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Abstract Jacket matrices motivated by the center weight Hadamard matrices have
played an important role in signal processing, communications, image compression,
cryptography, etc. In this paper, we suggest a design approach for the Pauli block
jacket matrix achieved by substituting some Pauli matrices for all elements of com-
mon matrices. Since, the well-known Pauli matrices have been widely utilized for
quantum information processing, the large-order Pauli block jacket matrix that con-
tains commutative row operations are investigated in detail. After that some special
Abelian groups are elegantly generated from any independent rows of the yielded Pauli
block jacket matrix. Finally, we show how the Pauli block jacket matrix can simplify
the coding theory of quantum error-correction. The quantum codes we provide do
not require the dual-containing constraint necessary for the standard quantum error-
correction codes, thus allowing us to construct quantum codes of the large codeword
length. The proposed codes can be constructed structurally by using the stabilizer
formalism of Abelian groups whose generators are selected from the row operations
of the Pauli block jacket matrix, and hence have advantages of being fast constructed
with the asymptotically good behaviors.
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1 Introduction

The Hadamard matrix is an orthogonal matrix with highly practical values for signal
sequence transforms and data processing [1–4]. Jacket matrices [5–7], which are moti-
vated by the center weight Hadamard matrices, are class of matrices with the inverse
being determined by the element-wise of matrices. Mathematically, let A = (akt ) be
a matrix, if A−1 = (a−1

kt )
T , then the matrix A is a jacket matrix, where the superscript

symbol ‘T ’ denotes the transpose and ‘(·)’ denotes a matrix. Especially, the interest-
ing matrices, such as Hadamard matrices, DFT matrices, belong to the jacket matrix
family [8]. Since the inverse of the jacket matrix can be easily calculated due to its
elegant characteristics [9,10], it may be elegantly employed in the signal processing,
encoding, image compression, etc [11–13].

If each element of the jacket matrix is replaced by a matrix, the resulting matrix is
called as the block jacket matrix. Let [A] = ([a]kt ), if [A]−1 = ([a]−1

kt )
T , then the

resulting block matrix [A] is the block jacket matrix, where the symbol ‘[·]’ denotes
the block matrix and the block-wise element [a]kt is a reversible matrix. Since Pauli
matrices are complex orthogonal unitary matrices widely exploited in the MIMO code
designing [14] and quantum information processing [15], in this paper, we investigate
how to fast design the Pauli block matrix, which is available in the coding theory of
quantum error-correction codes (QECC).

QECC, as a primary tool for fighting decoherence, demonstrates a formal possibility
of storing and manipulating quantum data for the arbitrarily long time in the presence
of noise [16–19]. Currently, the striking development of QECC is the employment of
the stabilizer formalism, whereby code words are subspaces in Hilbert space speci-
fied by an Abelian group. The problem of constructing QECC was reduced to that
of searching for the classical dual-containing codes or self-orthogonal codes [16,17].
The virtue of this approach is that QECC can be directly constructed from the classical
codes with a certain property, rather than developing a completely new coding theory
of QECC from scratch. Unfortunately, the need for the dual-containing code presents
a substantial obstacle to the coding theory in its entirety, especially in the context of
modern codes, such as Turbo codes and low-density parity-check (LDPC) codes with
the large codeword length [18,20]. To resolve this problem, the recursive techniques
for the fast block transforms is proposed in this paper to construct the large-order Pauli
block jacket matrix, and hence to fast construct quantum code of the large codeword
length.

This paper is outlined as follows. In Sect. 2, we describe the standard Pauli block
jacket matrix formalism, which is the foundation to construct quantum codes. In Sect. 3,
we state the fast construction algorithm for quantum codes in detail. We design Abe-
lian groups based on Pauli block (jacket) matrices, from which the generators of the
stabilizer can be fast generated. In Sect. 4, it is shown that the present codes have
asymptotically good behaviors. In Sect. 5, the efficiency of the proposed construction
approach is concisely analyzed. Finally, conclusions are drawn in Sect. 6.
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2 Pauli block jacket matrices

Pauli matrices [15] are defined by P = {σ j : 0 ≤ j ≤ 3}, for which

σ0 =
(

1 0
0 1

)
, σ1 =

(
0 1
1 0

)
,

σ2 =
(

0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

(1)

where σ0 is the 2-order identity matrix I2, and i2 = −1. For simplicity, we denote I2
by a block matrix [I ] in this paper.

