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Abstract We design control setting that allows the implementation of an approxima-
tion of an unitary operation of a quantum system under decoherence using various
quantum system layouts and numerical algorithms. We focus our attention on the
possibility of adding ancillary qubits which help to achieve a desired quantum map
on the initial system. Furthermore, we use three methods of optimizing the control
pulses: genetic optimization, approximate evolutionmethod and approximate gradient
method. To model the noise in the system we use the Lindblad equation. We obtain
results showing that applying the control pulses to the ancilla allows one to success-
fully implement unitary operation on a target system in the presence of noise, which
is not possible which control field applied to the system qubits.

Keywords Quantum information ·Quantum computation · Control in mathematical
physics

1 Introduction

One of the fundamental issues of quantum information science is the ability tomanipu-
late the dynamics of a given complex quantum system. Since the beginning of quantum
mechanics, controlling aquantumsystemhas been an implicit goal of quantumphysics,
chemistry and implementations of quantum information processing [1].
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If a given quantum system is controllable, i.e. it is possible to drive it into a pre-
viously fixed state, it is desirable to develop a control strategy to accomplish the
desired control task. In the case of finite dimensional quantum systems, the criteria
for controllability can be expressed in terms of Lie-algebraic concepts [2–4]. These
concepts provide a mathematical tool, in the case of closed quantum systems, i.e.
systems without external influences.

A widely used method for manipulating a quantum system is a coherent control
strategy, where the manipulation of the quantum states is achieved by applying semi-
classical potentials in a fashion that preserves quantum coherence. In the case when
a system is controllable, it is a point of interest what actions must be performed to
control a system most efficiently, bearing in mind limitations imposed by practical
restrictions [5–9]. The always present noise in the quantum systemmay be considered
such a constraint [10–17]. Therefore it is necessary to study methods of obtaining
piecewise constant control pulses which implement the desired quantum operation on
a noisy system.

It is an important question whether the system is controllable with a control applied
only on a subsystem. This kind of approach is called a local-controllability and can be
considered only in the case when the subsystems of a given system interact. Coupled
spin chains or spin networks [4,18–20] may serve as examples. Local control has a
practical importance in proposed quantum computer architectures, as its implemen-
tation is simpler and the effect of decoherence is reduced by decreased number of
control actuators [21,22].

In this paperwe study variousmethods of adding ancillary qubits to a given quantum
system, in order to overcome the interactionwith an external environment. Thismeans,
wewish to perform a time evolution on a greater system than the target one and discard
the ancilla afterward. This scheme should implement a unitary transformation on the
target subsystem.

2 Model of the quantum system

We test our approach on a toy model and implement the unitary operations UNOT =
σx ⊗ 1 and USWAP = 1 ⊗ ∑

i j |i〉〈 j | ⊗ | j〉〈i | on a quantum system modeled as a
an isotropic Heisenberg spin-1/2 chain of a finite length N . We will study two- and
three-qubit systems. The total Hamiltonian of the aforementioned quantum control
system is given by

H(t) = H0 + Hc(t), (1)

where

H0 = J
N−1∑

i=1

Six S
i+1
x + Siy S

i+1
y + Siz S

i+1
z (2)

is a drift part given by the Heisenberg Hamiltonian. The control is performed only on
the i th spin and is Zeeman-like, i.e.

Hc(t) = hx (t)S
i
x + hy(t)S

i
y . (3)
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In the above Sik denotes k
th Pauli matrix acting on the spin i . Time-dependent control

parameters hx (t) and hy(t) are chosen to be piecewise constant. For notational conve-
nience, we set h̄ = 1 and after this rescaling frequencies and control-field amplitudes
can be expressed in units of the coupling strength J , and on the other hand all times
can be expressed in units of 1/J [23].

Wemodel the noisy quantum system dynamics using theMarkovian approximation
with the master equation in the Kossakowski–Lindblad form

dρ

dt
= −i[H(t), ρ] +

∑

j

γ j

(

L jρL
†
j − 1

2
{L†

j L j , ρ}
)

, (4)

where L j are the Lindblad operators, representing the environment influence on the
system [24] and ρ is the state of the system.

The main goal of this paper is to compare various methods for optimizing control
pulses hx (t), hy(t) for the model introduced above. As we are working within the
Markovian approximation of the quantum system, we need to assume the environment
is fast. Strictly speaking, this means that the environment autocorrelation functions are
δ-functions in time. Another way to view this approximation is that the environment
has no memory.

