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1 Introduction

In this erratum, we revise our Theorem 2 in Ref. [5] and Theorem 2 in Ref. [4]. We had
previously claimed in these two theorems that the rate region for classical communica-
tion, quantum communication, and entanglement consumption, and the rate region for
public communication, private communication, and secret key consumption, respec-
tively, could be computed as a convex optimization program. These claims are not
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correct, simply because the task of computing the Holevo information (a special case
of both triple trade-off rate regions) cannot be done with a convex optimization pro-
gram, as was known in prior work (see Ref. [3], for example). We also prove that the
task of computing these rate regions for general channels is NP-complete, by exploit-
ing a simple reduction from the task of computing a channel’s Holevo information
to the task of computing the full triple trade-off region and the fact that computing a
channel’s Holevo information is NP-complete [1].

We structure this erratum as follows. We first provide proofs that the Holevo infor-
mation cannot be computed as a simple convex optimization program. We do this by
showing that the Holevo information is concave in the input distribution for a fixed set
of signaling states (Lemma 1), while it is convex in the signaling states if the input dis-
tribution is fixed (Lemma 2). Thus, the computation of the Holevo information cannot
be done with a convex optimization program, and in general, for this function, a local
maximum will not be a global one. Although these facts are already known, we did
not find this explicitly worked out in the literature and thought it would be useful to do
so here. We then provide revisions of Theorem 2 in Ref. [5] and Theorem 2 in Ref. [4]
that demonstrate why the quantum dynamic capacity formula and the private dynamic
capacity formula, respectively, are still relevant in simplifying the computation of the
rate regions’ boundaries. Specifically, we show that if these formulas single-letter-
ize, then it is only necessary to compute the regions with respect to a single channel
use, rather than with a regularization (an infinite number of them). Finally, we show
that the tasks of computing the boundaries of both triple trade-off rate regions are
NP-complete.

2 Holevo information is concave in the input distribution and convex
in the signaling states

Lemma 1 The Holevo information I (X; B) is concave in the input distribution when
the signal states are fixed, in the sense that

λI (X; B)σ0
+ (1 − λ) I (X; B)σ1

≤ I (X; B)σ , (1)

where σ X B
0 and σ X B

1 are of the form

σ X B
0 ≡

∑

x

pX (x) |x〉 〈x |X ⊗ N (σx ) , (2)

σ X B
1 ≡

∑

x

qX (x) |x〉 〈x |X ⊗ N (σx ) , (3)

and σ X B is a mixture of the states σ X B
0 and σ X B

1 of the form:

σ X B ≡
∑

x

[λpX (x) + (1 − λ) qX (x)] |x〉 〈x |X ⊗ N (σx ) , (4)

where 0 ≤ λ ≤ 1.
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Proof Let σ XU B be the state

σU X B ≡
∑

x

[
pX (x) |x〉 〈x |X ⊗ λ |0〉 〈0|U + qX (x) |x〉 〈x |X ⊗ (1 − λ) |1〉 〈1|U

]

⊗N (σx ) . (5)

Observe that TrU
{
σ XU B

} = σ X B . Then, the statement of concavity is equivalent to

I (X; B|U )σ ≤ I (X; B)σ . (6)

We can rewrite this as

H (B|U )σ − H (B|U X)σ ≤ H (B)σ − H (B|X)σ . (7)

Observe that

H (B|U X)σ = H (B|X)σ , (8)

that is, one can calculate that both of these are equal to

∑

x

[λpX (x) + (1 − λ) qX (x)] H (N (σx )) . (9)

The statement of concavity then becomes

H (B|U )σ ≤ H (B)σ , (10)

which follows from concavity of quantum entropy. ��
Lemma 2 The Holevo information I (X; B) is convex in the signal states when the
input distribution is fixed, in the sense that

λI (X; B)σ0
+ (1 − λ) I (X; B)σ1

≥ I (X; B)σ , (11)

where σ X B
0 and σ X B

1 are of the form

σ X B
0 ≡

∑

x

pX (x) |x〉 〈x |X ⊗ N (σx ) , (12)

σ X B
1 ≡

∑

x

pX (x) |x〉 〈x |X ⊗ N (ωx ) , (13)

and σ X B is a mixture of the states σ X B
0 and σ X B

1 of the form:

σ X B ≡
∑

x

pX (x) |x〉 〈x |X ⊗ N (λσx + (1 − λ)ωx ) , (14)

where 0 ≤ λ ≤ 1.
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Proof Let σ XU B be the state

σ XU B ≡
∑

x

pX (x) |x〉 〈x |X ⊗
[
λ |0〉 〈0|U ⊗ N (σx ) + (1−λ) |1〉 〈1|U ⊗ N (ωx )

]
.