Definition 2.1 Consider two rows of a block matrix [A]n = ([a]kt )n×n , i.e., [α]i =
([a]i1, . . . , [a]in) and [α] j = ([a] j1, . . . , [a] jn), where [a]kt is a reversible matrix for
any kt . The block matrix [A]n is called a block jacket matrix if and only if

[α]i · [α]−1
j =

n∑
u=1

{
[a]iu[a]−1

ju

}
= 0, (2)

where [α]−1
j =

(
[a]−1

j1 , . . . , [a]−1
jn

)
. Specially, if the element [a]kt ∈ P is a Pauli

matrix, then [A]n is called Pauli block jacket matrix, denoted by [J ]n .

2.1 Pauli block jacket matrices with size 2 by 2

The 2-order Pauli block jacket matrix [J ]2 can be constructed easily as,

[J ]2 =
(
σi σ j

σ j σi

)
, (3)

where σi , σ j ∈ {σ1, σ2, σ3} for i, j ∈ {1, 2, 3}. In fact, according to Definition 2.1,
one obtains

σi · σ−1
j + σ j · σ−1

i = σi · σ j + σ j · σi = 0.

It implies that [J ]2 in Eq. 3 is also a Pauli block jacket matrix. However, if σi = σ0 or
σ j = σ0, then the 2-order block jacket matrix [J ′]2 can be constructed as,

[J ′]2 =
(
σ0 σ j

σ j −σ0

)
, (4)

which follows the definition of the Pauli block jacket matrix in Definition 2.1.
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2.2 Pauli block jacket matrices with higher sizes

To design a Pauli block jacket matrix with the large size, we need to introduce the
Kronecker product, [J ]p ⊗ [J ]q , of two Pauli block jacket matrices [J ]p and [J ]q ,
i.e.,

[J ]p ⊗ [J ]q =

⎛
⎜⎜⎝

[a]11[J ]q · · · [a]1p[J ]q

[a]21[J ]q · · · [a]2p[J ]q

· · · · · · · · ·
[a]p1[J ]q · · · [a]pp[J ]q

⎞
⎟⎟⎠ , (5)

where [J ]p1 = ([a]i j )p×p and [J ]q = ([b]i j )q×q .
Making use of the Kronecker product of several Pauli block jacket matrices, a

family of block jacket matrices may be extended by using the following theorem.

Theorem 2.1 Suppose [J ]p and [J ]q are Pauli block jacket matrices. For any non-
negative integer numbers m and s, an n-order Pauli block jacket matrix [J ]n may be
constructed as follows

[J ]n =
{

[I ]pm ⊗
(

s∏
i=1

[I ]qs−i ⊗[J ]q⊗[I ]qi−1

)}

×
{(

m∏
i=1

[I ]pm−i ⊗[J ]p⊗[I ]pi−1

)
⊗[I ]qs

}
, (6)

where n = pmqs for any two prime numbers p and q.

Proof Based on an arbitrary r -order Pauli block jacket matrix [J ]r , the n0-order block
jacket matrices [J ]n0 can be obtained by using the recursive relations,

[J ]n0 = [J ]rl = [J ]rl−1⊗[J ]r

=
l−1∏
i=0

[I ]rl−i−1⊗[J ]r⊗[I ]r i

=
l∏

i=1

[I ]rl−i ⊗[J ]r⊗[I ]r i−1 , (7)

where n0 = rl for r ∈ {p, q} and l ∈ {m, s}. Since,

[J ]pmqs = ([I ]pm ⊗[J ]qs ) · ([J ]pm ⊗[I ]qs ),

the proof of the theorem is straightforward. ��
Example 2.1 Taking [J ]p = [J ]2 for i = 1, j = 2 and [J ]q = [J ]2 for i = 1, j = 3
in Eq. 3, the 4-order Pauli block jacket matrix [J ]4 can be constructed
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Fig. 1 Signal flow graph for Pauli block transform in Eq. 9