It is a widely known fact, that coherent control in the form of pulses on the system’s
qubits cannot overcome decoherence. This is intuitively true, because such control
results in an unitary evolution of the system and this cannot fight the non-unitary
dynamics. However, if we apply the control pulses to an acilla, we are effectively
creating an additional environment and as a result produce non-unitary evolutionwhich
can be viewed as a damping on the system. This evolution smooths the effect of the
piecewise constant control pulses and in turn validates the singular coupling limit on
the noisy environment.

In order to show that the singular coupling limit [25,26] is valid in the case of
piecewise constant control, we calculate the derivative of the reduced state and show
that it is continuous. We consider the state ρS = TrA(ρ) after tracing out the ancilla

dρS

dt
= TrA

⎛

⎝−i[H(t), ρ] +
∑

j

γ j (L jρL
†
j − 1

2
{L†

j L j , ρ})
⎞

⎠

= TrA

⎛

⎝−i[H0, ρ] +
∑

j

γ j (L jρL
†
j − 1

2
{L†

j L j , ρ})
⎞

⎠ + TrA(−i[Hc(t), ρ]).

(5)

Here the index A denotes the ancilla and index S denotes the system on which we have
the target operation. The part corresponding to the drift Hamiltonian and environment
influence is time independent. Because the control Hamiltonian is a combination of
unitary operators and acts non-trivially on the ancilla only, the time-dependent term
vanishes after tracing out the ancilla,
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Fig. 1 An example of the derivatives of the diagonal elements of the system with the ancilla traced out

TrA(−i[Hc(t), ρ]) = −i
∑

k∈{x,y}
hk(t)TrA([SA

k , ρ])

= −i
∑

k∈{x,y}
hk(t)

(
∑

i

(〈i |A ⊗ 1S)(S
A
k ⊗ 1S)ρ(|i〉A ⊗ 1S)

−
∑

i

(〈i |ASA
k ⊗ 1S)ρ(SA

k ⊗ 1S)(S
A†
k |i〉A ⊗ 1S)

)

= 0, (6)

where the second equation results from the fact that the partial trace result is the same
for any basis selection. Thus, provided that control is applied on the ancilla register
only, evolution of the rest of the system is smooth, even in the case of non-continous
control pulse functions.

We show the derivatives of the diagonal elements of an example density matrix of
the state of the system with the ancilla traced out. The derivatives for are shown in
Fig. 1. They are obtained for the system (c) shown in Fig. 2. The damping parameter is
γ = 0.01. This is an illustration of the result given inEq. (5) showing that the derivative
of the reduced system is continuous, despite the control pulses on the ancilla being
piecewise constant.

In the next section we present three methods for the purpose of the comparison. The
comparison of the control pulses obtained by different methods is done by applying
these pulses into the above model and analysis of the obtained results.

3 Various approaches to fidelity maximization

In this Section, we describe threemethods we used to optimize control pulses. The first
method is based on an approximate method for obtaining amapping which is close to a
unitary one. In order to obtain the approximation, we expand the superoperator into the
Taylor series up to a linear term.After this we calculate the exact gradient of the fidelity
function with respect to the control pulses. The second one uses an exact formula for
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Fig. 2 Systems used for numerical simulation

the time evolution of the system, but we approximate the derivative of the mapping
with respect to control pulses. In our numerical research, we perform optimization
with use of the L-BFGS-B optimization algorithm [27]. Its main advantages lies in
harnessing the approximation of Hessian of fitness function (we refer to the section 3
of [28] for details). Finally, we use genetic programming to optimize control pulses
without the need for computing gradient of the fidelity function.

3.1 Approximate mapping method

Assuming piecewise constant control pulses the Hamiltonian in Eq. (4) becomes inde-
pendent of time during the duration of the pulse. This allows us to simplify the master
equation.