(15)

Observe that TrU
{
σ XU B

} = σ X B . Then, convexity in the input states is equivalent
to the statement

I (X; B|U )σ ≥ I (X; B)σ . (16)

Consider that

I (X; B|U )σ = I (X; BU )σ − I (X; U )σ , (17)

by the chain rule for the quantum mutual information. Since the input distribution
pX (x) is fixed, there are no correlations between X and the convexity variable U , so
that I (X; U )σ = 0. Thus, the above inequality is equivalent to

I (X; BU )σ ≥ I (X; B)σ , (18)

which follows from the quantum data processing inequality. ��
In the above two theorems, we have shown that the Holevo information is either

concave or convex depending on whether the signal states or the input distribution
is fixed, respectively. Thus, the computation of the Holevo information of a general
quantum channel becomes difficult as the input dimension of the channel grows larger,
since a local maximum of the Holevo information is not necessarily a global maximum.

3 Revision of Theorem 2 of Ref. [5] and Theorem 2 of Ref. [4]

Recall that the quantum dynamic capacity formula is defined as follows:

Definition 1 (Quantum Dynamic Capacity Formula) The quantum dynamic capacity
formula of a quantum channel N is as follows:

Dλ,μ (N ) ≡ max
σ

I (AX; B)σ + λI (A〉B X)σ + μ (I (X; B)σ + I (A〉B X)σ ) ,

(19)

where σ is a state of the form

σ X AB ≡
∑

x

pX (x) |x〉 〈x |X ⊗ N A′→B(φAA′
x ), (20)

λ,μ ≥ 0, and these parameters λ and μ play the role of Lagrange multipliers.
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Theorem 1 Single-letterization of the quantum dynamic capacity formula implies
that the computation of the Pareto optimal trade-off surface of the quantum dynamic
capacity region requires an optimization over a single channel use.

Proof We employ ideas from optimization theory for the proof (see Ref. [2]). We
would like to characterize all the points in the capacity region that are Pareto optimal.
Such a task is standard vector optimization in the theory of Pareto trade-off analysis
(see Section 4.7 of Ref. [2]). We can phrase the optimization task as the following
scalarization of the vector optimization task:

max
C,Q,E,p(x),φx

wC C + wQ Q + wE E (21)

subject to

C + 2Q ≤ I (AX; Bn)σ , (22)

Q + E ≤ I (A〉Bn X)σ , (23)

C + Q + E ≤ I (X; Bn)σ + I (A〉Bn X)σ , (24)

where the maximization is over all C, Q, and E and over probability distributions
pX (x) and bipartite states φAA′n

x . The geometric interpretation of the scalarization
task is that we are trying to find a supporting plane of the dynamic capacity region
where the weight vector

(
wC , wQ, wE

)
is the normal vector of the plane and the

value of its inner product with (C, Q, E) characterizes the offset of the plane. The
Lagrangian of the above optimization problem is

L
(

C, Q, E, pX (x) , φAA′n
x , λ1, λ2, λ3

)
≡ wC C + wQ Q + wE E

+λ1
(
I
(

AX; Bn)
σ

− (
C + 2Q

))

+λ2
(
I
(

A〉Bn X
)
σ

− (
Q + E

))

+λ3
(
I
(
X; Bn)

σ
+ I

(
A〉Bn X

)
σ

− (
C + Q + E

))
, (25)

and the Lagrange dual function g [2] is

g (λ1, λ2, λ3) ≡ sup
C,Q,E,p(x),φAA′n

x

L
(

C, Q, E, pX (x) , φAA′n
x , λ1, λ2, λ3

)
, (26)

where λ1, λ2, λ3 ≥ 0. The optimization task simplifies if the Lagrange dual function
does. Thus, we rewrite the Lagrange dual function as follows:

g (λ1, λ2, λ3) = sup
C,Q,E,p(x),φAA′n

x

wC C + wQ Q + wE E + λ1
(
I
(

AX; Bn)
σ

− (
C + 2Q

) ) + λ2
(
I
(

A〉Bn X
)
σ

− (
Q + E

))

+λ3
(
I
(
X; Bn)