[J ]4 = [J ]p ⊗ [J ]q

=

⎛
⎜⎜⎝

σ0 −iσ2 −iσ3 iσ1
−iσ2 σ0 iσ1 −iσ3
−iσ3 iσ1 σ0 −iσ2
iσ1 −iσ3 −iσ2 −σ0

⎞
⎟⎟⎠ . (8)

In fact, for any two rows of [J ]4, say [ρ]2 = (−iσ2, σ0,−iσ1,−iσ3) and [ρ]3 =
(−iσ3, iσ1, σ0,−iσ2), it follows

[ρ]1 · [ρ]−1
2 = iσ2(iσ3)

−1 + (iσ1)
−1 + iσ1 + iσ3(iσ2)

−1 = 0.

Therefore, the block matrix [J ]4 is a Pauli block jacket matrix.

Example 2.2 We consider Pauli block jacket matrix [J ]4 in Eq. 8 as a basic matrix to
generate the large order Pauli block jacket matrices [J ]4m for m ≥ 2. For example,
taking m = 2, the 16-order matrix [J ]16 can be constructed from

[J ]42 = ([I ]4⊗[J ]4)([J ]4⊗[I ]4). (9)

The factor graph of above equation can be shown in Fig. 1. It requires 96 additions and
128 multiplications for computation. The computational complexity of the proposed
algorithms is shown in Table 1. Comparing it with the direct computation approach,
the present algorithms are obviously faster.
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Table 1 Computation complexity of the fast algorithms for the construction or decomposing of Pauli block
matrices

Direct computing Proposed in Eq. 6 Proposed in Eq. 7

Add. (n − 1)n (p − 1)mn + (q − 1)sn (r − 1)ln0

Mult. n2 pmn + qsn rln0

Add. and Mult. denote the number of additions and multiplications

3 Quantum codes based on Pauli block matrices

The above section focuses on the construction of Pauli block jacket matrices. In this
section, we continue to investigate applications of the construction or decomposition
of Pauli block jacket matrices in the coding theory of QECC. Generally, there are
two construction approaches to Pauli block matrices. One is the random construction,
and another is the regular method. In practices, Pauli block matrices are always con-
structed in a regular way. In this section we make the regular constructing approach to
the sparse matrix factorization of Pauli block jacket matrices. After that, we employ the
proposed approach for the fast constructions of quantum codes based on the stabilizer
formalism.

3.1 Abelian groups based on Pauli block matrices

The power of the stabilizer formalism for quantum codes comes from the clever use
of the group theory. Let P⊗n denote the set of the n-fold tensor product of the sin-
gle-qubit Pauli operation (matrix) in P . Then P⊗n together with possible factors in
{±i,±1} form an n-qubit operation group Gn . An arbitrary operation αu ∈ Gn , which
can also be regarded as a 2n by 2n matrix, is uniquely expressed by the Kronecker
product [15]

αu = iλ
(
σ

xu1
1 σ

zu1
3

) ⊗ (
σ

xu2
1 σ

zu2
3

) ⊗ · · · ⊗ (
σ

xun
1 σ

zun
3

)
, (10)

where xu j , zu j ∈ {0, 1} for 1 ≤ j ≤ n. Omitting factor iλ, we denote αu by a concat-
enated 2n-dimensional vector �αu ,

�αu = (�xu |�zu) = (xu1, xu2, . . . , xun|zu1, zu2, . . . , zun). (11)

The Hamming weight of �αu is the Hamming weight of the bitwise or of �xu with �zu .
The symplectic inner product of two vectors �αu = (�xu |�zu) and �αv = (�xv|�zv) is defined
by

�αu · �αv = �xu · �zv + �zu · �xv = �αu R�αT
v , (12)

where R =
(

0n×n In×n

In×n 0n×n

)
. According to ref. [16], two operations αu and αv commute

if and only if
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�αu · �αv = 0. (13)

Assume there is no zero-entry in each row [ρ]u = ([a]u1, [a]u2, . . . , [a]un) of [J ]n ,
from which an n-qubit operation, called the row operation,

αu = [a]u1 ⊗ [a]u1,⊗ · · · ⊗ [a]un,

can be generated directly, where [a]u j = σ
xu j
1 σ

zu j
3 for 1 ≤ u, j ≤ n.

