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Abstract We study maximally entangled bases in bipartite systems Cd ⊗ C
kd (k ∈

Z+), which are mutually unbiased. By systematically constructing maximally entan-
gled bases, we present an approach in constructing mutually unbiased maximally
entangled bases. In particular, five maximally entangled bases in C

2 ⊗ C
4 and three

maximally entangled bases in C
2 ⊗ C

6 that are mutually unbiased are presented.

Keywords Mutually unbiased bases · Maximally entangled states · Pauli matrices

1 Introduction

Quantum entanglement is central in quantum information processing and quantum
computation [1–12]. In particular, maximally entangled states play vital role in quan-
tum information processing tasks such as perfect teleportation [5–19]. It has been
proved that mixed maximally entangled states also exist when the two individual
dimensions of a bipartite system are not equal [13]. A pure state |ψ〉 is said to be a
d ⊗ d ′ (d ′ > d) maximally entangled state if and only if for an arbitrary given ortho-
normal complete basis {|i A〉} of subsystem A, there exists an orthonormal basis {|iB〉}
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of subsystem B such that |ψ〉 can be written as |ψ〉 = 1√
d

∑d−1
i=0 |i A〉 ⊗ |iB〉 [14].

There are many references for the bases of entangled states [15–18].
Mutually unbiased bases (MUBs) play central roles in quantum kinematics [19],

quantum state tomography [20,21] and in quantifying wave–particle duality in multi-
path interferometers [22].Moreover, the importance of themutually unbiased bases has
been demonstrated in various tasks in quantum information processing, such as quan-
tum key distribution [23], cryptographic protocols [23,24], mean king problem [25],
quantum teleportation and superdense coding [26–28].

Two orthogonal bases B1 = {|φi 〉}di=1 and B2 = {|ψi 〉}di=1 of Cd are said to be
mutually unbiased if

|〈φi |ψ j 〉| = 1√
d

, i, j = 1, 2, . . . , d.

A set of orthonormal bases B1,B2, . . . ,Bm in C
d is said to be a set of mutually

unbiased bases if every pair of the bases in the set is mutually unbiased.
Recent years, there are many interesting topics combining mutually unbiased

bases with other bases, such as product basis (PB) [29], unextendible product basis
(UPB) [30] and unextendible maximally entangled basis (UMEB) [31,32]. The
UPB is a set of incomplete orthogonal product states in C

d ⊗ C
d such that whose

complementary space has no product states. The UMEB is a set of less than d2

orthogonal maximally entangled states in C
d ⊗ C

d such that whose complemen-
tary space has no maximally entangled vectors that are othogonal to all of them.
In [32], two complete UMEBs that are mutually unbiased in C

2 ⊗ C
3 have been

presented.
Ever since the introduction of mutually unbiased bases, considerable theoretical

results with useful applications have been obtained. One main concern is about the
maximal number of MUBs for given dimension d. It has been shown that the maxi-
mum number N (d) of MUBs in C

d is no more than d + 1 [21] and N (d) = d + 1 if
d is a prime power. Different constructions of MUBs, especially for prime power
and qubits systems, have been presented in [33–40]. Whereas d is a composite
number, N (d) is still unknown. Since the dimension of C

d ⊗ C
kd (k ∈ Z+)

is kd2, it is still a challenging problem to study N (kd2) and construct MUBs in
C
d ⊗ C

kd .
In this paper, we first study the maximally entangled bases in arbitrary bipartite

system C
d ⊗C

kd (k ∈ Z+). We provide a systematic way of constructing maximally
entangled bases inCd ⊗C

kd . Moreover, we present explicit constructions of mutually
unbiased maximally entangled bases in C

2 ⊗ C
4 and C

2 ⊗ C
6.

2 Maximally entangled basis in C
d ⊗ C

kd (k ∈ Z+)

Let us first consider maximally entangled basis(MEB) in C
2 ⊗ C

4. Let {|0〉, |1〉} and
{|0′〉, |1′〉, |2′〉, |3′〉} be the orthonormal bases inC2 andC4, respectively. We consider
the following orthogonal basis in C2 ⊗ C

4:
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|φ j
i 〉 = 1√

2
(σi ⊗ I4)(|0〉|(2 j)′〉 + |1〉|(2 j + 1)′〉), i = 0, 1, 2, 3; j = 0, 1, (1)

where {σi }3i=1 are the Pauli matrices and σ0 = I2 is the 2 × 2 identity matrix.
It can be easily checked that the above eight states in (1) are orthogonal maximally

entangled states, which constitute a MEB in C2 ⊗ C
4.

