t (D+4Q)) D

− 4(ei t (D+Q) + ei tQ) Q
)

, (26)

where Q = √
(J ′ − K ′)2 + q2 and D = √

25(J ′ − K ′)2 + 4(J ′ − K ′)q + 4q2. It
can be shown that if one puts q = b (J ′ −K ′) where b ∈ R, the above equality cannot
be satisfied for any realistic value of t . For this reason, we obtain various results
for q and t when various values of J ′ and K ′ are assumed (satisfying the condition
(J − K ) = (J ′ − K ′)).

4 Conclusions

We have studied the dynamics of the system composed of ultra-cold bosons with the
hyperfine-spin S = 1 confined in an optical superlattice. In particular, starting from the
product state we have considered the disturbance of the two-site dynamics by coupling
the dimer to an ancilla. This ancilla has also been chosen to be a hyperfine-spin S = 1
particle. We have shown that such a coupling can significantly change the two-site
dynamics even in the weak interaction J ′

0/J0 regime. We have shown that the crucial
role is played by the relationship J−K = J ′−K ′, linking the inter-dimer interactions
with the disturbance coupling. The fulfillment of this condition results in generating
the wave function identical to that describing the homogeneous system in the three-site
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ring. In consequence, such wave function exhibits translational invariance despite the
strong asymmetry of the lattice. Moreover, we have proposed a method of dynamical
generation of the states which demonstrate various types of entanglement. We have
shown that at specific moments of time during the system’s evolution (when magnetic
field is properly chosen) various interesting, from the quantum information theory
point of view, states can be produced. In particular, we have proposed a scheme of
generating the total hyperfine-spin-singlet state that (as we believe) should be easy
to implement in realistic experiment. Preparation of such maximally entangled states,
especially the genuine tripartite entangled states and bipartite singlet states, seems to
be especially meaningful. Moreover, we believe that proposals presented here can be
useful not only in quantum information applications but also can serve as a promising
tool that would let us create some exotic many-body states.
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Appendix 1: Solutions corresponding to the initial state | Ψ0(0)〉
For the initial state | Ψ0(0)〉 = |0, 0, 0〉, the time evolution is closed within the Hilbert
subspace corresponding to total spin projection Sztot = 0. For such a case, general
form of the wave function (5) can be reduced to:

| Ψ (t)〉0 = a1(t) | 1, 0,−1〉 + a2(t) | 1,−1, 0〉
+ a3(t) | 0, 1,−1〉 + a4(t) | 0, 0, 0〉
+ a5(t) | 0,−1, 1〉 + a6(t) | −1, 1, 0〉
+ a7(t) | −1, 0, 1〉. (27)

where three indexes α, β, γ introduced in (5) have been replaced by single labels (from
1 to 7).

Applying the Schrödinger equation (6), one can find the set of seven equations of
motion related to all nonzero probability amplitudes in the following form:

ia′
1(t) = (K − J ′ + 3K ′ + 2q) a1(t) + J ′ a2(t)

+ J a3(t) + (J ′ − K ′) a4(t) + K ′ a7(t),

ia′
2(t) = J ′ a1(t) − (J − 2K − 2K ′ − 2q) a2(t)

+ (J − K ) a4(t) + J ′ a5(t) + K a6(t),

ia′
3(t) = J a1(t) + (K − J ′ + 3K ′ + 2q) a3(t)

+ (J ′ − K ′) a4(t) + K ′ a5(t) + J ′a6(t),

ia′
4(t) = (J ′ − K ′) a1(t) + (JAB − K ) a2(t)
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+ (J ′ − K ′) a3(t) + 2(K + 2K ′) a4(t)

+ (J ′ − K ′) a5(t) + (J − K )a6(t)

+ (J ′ − K ′) a7(t),

ia′
5(t) = J ′ a2(t) + K ′ a3(t) + (J ′ − K ′) a4(t)

+ (K − J ′ + 3K ′ + 2q) a5(t) + Ja7(t)

ia′
6(t) = K a2(t) + J ′ a3(t) + (J − K ) a4(t)

− (J − 2K − 2K ′ − 2q) a6(t) + J ′ a7(t),

ia′
7(t) = K ′ a1(t) + (J ′ − K ′) a4(t) + J a5(t)

+ J ′ a6(t) + (K − J ′ + 3K ′ + 2q) a7(t). (28)

Given that the sites L and R interact with site A in the same way and the initial
state preserves LR symmetry, they can be considered as indistinguishable. Therefore,
it is reasonable to assume that a1(t) = a3(t) which describes equivalence of the states
| 1, 0,−1〉 and | 0, 1,−1〉. Similarly, we can put a5(t) = a7(t) and a2(t) = a6(t).
Moreover, in the absence of a linear Zeeman shift, the sign of Sz can also be treated as
irrelevant. This means that one can take a1(t) = a5(t). Based on all above assumptions,
it is easy to find the equalities a′

1(t) = a′
3(t) = a′

5(t) = a′
7(t) and a′

2(t) = a′
6(t) and

hence to simplify the our system of equations significantly. Finally, (28) takes the
following form:

ia′
1(t) = (J + K − J ′ + 4K ′ + 2q) a1(t) + J ′ a2(t)

+ (J ′ − K ′) a4(t),

ia′
2(t) = 2J ′ a1(t) − (J − 3K − 2K ′ − 2q) a2(t)

+ (J − K ) a4(t),

ia′
4(t) = 2

(
2(J ′ − K ′) a1(t) + (J − K ) a2(t)