To achieve the large-length commutative operations, we consider the q by q per-
mutation matrices Pwq ∈ {Pw : 1 ≤ w ≤ q}, where the q by q permutation matrix P
is defined by

P =

⎛
⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
...
...
...
...
...

1 0 0 · · · 0

⎞
⎟⎟⎟⎠ .

After substituting σi and σ j for the entries ‘0’ and ‘1’ of Pwq , respectively, we get the
q-order Pauli block matrix [P]wq , where σi , σ j ∈ P .

Theorem 3.1 All row operations of the Pauli block matrix [J ]2q are commuting, where

[J ]2q = [J ]2 ⊗ [P]wq . (14)

Proof Assume any two row operations of the Pauli block jacket matrix [J ]2q are
respectively denoted by

αu = [a]u,1 ⊗ [a]u,2 ⊗ · · · ⊗ [a]u,2q ,

αv = [a]v,1 ⊗ [a]v,2 ⊗ · · · ⊗ [a]v,2q ,

where [a]u,i , [a]v, j ∈ P for 1 ≤ u, v, i, j ≤ n. Based on the properties of Pauli
matrices in Sect. 2, one obtains

αu · αv = ([a]u,1 ⊗ · · · ⊗ [a]u,2q) · ([a]v,1 ⊗ · · · ⊗ [a]v,2q)

= ([a]u,1 · [a]v,1)⊗ · · · ⊗ ([a]u,n · [a]v,2q)

= (−1)2λ([a]v,1 · [a]u,1)⊗ · · · ⊗ ([a]v,n · [a]u,2q)

= ([a]u,1 ⊗ · · · ⊗ [a]u,2q) · ([a]v,1 ⊗ · · · ⊗ [a]v,2q)

= αv · αu,

where λ is the number of product [a]v,i · [a]u,i such that [a]v,i 	= σ0, [a]u,i 	= σ0 and
[a]v,i 	= [a]u,i . This completes the proof of the theorem. ��

Corollary 3.1 All row operations of the Pauli block matrix [J ]pmq are commuting,
where

[J ]pmq = [J ]pm ⊗ [P]wq , (15)

for which [J ]pm is a Pauli block jacket matrix in Eq.6.
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Corollary 3.2 Given two Pauli block matrices [J ]pmq1 and [J ]pmq2 , any two row
operations of the matrix

[J ](pmq1)
l (pmq2)

h = [J ](pmq1)
l ⊗ [J ](pmq2)

h , (16)

are commuting, where l and h are two nonnegative integer numbers.

Example 3.1 Based on two rows of [J ]2 in Eq. 3, one obtains two row operations,
α1 = σi ⊗ σ j and α2 = σ j ⊗ σi , and hence

α1 · α2 = (σi ⊗ σ j ) · (σ j ⊗ σi ) = (σi · σ j )⊗ (σ j · σi )

= (−1)2(σ j · σi )⊗ (σi · σ j ) = (σ j ⊗ σi ) · (σi ⊗ σ j )

= α2 · α1.

To confirm the commutativity of α1 and α2 without loss of the generality, we let
σi = σ1 and σ j = σ3. Then two vectors �α1 = (10|01) and �α2 = (10|01), together
with the concatenated matrix

A2 = (A2
x |A2

z ) =
(

10 01
01 10

)
, (17)

are achieved. It is obvious that

A2
x ·

(
A2

z

)T + A2
z ·

(
A2

x

)T = 0 mod 2.

It implies that two operations α1 and α2 are commuting, and hence span an Abelian
group 〈{α1, α2}〉.