σ
+ I

(
A〉Bn X

)
σ

− (
C + Q + E

))
(27)
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= sup
C,Q,E,p(x),φAA′n

x

(wC − λ1 − λ3) C + (
wQ − 2λ1 − λ2 − λ3

)
Q

+ (wE − λ2 − λ3) E + λ1

(
I
(

AX; Bn)
σ

+λ2

λ1
I
(

A〉Bn X
)
σ

+ λ3

λ1

(
I
(
X; Bn)

σ
+ I

(
A〉Bn X

)
σ

))
(28)

= sup
C,Q,E

(wC − λ1 − λ3) C + (
wQ − 2λ1 − λ2 − λ3

)
Q

+(wE −λ2−λ3) E +λ1

(
max

p(x),φAA′n
x

I
(

AX; Bn)
σ
+ λ2

λ1
I
(

A〉Bn X
)
σ

+λ3

λ1

(
I
(
X; Bn)

σ
+ I

(
A〉Bn X

)
σ

))
. (29)

The first equality follows by definition. The second equality follows from some alge-
bra, and the last follows because the Lagrange dual function factors into two separate
optimization tasks: one over C, Q, and E and another that is equivalent to the quantum
dynamic capacity formula with λ = λ2/λ1 and μ = λ3/λ1. Thus, the computation
of the Pareto optimal trade-off surface requires just a single use of the channel if the
quantum dynamic capacity formula in (19) single-letterizes. ��

Similarly, the private dynamic capacity formula is defined as follows:

Definition 2 (Private Dynamic Capacity Formula) The private dynamic capacity for-
mula of a quantum channel N is as follows:

Pλ,μ (N ) ≡ max
σ

I (Y X; B)σ + λ
[
I (Y ; B|X)σ − I (Y ; E |X)σ

] + μ
[
I (Y X; B)σ

−I (Y ; E |X)σ
]
, (30)

where λ,μ ≥ 0, σ XY B E is a state of the following form:

σ XY B E ≡
∑

x,y

pX,Y (x, y) |x〉 〈x |X ⊗ |y〉 〈y|Y ⊗ U A′→B E
N (ρ A′

x,y), (31)

U A′→B E
N is an isometric extension of the channel N , and the states ρ A′

x,y are mixed.

We obtain the following revision of Theorem 2 of Ref. [4] in a similar way:

Theorem 2 Single-letterization of the private dynamic capacity formula implies that
the computation of the Pareto optimal trade-off surface of the private dynamic capacity
region requires an optimization over a single channel use.

Proof The proof exploits the same techniques as the proof of Theorem 1 above. ��
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4 Computing the trade-off region is NP-complete

We finally prove that the task of computing the boundary of the trade-off regions, even
in the case where the region single-letterizes, is an NP-complete problem. We do so
by appealing to the results of Beigi and Shor [1].

Theorem 3 Suppose N is a quantum channel that acts on a d-dimensional Hilbert
space and is specified by poly(d) number of bits. Let ∂CCQE(N ) denote the boundary of
the single-letter quantum dynamic capacity region given by (9–11) in Theorem 1 of Ref.
[5]. Then deciding whether poly(d) number of rate triples (C, Q, E) (some of which
are on the C, Q, or E axes) all lie inside the boundary ∂CCQE(N ) is NP-complete.

Proof We prove this theorem by showing that this decision problem is in NP and is
“harder” than the problem of computing the Holevo formula for the quantum channel
N , which has already been shown to be NP-complete [1].

First, we can easily prove that the decision problem is in NP. If N is a quantum
channel and all of the rate triples (C, Q, E) lie inside the boundary ∂CCQE(N ), then
for each rate triple, there is an ensemble {pX (x), ρx }x∈X such that |X | ≤ poly(d)

(a simple application of Caratheodory’s theorem) and such that the rate triple lies
inside the region given by (9–11) of Theorem 1 of Ref. [5]. Therefore given these
ensembles corresponding to the rate triples, the verifier can check in polynomial time
whether the rate triples lie inside the region.

To show that this decision problem is NP-hard, there is a simple reduction from
the task of computing the Holevo formula to the task of computing the full region. In
particular, given a method for deciding whether a polynomial number of rate triples
are inside the region, one could use this to decide whether the Holevo formula is larger
than some constant. Thus, the above decision problem is NP-complete. ��
Remark 1 A similar decision problem for the single-letter private dynamic capacity
region is NP-complete. This follows by the same proof because the Holevo formula
is a special rate triple in the single-letter private dynamic capacity region.

Acknowledgements We are grateful to Graeme Smith for pointing out Ref. [1] to us and noting the
conflict between our previous claims and the results in Ref. [1].
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