+ (K + 2K ′) a4(t)
)
, (29)

and the corresponding to it wave function:

| Ψ (t)〉0 = a1(t) | 1, 0,−1〉 + a2(t) | 1,−1, 0〉
+ a1(t) | 0, 1,−1〉 + a4(t) | 0, 0, 0〉
+ a1(t) | 0,−1, 1〉 + a2(t) | −1, 1, 0〉
+ a1(t) | −1, 0, 1〉. (30)

For the initial conditions a1(0) = a2(0) = 0 and a4(0) = 1, the solutions have
been found for two cases. The first one was corresponding to q = 0 [Eqs. (8)–(10)],
whereas the second described homogeneous systems J = J ′ and K = K ′ [Eqs. (21),
(22)]. Moreover, if one put J ′ = K ′ = 0 into Eq. (29), the solution describing the
evolution corresponding to the two-site system is obtained.
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Appendix 2: Solutions for the initial state | Ψ1(0)〉
Assuming that the initial state is | Ψ1(0)〉 = |0, 0, 1〉 (it preserves the indistinguisha-
bility of sites L and R), the wave function (5) can be reduced to the form:

| Ψ (t)〉1 = b1(t) | 1, 1,−1〉 + b2(t) | 1, 0, 0〉
+ b3(t) | 1,−1, 1〉 + b2(t) | 0, 1, 0〉
+ b5(t) | 0, 0, 1〉 + b3(t) | −1, 1, 1〉,

(31)

where the identity of L and R has already been applied (see “Appendix 1” for explana-
tions) and all aα,β,γ (t) have been replaced by bi (t). Then, corresponding to it system
of equations can be written as:

ib′
1(t) = (J + K + 4K ′ − 2J ′ + 3q) b1(t)

+ 2(J ′ − K ′) b2(t) + 2K ′ b3(t),

ib′
2(t) = (J ′ − K ′) b1(t) + (J + K + 3K ′ + q) b2(t)

+ (J ′ − K ′) b3(t) + J ′ b5(t),

ib′
3(t) = K ′ b1(t) + (J ′ − K ′) b2(t) − (J − 3K

− 3K ′ − 3q) b3(t) + (J − K ) b5(t),

ib′
5(t) = 2J ′ b2(t) + 2(J − K ) b3(t)

+ (K + K ′ + q) b5(t). (32)

– When q = 0 the solutions can be written as:

b1(t) = e−2i K t

30

(
4 e−iω1t − 10 e−iω3t

+ 3
(
1 − B1

)
e

1
2 i(ω2+Z)t + 3

(
1 + B1

)
e

1
2 i(ω2−Z)t

)
,

b2(t) = e−2i K t

60

(
16 e−iω1t − 10 e−iω3t

− 3
(
1 − B2

)
e

1
2 i(ω2+Z)t − 3

(
1 + B2

)
e

1
2 i(ω2−Z)t

)
,

b3(t) = e−2i K t

60

(
8 e−iω1t + 10 e−iω3t

− 3
(
3 + B3

)
e

1
2 i(ω2+Z)t − 3

(
3 − B3

)
e

1
2 i(ω2−Z)t

)
,

b5(t) = e−2i K t

15

(
4 e−iω1t + 5 e−iω3t

+ 3
(
1 + B5

)
e

1
2 i(ω2+Z)t + 3

(
1 + B5

)
e

1
2 i(ω2−Z)t

)
, (33)
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where

Z = (
9(J − K )2 + 2(8K ′ − 9J ′)(J − K )

+ 9(J ′)2 − 16K ′ J ′ + 16(K ′)2 )1/2,

ω1 = J − K + 2(J ′ + K ′),
ω2 = J − K + 3J ′ − 8K ′,
ω3 = J − K − J ′ + 2K ′,
B1 = (3J − 3K − 3J ′ − 4K ′)/

√
z,

B2 = B1,

B3 = (11J − 11K − 11J ′ + 12K ′)/
√
z,

B5 = (−2J + 2K ) + 2J ′ − 4K ′)/
√
z. (34)

– For the case when homogeneous system is considered, one can find that:

b1(t) = e− 1
2 i(E3+D+2Q)t

3 Q · D (J ′ − K ′)
(

e
1
2 i(E1+D)t D (1 − e2iQt))

+ 2eiQt Q (eiDt − 1)

)
, (35)

b2(t) = e− 1
2 i(E3+D+2Q)t

6DQ(
eiQt Q (eiDt − 1)

(
3(J ′ − K ′) − 2q

)

+ e
1
2 i(E1+D+4Q)t D (q + Q)

−D(
e

1
2 i(E1+D)t (q − Q) + eiQtQ

+ ei(D+Q)tQ))
, (36)

b3(t) = −e− 1
2 i(E3+D+2Q)t

6QD (K ′ − J ′)
(

e
1
2 i t (E1+D) D (1 − e2iQt )

− 4eiQt Q (eiDt + 1)

)
, (37)
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b5(t) = −e− 1
2 i(E3+D+2Q)t

6Q · D(
2e

1
2 i(E1+D)t D (q − Q)

− 2e
1
2 i(E1+4Q+D)t D (q + Q)

− eiQt Q (E2 + 2q + D)

+ ei(Q+D)tQ(E2 − 2q − D)

)
(38)

where

E1 = 3(J ′ + K ′),
E2 = 3(J ′ − K ′),
E2 = J ′ + 11K ′ + 4q,

Q =
√

(J ′ − K ′)2 + q2,

D =
√

25(J ′ − K ′)2 + 4(J ′ − K ′)q + 4q2. (39)
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