Furthermore, according to Corollary 3.1, any different row operations of the
Kronecker product [J ]2m are commuting. Specially, taking m = 2, one gets

[J ]4 = [J ]2 ⊗ [J ]2.

It is easy to check that [J ]4 is a Pauli block jacket matrix with two independent
commutative row operations.

Example 3.2 We consider [J ]6 = [J ]2 ⊗ [P]2
3, where

[P]2
3 =

⎛
⎝σ0 σ0 σ3
σ3 σ0 σ0
σ0 σ3 σ0

⎞
⎠ .
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Provided [J ]2 for i = 1, j = 2 in Eq. 3, the concatenated matrix H6 can be constructed

H6 =

⎛
⎜⎜⎜⎜⎜⎜⎝

111111 001110
111111 100011
111111 010101
111111 110001
111111 011100
111111 101010

⎞
⎟⎟⎟⎟⎟⎟⎠
. (18)

It is easy to check that 4 rows of H6 are independent and commuting.

3.2 Constructions of quantum codes

Given an Abelian operation subgroup S of Gn , the stabilizer quantum codes C(S) is
a set of n-qubit quantum states associated with S, i.e.,

C(S) = {|ψ〉 : M |ψ〉 = |ψ〉, ∀M ∈ S}, (19)

which is the subspace fixed by S (called as the stabilizer). For the stabilizer quantum
code [[n, k, d]], it encodes k logical qubits into n physics qubits.

Suppose there are n − k generators to span the stabilizer S, from which one obtains
the n − k by 2n concatenated matrix

H = (Hx |Hz).

According to the construction of quantum codes in ref.[17], we calculate the generator
matrix of quantum codes G = (Gx |Gz) from

Hx GT
z + HzGT

x = 0. (20)

It can be rewritten as

H RGT = 0. (21)

To construct a systemical quantum code, we assume that there exists one unitary matrix
U such that

U (H R) = (I(n−k)×(n−k)|�(n−k)×(n+k)).

According to Eq. 21, the generator matrix G is achieved

G =
(
�T
(n−k)×(n+k)|I(n+k)×(n+k)

)
. (22)
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Theorem 3.2 Given a Pauli block matrix [J ]n with at least n − k different com-
mutative row operations, the stabilizer quantum code C(S) can be constructed with
parameters [[n, k, d]], where the stabilizer S is a set of n-qubit operations spanned by
n −k independent row operations of Pauli block matrix [J ]n for n = (pmq1)

l(pmq2)
h

in Eq.16.

Proof Since [J ]n is the Kronecker product of several small size Pauli block matri-
ces [J ]pmq1 and [J ]pmq2 , we know that the number of independent row operations of
[J ]n depends simultaneously on the independent row operations of [J ]pq1 and [J ]pq2

[9], which is at most p2q1q2. Selecting any n − k operations from these independent
commutative row operations, an Abelian group, the stabilizer S, can be generated.
Namely, any n − k independent row operations αi1 , αi2 , . . . , αin−k spans the stabilizer

S = 〈{αi1 , αi2 , . . . , αin−k }〉. ��

Combining Eqs. 19, 20, and 22, the stabilizer quantum code can be structurally con-
structed.

Example 3.3 Consider the Pauli block matrix [J ]6 with the concatenated matrix H6
described in Eq. 18. There are four independent commutative row operations, which
serve as the generators of the stabilizer S. Combining Eqs. 21 and 22, the generator
matrix of quantum codes be G6 = (Gx |Gz) can be calculated as

G6 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

000000 110000
000000 101000
000000 100100
000000 100010
000000 100001
100100 100000
010010 100000
001001 100000

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (23)

Based on Eq. 23, a quantum code [[6, 2, 2]] can be constructed with the stabilizer
S spanned by the operations with the corresponding concatenated matrix in Eq. 34
shown in Appendix.