For notational convenience, let us write the decoherence part of the Eq. (4) in the
following form [29] that allows us to act in the vectorized states space

− G =
∑

j

γ j

(

L j ⊗ L j − 1

2

[(
L†
j L j

)
⊗ 1 + 1 ⊗

(
L†
j L j

)])

, (7)

where L j denotes the conjugate of L j . The first term in Eq. 4 can be transformed into

− iH = −i
(
1 ⊗ H − H ⊗ 1

)
. (8)

These observations allow us to write a mapping representing the evolution of a
system in an initial state ρ under Eq. (4) for time t as

S = exp(−tF), (9)
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where −F = −G − iH. The final state of the evolution is

res(ρ f ) = Sres(ρ), (10)

where res(·) is a linear mapping defined for dyadic operators as

res(|φ〉〈ψ |) = |φ〉|ψ〉. (11)

The extension to all other operators follows from linearity.
We can approximate the superoperator A as

S = exp

⎡

⎣−1

2
t
∑

j

(
L†
j L j

)
⊗ 1 + 1 ⊗

(
L†
j L j

)
⎤

⎦

× exp

⎛

⎝t
∑

j

L j ⊗ L j

⎞

⎠ × exp (−t iH) + O(t2)

= A(t)B(t)C(t) + O(t2). (12)

Note that, only the C(t) term depends on the control pulses. Assuming piecewise
constant control pulses, total evolution time T and setting n as the total number of
pulses, we can write the resulting approximate superoperator as

S̃ =
n∏

k=1

A(�tk)B(�tk)C(�tk), (13)

where �tk is the length of the kth time interval. As we assume all the control pulses
are of the same length, we will write tk instead of �tk .

The derivative of the superoperator with respect to a control pulse h j (tl) is

∂S̃
∂h j (tl)

=
(
l−1∏

k=1

A(tk)B(tk)C(tk)

)

×
(

A(tl)B(tl)
∂C(tl)

∂h j (tl)

)

×
(

n∏

k=l+1

A(tk)B(tk)C(tk)

)

. (14)

We use the fidelity as the figure of merit

F = 1

22N
�(TrS†

targetS̃), (15)

where N is the number of qubits in the system and Starget is the target superoperator.
The derivative of the fidelity with respect to the control pulse in the j th direction and
in the lth time interval is given by:
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∂F

∂h j (tl)
= 1

22N
�

(

Tr

(

Starget
∂S̃

∂h j (tl)

))

. (16)

3.2 Approximate gradient method

In this section we follow the results by Machnes et al. [30]. In order to introduce the
approximate gradient method, we introduce the following notation

Ĥ(·) = [H(t), ·], Ĥi (·) = [H0 + Hi (t), ·], L̂(·) =
∑

j

γ j (L j · L†
j − 1

2
{L†

j L j , ·}).
(17)

This allows us to write Eq. (4) in the form

∂ρ(t)

∂t
= −(iĤ + L̂)(ρ(t)). (18)

The evolution of a quantum map X under this equation is given by

∂X (t)

∂t
= −(iĤ + L̂)X (t). (19)

In order to perform numerical simulations, Eq. (19) needs to be discretized. Given a
total evolution time T , we divide it into n small intervals, each of length �t = T/n.
Hence, the quantum map in the kth time interval is given by

Xk = exp
[
−�t (iĤ(tk) + L̂(tk))

]
. (20)

We utilize the trace fidelity as the figure of merit for this optimization problem

F = 1

22N
�Tr

[
X†
targetX (T )

]
= 1

22N
�Tr

[

†(tk)Xk X (tk−1)

]
, (21)

where operators X (tk−1) = Xk−1Xk−2 . . . X1X0 and 
†(tk) = X†XnXn−1 . . .

Xk+2Xk+1 are introduced in order to split the time evolution at any given time k
and highlight the term only depending on h j (tk), j ∈ {x, y}. This allows us to write
the derivative of the figure of merit with respect to the control pulses as

∂F

∂h j (tk)
= 1

22N
�Tr

[


†(tk)

(
∂Xk

∂h j (tk)

)

X (tk−1)

]

. (22)

Since L̂ and iĤ need not commute, we cannot calculate the derivative ∂Xk
∂h j (tk)

using
exactmethods. The best approach is to use the following approximation for the gradient
(see [30], section III.B)

123



1944 Ł. Pawela, P. Sadowski

∂Xk

∂h j (tk)
≈ −�t

(

iĤi + ∂ L̂(h j (tk))

∂h j (tk)

)

Xk . (23)

In our test cases, the damping does not depend on the control pulses; hence, we may
rewrite Eq. (23) as:

∂Xk

∂h j (tk)
≈ −i�t Ĥi Xk . (24)

This approximation is valid provided that

�t � 1

||iĤ + L̂||2
. (25)

3.3 Genetic programming

Genetic programming (GP) is a numerical method based on the evolutionary mecha-
nisms [31,32]. There are two main reasons for using GP for finding optimal control
pulses. First of all it enables us to perform numerical optimization in the case of a
complicated fitness function. On the other hand, one should note that the values of
control pulses in different time intervals can be set independently. Thus the idea of
genetic code fits well as a model for a control setting. Thanks to such a representation,
genetic programming enables us to exchange values of control pulses in some fixed
intervals between control settings that result in most accurate approximation of the
desired evolution.