Now we generalize the above construction of MEB to the case of Cd ⊗ C
kd (k ∈

Z+). Let {| j〉}d−1
j=0 and {|i ′〉}kd−1

i=0 denote the orthonormal bases ofCd andCkd , respec-
tively. Consider a set of unitary matrices

Un,m =
d−1∑

�=0

ωn�
d |� ⊕ m〉〈�|, n,m = 0, 1, . . . , d − 1, (2)

where ωd = e
2π

√−1
d , and �⊕m denotes (�+m) mod d. These matrices {Un,m}d−1

n,m=0

form a basis of the operator space on C
d and satisfy

Tr(U †
n′,m′Un,m) = dδn′,nδm′,m . (3)

The above d2 operators defined in (2) accurately corresponds to the Weyl–Heisenberg
group.

Let us consider k maximally entangled states in Cd ⊗ C
kd :

|φ j 〉 = 1√
d

d−1∑

p=0

|p〉|(p + d j)′〉, j = 0, 1, . . . , k − 1. (4)

Applying the unitary matrices (2) to the first space of the maximally entangled states
in (4), we get kd2 orthogonal maximally entangled states:

|φ( j)
n,m〉 = (Un,m ⊗ Ikd)|φ j 〉, j = 0, 1, . . . , k − 1; n,m = 0, 1, . . . , d − 1. (5)

Hence the above kd2 orthogonal maximally entangled states (5) give rise to a MEB
in Cd ⊗ C

kd .
Substituting (2) into (5), we can simplify the above MEB (5) as follows:

|φ( j)
n,m〉 = 1√

d

d−1∑

p=0

ω
np
d |p ⊕ m〉|(p + d j)′〉, j = 0, 1, . . . , k − 1;

n,m = 0, 1, . . . , d − 1. (6)

Let {|a′
i 〉}kd−1

i=0 be another orthonormal basis inCkd , which is differentwith {|i ′〉}kdi=0.
Similar to the above discussion, we can get another MEB in C

d ⊗ C
kd :
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|ψ( j)
n,m〉 = 1√

d

d−1∑

p=0

ω
np
d |p ⊕ m〉|a′

p+d j 〉, j = 0, 1, . . . , k − 1;

n,m = 0, 1, . . . , d − 1. (7)

Equations(6) and (7)will be useful in the next section to constructmutually unbiased
maximally entangled bases in C

d ⊗ C
kd .

3 Mutually unbiased maximally entangled bases in C
d ⊗ C

kd

In this section, we investigate special MUBs comprised of only MEBs in C
d ⊗ C

kd ,
namely we establish a method to construct mutually unbiased maximally entangled
bases(MUMEBs) in C

d ⊗ C
kd .

It is easy to show that the two MEBs (6) and (7) in C
d ⊗ C

kd are MUBs if they
satisfy the following property

|〈φ(i)
n,m |ψ( j)

x,y〉|= 1√
kd2

, i, j =0, 1, . . . , k−1; n,m, x, y=0, 1, . . . , d−1. (8)

Let A denote the transition matrix from the basis {|i ′〉}kd−1
i=0 to the basis {|a′

i 〉}kd−1
i=0

in Ckd , that is

⎛

⎜
⎜
⎜
⎝

|a′
0〉|a′
1〉
...

|a′
(kd−1)〉

⎞

⎟
⎟
⎟
⎠

= A

⎛

⎜
⎜
⎜
⎝

|0′〉
|1′〉
...

|(kd − 1)′〉

⎞

⎟
⎟
⎟
⎠

, (9)

i.e. |a′
i 〉 = ∑kd−1

j=0 Ai j | j ′〉, Ai j are entries of the matrix A.
Then conditions (8) are valid if and only if A satisfies the following relations:

∣
∣
∣
∣
∣
∣

d−1∑

p=0

ω
�p
d Ap+d j,p⊕q+di

∣
∣
∣
∣
∣
∣
= 1√

k
, i, j = 0, 1, . . . , k − 1; �, q = 0, 1, . . . , d − 1,

(10)

Obviously, the above conditions (8) imply that the unitarymatrix A is a kind of complex
Hadamard matrix [41].

Let B be the transition matrix from the basis {|a′
i 〉}kd−1

i=0 to the third basis{|b′
i 〉}kd−1

i=0 ,

i.e., |b′
i 〉 = ∑kd−1

j=0 Bi j |a′
j 〉. Then the following MEB

|λ( j)
n,m〉= 1√

d

d−1∑

p=0

ω
np
d |p ⊕ m〉|b′

p+d j 〉, j =0, 1, . . . , k−1; n,m=0, 1, . . . , d−1.