4 Asymptotically good behaviors

In the previous section, the stabilizer quantum code C(S) with the parameters
[[n, k, d]] can be constructed from Pauli block matrix [J ]n with at least n − k inde-
pendent commutative row operations. Since the value of the parameter d, Hamming
distance of the quantum code, depends on the independent rows of the possible Pauli
block matrix [J ]n we now analyze the asymptotic behaviors of the quantum code
based on Pauli block jacket matrix [J ]n in Eq. 16 (Fig. 2).

Denote by δ = d/n and R = k/n, respectively. Without loss of generality, we only
consider the case of n = (2q1)

l in this section. Taking the Pauli block matrix [J ]2q1 in
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Fig. 2 The relationship of the asymptotic binary quantum singleton bound (AQS), the quantum Hamming
bound (AQH), the quantum Gilbert–Varshamov bound (AQGV), and the classical binary singleton bound
(AS), the classical Hamming bound (AH), the classical Gilbert–Varshamov bound (AGV)

Eq. 14, it is known that the number of independent row operations of [J ]2q1 , and hence
[J ](2q1)l

, is at most 2q1. For some fixed value η we can select the proper parameters
n and k such that

n − k ≤ 2q1η − 1, (24)

where 0 ≤ η ≤ 1. So it follows the lower bound of R,

R = k

(2q1)l
≥ 1 − η

(2q1)l−1 + 1

(2q1)l
. (25)

By the result of the quantum singleton bound for the binary quantum code [16], we
have the upper bound for the pure quantum code of distance d,

k ≤ n − 2d + 2. (26)

Employing Eq. 26, we have

δ = d

(2q1)l
≤ η

2(2q1)l−1 + 1

(2q1)l
,

R = k

(2q1)l
≤ 1 − 2δ + 2

(2q1)l
. (27)

123



372 Y. Guo et al.

Specially taking l = 1, one obtains

lim
q1→∞ δ ≤ η

2
+ lim

q1→∞
1

2q1
= η

2
,

lim
q1→∞ R ≤ 1 − 2δ + lim

q1→∞
2

2q1
= 1 − 2δ. (28)

Theorem 4.1 Given the Pauli block jacket matrix [J ]n in Eq.16, the stabilizer quan-
tum code [[n, k, d]] that are generated from the generator matrix G = (Gx |Gz) via
Eq.20 are asymptotically good.

Proof Without loss of the generality, we consider the Pauli block matrix [J ]n =
[J ](2q1)l

with the basic pauli block matrix [J ]2q1 in Eq. 14. Since there are three pos-
sible non-trivial single-qubit errors in {σ1, σ2, σ3}, the number of errors of length i

on an n-qubit quantum state is 3i
(

n
i

)
. For the binary quantum code [[n, k, d]] that

corrects errors up to t = �(d − 1)/2�, we get the quantum Hamming Bound,

t∑
i=0

3i
(

n
i

)
≤ 2n−k, (29)

and the quantum Gilbert bound

d−1∑
i=0

3i
(

n
i

)
≥ 2n−k . (30)

Define the entropy H(x) function [15]

H(x) = x log4 3 − x log4 x − (1 − x) log4(1 − x), (31)

where 0 < x < 1. Combining Eqs. 24 and 26, one obtains

d ≤ (n − k)/2 + 1 ≤ q1 + 1 ≤ (2q1)
l/2 = n/2. (32)

After employing Stirling’s formula for Eq. 29, we get

2

n
log4

t∑
i=0

3i
(

n
i

)
= 2H(

t

n
)+ o(1) ≤ 1 − k

n
, (33)

and hence
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lim
q1→∞ R ≤ lim

q1→∞

[
1 − 2H

(
t

n

)
− o(1)

]

≤ lim
q1→∞

[
1 − 2H

(
d

2n

)
− o(1)

]
= 1 − 2H

(
δ

2

)
.

Thus the proposed quantum code meets the asymptotic quantum Hamming bound
[19]. Similarly, through Eqs. 30 and 32, it is obvious that

2

n
log4

d−1∑
i=0

3i
(

n
i

)
= 2H

(
d − 1

n

)
+ o(1) ≥ 1 − k

n
.