Genetic programming belongs to the family of search heuristics inspired by the
mechanism of natural evolution. Each element of a search space being candidate
for a solution is identified with a representative of a population. Every member of
a population has its unique genetic code, which is its representation in optimization
algorithm. In most of the cases, genetic code is a sequence of values from a fixed set�
of possible values of all the features that characterize a potential solution x ∈ �n in the
search space. Searching for the optimal solution is done by the systematicmodification
and evaluation of genetic codes of populationmembers due to the rules of the evolution
such as mutation, selection, crossing-over and inheritance.

Mutators are functions that change single elements of a genetic code randomly. A
basic example of a mutator is a function that randomly changes values of a represen-
tative x at all positions with some non-zero probability

M(x)i =
{
xi , probability p,
rand(�), probability 1 − p.

(26)

Crossovers implement the mechanism of inheritance. This function divides given
parental genetic code and creates a new genetic code. Commonly two new codes are
created at the same time from two parental codes. An example of such crossover is
so-called two point cut, where both parental codes (xi , yi ) are cut into three regions
and the middle segments are interchanged
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x ′
i =

{
xi , i ≤ c1 ∨ c2 ≤ i,
yi , c1 < i < c2,

y′
i =

{
xi , c1 < i < c2,
yi , i ≤ c1 ∨ c2 ≤ i,

(27)

where c1 < c2 are randomly chosen indices. In every iteration of the algorithm, all
members of the population are evaluated using fitness function f : �n → � which
enables elements ordering. Then, using a selector function, the set of the best members
is obtained and used to create a new generation of the population using mutation and
crossover functions. There is a number of strategies for defining selector function—
from completely random choices to the deterministic choice of best representatives.

Strategy based on evolution mechanism makes genetic programming especially
useful when parts of genetic code represent features of elements of a search space that
can be interchanged between elements independently. In such case GA is expected to
find the features that occur in well-fitted representatives and mix them in order to find
the best possible combination. Pseudocode representing this approach is presented in
Listing 1.

population = RandomPopulation()
for( generationsNumber ){

newPopulation = []
for(i = 0; i<population.size()/2; i++){

mom = Selector(population)
dad = Selector(population)
(sister, brother) = CrossOver(mom, dad)
Mutator(sister)
Mutator(brother)
newPopulation.append(sister)
newPopulation.append(brother)

}
population = newPopulation

}

Listing 1: Pseudocode representing the algorithm of genetic programming.
Functions Selector, Mutator and CrossOver work as defined in

Sect. 3.3.

While the customization of population representation and fitness function unavoid-
ably relies on the optimization problem, other parameters of genetic programming
such as crossover and mutation methods are universal.

In this case the search space is the space of control pulse sequences �n for n time
intervals, where each control pulse has bounded absolute value � = [−100, 100]. In
order to optimize a controlled evolution of a systemgoverned by theLindblad equation,
we perform optimization of the average distance between target state operator and the
resulting state for each basis matrix of the space of input states. For each basis matrix
ρi
0 in the space of the system joined with ancilla, we compare the reduced resulting

state TrA(ρi
T ) with the target one ρi

target = UtargetTrA(ρi
0)U

†
target. Our fitness function

is defined as

123



1946 Ł. Pawela, P. Sadowski

F = 1

22N

22N∑

i=1

Tr
(
ρi
targetTrA

(
ρi
T

))
, (28)

where TrA denotes tracing out the ancilla and N is the total number of qubits in the
system.

4 Results and discussion

Our goal in this section is to study the impact of different spin chain configurations on
the final fidelity of the operation. To find the best spin chain configuration, we study
the following systems:

(a) One-qubit systemwith one-qubit ancilla. The control is performed on the ancillary
qubit, and the target is a NOT operation on the system qubit.