(11)
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in C
d ⊗ C

kd is mutually unbiased with (6) and (7), if and only if the matrices A and
B satisfy the following relations:

∣
∣
∣
∣
∣
∣

d−1∑

p=0

ω
�p
d Bp+d j,p⊕q+di

∣
∣
∣
∣
∣
∣
= 1√

k
,

∣
∣
∣
∣
∣
∣

d−1∑

p=0

ω
�p
d (BA)p+d j,p⊕q+di

∣
∣
∣
∣
∣
∣
= 1√

k
, (12)

where i, j = 0, 1, . . . , k − 1; �, q = 0, 1, . . . , d − 1.
By inductive method, more mutually unbiasedMEBs can be constructed and so on.

For a detailed construction of MUMEBs, we first consider the case of C2 ⊗C
4. In the

following for simplicity we denote

(|x ′〉) =

⎛

⎜
⎜
⎝

|x ′
0〉|x ′
1〉|x ′
2〉|x ′
3〉

⎞

⎟
⎟
⎠

for x = a, b, c, d, e, with |e′
i 〉 = |i ′〉 for i = 0, 1, 2, 3.

By using (1) we have the first MEB in C2 ⊗ C
4. Taking the second basis {|a′

i 〉}3i=0
in C4 as

(|a′〉) = A
(|e′〉) , (13)

where

A = 1

2

⎛

⎜
⎜
⎝

1 1 1 1
i i −i −i
i −i i −i
1 −1 −1 1

⎞

⎟
⎟
⎠,

with i = √−1. Then the second MEB in C2 ⊗ C
4 is as follows:

|ψ j
i 〉 = 1√

2
(σi ⊗ I4)(|0〉|a′

2 j 〉 + |1〉|a′
2 j+1〉), i = 0, 1, 2, 3; j = 0, 1. (14)

It is direct to verify that the transformation matrix A satisfies the relation (10), and
then the two MEBs (1) and (14) in C2 ⊗ C

4 are mutually unbiased.
The third orthonomal basis {|b′

i 〉}3i=0 in C
4 can be obtained by

(|b′〉) = B
(|a′〉) , (15)

where

B = 1

2

⎛

⎜
⎜
⎝

1 1 −i −i
i i −1 −1
i −i −1 1
1 −1 −i i

⎞

⎟
⎟
⎠
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Hence, the third MEB in C
2 ⊗ C

4 can be constructed by

|λ j
i 〉 = 1√

2
(σi ⊗ I4)(|0〉|b′

2 j 〉 + |1〉|b′
2 j+1〉), i = 0, 1, 2, 3; j = 0, 1. (16)

One can directly check that A and B satisfy the relations in (12). Hence the above
three MEBs (1) , (14) and (16) are mutually unbiased.

The fourth and fifth MEBs in C
2 ⊗ C

4 can be similarly constructed from the
following orthonomal bases {|c′

i 〉}3i=0 and {|d ′
i 〉}3i=0 in C

4:

(|c′〉) = C
(|b′〉) ,

(|d ′〉) = D
(|c′〉) , (17)

where

C = 1

2

⎛

⎜
⎜
⎝

1 i −1 −i
−1 i 1 −i
1 i 1 i
1 −i 1 −i

⎞

⎟
⎟
⎠ ; D = 1

2

⎛

⎜
⎜
⎝

−i −1 −1 −i
−i −1 1 i
1 i i 1
1 i −i −1

⎞

⎟
⎟
⎠ .

The corresponding MEBs in C
2 ⊗ C

4 are given by

|μ j
i 〉 = 1√

2
(σi ⊗ I4)(|0〉|c′

2 j 〉 + |1〉|c′
2 j+1〉), i = 0, 1, 2, 3; j = 0, 1; (18)

|ν j
i 〉 = 1√

2
(σi ⊗ I4)(|0〉|d ′

2 j 〉 + |1〉|d ′
2 j+1〉), i = 0, 1, 2, 3; j = 0, 1. (19)

one can directly check that any twomatrices of A, B,C, D satisfy the relations in (10)
and (12); hence, the five complete MEBs (1), (14), (16), (18) and (19) are mutually
unbiased.

Thus, by suitably choosing the bases in C
4, we have presented an approach in

constructing maximally entangled states that are mutually unbiased in C2 ⊗ C
4.

Remark In [17], the authors showed that a complete set of MUBs of a bipartite
system contains a fixed amount of entanglement, independent on the choice of the
complete set. Moreover, in [36] Klimov showed that there are four structures ofMUBs
in C

2 ⊗ C
2 ⊗ C

2: (2,3,4), (3,0,6), (0,9,0) and (1,6,2), where the three numbers in a
bracket represents the number of triseparable, biseparable and nonseparable bases,
respectively. We do not know whether our 5 MUMEBs are extendible to 9 since we
can not construct the sixth maximally entangled basis. Recently, based on different
constructions, in [42] the authors presented a set of 5 MUBs in dimension 8. These
MUBs are not necessary maximally entangled. But the set of these 5 MUBs is found
to be unextendible. It is possible that the set of our 5 maximally entangled MUBs is
also unextendible.