(b) Two-qubit systemwith one-qubit ancilla. The control is performed on the ancillary
qubit, and the target is a 1 ⊗ NOT operation on the system qubits

(c) Two-qubit systemwith one-qubit ancilla. The control is performed on the ancillary
qubit, and the target is a SW AP operation on the system qubits

In all of the simulations, we set the number of control pulses to 32 for two-qubit
systems and 128 for the three-qubit systems. We limit the strength of the control
pulses to hmax = 100. We set J = 1. In each case we split all of the qubits forming
the system into two subsystems: the one that performs some fixed evolution and the
auxiliary one. Each data point is the result of 72 simulations, and we chose the result
with the highest fidelity. The initial control pulses were random vectors with elements
sampled independently from a uniform distribution on [−100, 100].

Table 1 Number of time steps and corresponding �t for different simulation setups in the two-qubit
scenario

Genetic
optimization

Approximate
evolution

Approximate
gradient

n �t (10−3) n �t (10−3) n �t (10−3)

Equal number of steps 32 65.625 32 65.625 32 65.625

Equal computation time 32 65.625 128 16.406 128 16.406

Table 2 Number of time steps and corresponding �t for different simulation setups in the three-qubit
scenario

Genetic
optimization

Approximate
evolution

Approximate
gradient

n �t (10−3) n �t (10−3) n �t (10−3)

Equal number of steps 128 16.406 128 16.406 128 16.406

Equal computation time 128 16.406 512 4.102 512 4.102
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Table 3 Average computation times in seconds for different simulation setups

Genetic
optimization

Approximate
evolution

Approximate
gradient

Number of qubits 2 3 2 3 2 3

Equal number of steps 766 15741 521 1931 687 1745

Equal computation time 4248 24531 3875 21478 4026 22167

In our study we choose the phase damping and the amplitude damping channels
as noise models. The former is given by the Lindblad operator L = σz , the latter is
given by the operator L = σ− = |0〉〈1|. In order to objectively compare the control
methods, we study two setups: with equal number of steps of the algorithm and with
equal computation time. The number of steps and length of these intervals are shown
in Table 1 and Table 2.

Figure 3 shows the results for the phase damping channel. In the case of the NOT
target gate, shown in Fig. 3a, b, we obtain the best results performing optimizationwith
the approximate gradientmethod. In this setup the control is performed on the ancillary
qubit,which leads to a smoother evolution of the target qubit, as the interaction between
the two-qubits smooths impact of the control fields. Another feature of the result is the
fact that the fidelity of the optimized operation decreases significantly when γ ≈ J .

In the case of the SWAP target gate, shown in Fig. 3c, d, we get similar results.
This is consistent with the results for the two qubit systems. In this case the genetic
optimization and approximate evolution perform poorer compared to the approximate
gradient method.

Next, in Fig. 4 we show the results for the amplitude damping channel. These
results are similar to the phase damping case. Again there is a drop in the fidelity of
the operations when γ ≈ J .

Finally, we focus on comparing the algorithms when the computation times are
on the same order of magnitude. To achieve this, we added more control pulses in
the gradient-based methods. In the case of both gradient-based methods, we used 128
pulses for the two-qubit scenario and 512 for the three-qubit scenario. The compu-
tation times are summarized in Table 3. Results are presented in Figs 5 and 6. The
obtained results show that using the method based on approximate gradient of the
fitness function, we get control pulses providing the most accurate evolution.

5 Conclusions

We studied various methods of obtaining piecewise constant control pulses that imple-
ment an unitary evolution on a system governed by Kossakowski–Lindblad equation
in the restrictive singular coupling limit. The studied methods included genetic opti-
mization and the L-BFGS-B algorithm with the use of fidelity gradient based on an
approximate evolution of the quantum system and an approximate gradient method
for the exact evolution case.
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Our results show that, by adding an ancilla, it is possible to implement a unitary
evolution on a system under the Markovian approximation. What we have found is
that it is sufficient to apply the control pulses to the ancillary qubits. This is caused
by the fact that the interaction between the two qubits smooths impact of the control
fields. This is limited to the case when the environment is slower than the frequency
of oscillation of the qubits. In other words we require that γ < J .

The comparison of the numerical optimization methods used for control design led
to the conclusion that using approximate gradient-based approach one gets the best
results in terms of fidelity of the target unitary and the operator resulting from obtained
control pulses.
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