Nevertheless, our approach is more general than the case of multi-qubit systems.
Next, to give an example which is not included in C

d ⊗ C
d ⊗ ... ⊗ C

d systems, we
present a detailed construction of MUMEBs inC2 ⊗C

6, which is absolutely different
from qubits systems.

123



Mutually unbiased maximally entangled... 2297

In the following, for simplicitywedenote
(|y′〉) = (|y′

0〉, |y′
1〉, |y′

2〉, |y′
3〉, |y′

4〉, |y′
5〉

)t

for y = f, g, h with | f ′
j 〉 = | j ′〉 for j = 0, 1, 2, 3, 4, 5, where t stands for transpose.

According to (6), we have the first MEB in C2 ⊗ C
6:

|φ( j)
n,m〉 = 1√

2

1∑

p=0

ω
np
2 |p ⊕ m〉|(p + 2 j)′〉, j = 0, 1, 2; n,m = 0, 1. (20)

where ω2 = e
2π

√−1
2 , and p ⊕ m denotes (p + m) mod 2.

For the second MEB in C
2 ⊗ C

6, we take the basis {|g′
j 〉}5j=0 in C

6 as

(|g′〉) = X
(| f ′〉) , (21)

where

X = 1√
6

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

iv∗ −iv∗ iv∗ −iv∗ iv∗ −iv∗
v∗ v∗ v∗ v∗ v∗ v∗
i −i iv −iv iv∗ −iv∗
1 1 v v v∗ v∗
i −i iv∗ −iv∗ iv −iv
1 1 v∗ v∗ v v

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

with v = − 1
2 +

√
3i
2 , ∗ denotes conjugate. Then the second MEB in C2 ⊗ C

6 has the
form:

|ψ( j)
n,m〉 = 1√

2

1∑

p=0

ω
np
2 |p ⊕ m〉|g′

p+2 j 〉, j = 0, 1, 2; n,m = 0, 1. (22)

It is direct to verify that the transformation matrix X satisfies the relation (10), and
then the two MEBs (20) and (22) in C2 ⊗ C

6 are mutually unbiased.
The third orthonomal basis {|h′

j 〉}5j=0 in C
6 can be obtained by

(|h′〉) = Y
(|g′〉) , (23)

where

Y = 1√
6

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 1 1 1
i −i i −i i −i
1 1 v v v∗ v∗
i −i iv −iv iv∗ −iv∗
1 1 v∗ v∗ v v

i −i iv∗ −iv∗ iv −iv

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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Then the third MEB in C2 ⊗ C
6 can be constructed by

|λ( j)
n,m〉 = 1√

2

1∑

p=0

ω
np
2 |p ⊕ m〉|h′

p+2 j 〉, j = 0, 1, 2; n,m = 0, 1. (24)

One can directly check that X and Y satisfy the relations in (12). Therefore the above
three MEBs (20), (22) and (24) in C2 ⊗ C

6 are mutually unbiased.
It would be interesting to mention that no more than 3 MUBs are known in dimen-

sion 12 (despite 13 is the upper bound), and then our construction of three MUMEBs
(20), (22) and (24) in C

2 ⊗ C
6 are exactly a breakthrough, which is also different

from those in qubits systems. In fact, our approach applies to general bipartite systems
C
d ⊗ C

kd (k ∈ Z+). Such constructions of orthonormal bases of MEBS by applying
local unitaries (Weyl-Heisenberg group) have been adopted in [18], corresponding to
the case Cd ⊗ C

kd with k = 1.

4 Conclusion and discussion

We have provided an explicit construction of maximally entangled basis in arbitrary
bipartite spaces Cd ⊗ C

kd (k ∈ Z+). Based on such bases, we have established a
method to construct mutually unbiased maximally entangled bases in Cd ⊗C

kd (k ∈
Z+). As detailed examples, we have constructed five mutually unbiased maximally
entangled bases in C

2 ⊗ C
4 and three mutually unbiased maximally entangled bases

in C2 ⊗ C
6.

The problemwehave investigated aboutmaximally entangled basis is different from
that of unextendible maximally entangled basis. There are still many open problems
related to maximally entangled basis and mutually unbiased maximally entangled
bases, such as the construction of mutually unbiased bases that are comprised of
one maximally entangled basis and one unextendible maximally entangled basis in
C
d ⊗C

kd (k ∈ Z+) orCd ⊗C
d ′

(d 
= d ′), as well as to the roles played by such bases
in information processing.
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