As a consequence, we obtain

lim
q1→∞ R ≥ lim

q1→∞

[
1 − 2H

(
d − 1

n

)
− o(1)

]

≥ lim
q1→∞

[
1 − 2H

(
d

n

)
− o(1)

]
= 1 − 2H(δ).

It means that the proposed quantum code meets the asymptotic quantum Gilbert–
Varshamov bound [19]. This completes the proof of the theorem. ��

5 Efficiency

To construct the quantum code [[n, k, d]] with the large codeword length, in this
paper we do not need to find the classical self-orthogonal (or self-dual) code with
respect to a certain trace inner product that is used for the design of quantum code
in the constrained range 1 < n < 511 [16,17]. In fact, we may extend gener-
ally the codeword to the large length n ≥ 512 by making use of the fast con-
struction algorithms with respect to the Kronecker product of the small size codes
whether they are self-orthogonal (self-dual) or not. Moreover, we can also construct
a quantum code without the need of the self-orthogonal (or self-dual) code. Accord-
ing to Table 2, some quantum codes, which would not be achieved via Calderbank–
Shor–Steane’s construction, can also be fast constructed from the Kronecker product of
several small size Pauli block jacket matrices {[J ]2, [J ]3, [J ]4} and Pauli block matri-
ces {[P]w2 , [P]w3 , [P]w3 }. It is obvious that the yielded quantum codes [[16, 10, 2]] and

Table 2 Quantum codes with parameters [[n, k, d]] by Theorem 3.2

n 6 8 8 12 16 16 16

k 2 4 5 6 10 0 4

d 2 2 2 2 2 8 5

Hn in Eq. (·) 34 35 36 37 38 39 40

For the above table, the concatenated matrices Hn of the size (n − k)× 2n in Eqs. 34–40 corresponding to
the stabilizers of [[n, k, d]] quantum codes are listed in Appendix
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Fig. 3 The encoding computation complexities of the construction algorithms with respect to Table 1 for
quantum codes with the respective parameters n = 2m and n = 2m3s . For the simplicity, the notations
‘A21’ and ‘M21’ denote the respective number of additions and multiplication calculated with the direct
constructions, while ‘A22’ and ‘M22’ denote the number of additions and multiplication for the proposed
constructions with n = 2m ; ‘A231’ and ‘M231’ denote the respective number of additions and multiplica-
tion for the direct constructions, while ‘A232’ and ‘M232’ denote the number of additions and multiplication
for the proposed constructions with n = 2m3s and m = s

[[16, 4, 5]] have better permitters than the Calderbank–Shor–Steane’s code [[16, 4, 3]]
in ref. [17].

It is necessary to remark that the parameters of quantum codes in this paper com-
pare well with the most efficient quantum codes known. For an arbitrary number
n = pmqs , the quantum code [[n, k, d]] can be fast constructed from two Pauli
block (jacket) matrices [J ]p and [J ]q with the construction algorithm described in
Theorem 2.1, where p and q are prime numbers. Through implementing such an
algorithm, the amount of the encoding computation complexities is made much smaller
than that of the quantum code constructed with the direct computation approach. As
an example, taking p = 2, q = 3 and m = s for the computation complexities
in Table 1, the amount of the encoding complexities is sketched in Fig. 3. In partic-
ular, let m = s = 4, and then the quantum code [[2434, k, d]] can be constructed
from the recursive relationship of the identity matrix, the 2-order Pauli block jacket
matrix [J ]2 and the 3-order Pauli block matrix [P]w3 . Comparing to the direct comput-
ing approach, which requires 1678320 additions and 1679616 multiplications for the
encoding, the proposed construction algorithm requires no more than 15552 additions
and 25920 multiplications. It is obvious that this algorithm is much faster than the
direct computing approach, which shows the good performance of our construction
algorithm.

Furthermore, for any two large positive numbers m and s, the quantum code
[[pmqs, k, d]] can be fast constructed from the recursive relationship of the corre-
sponding identity matrices, successive Pauli block jacket matrices and Pauli block
matrices. It means that the suggested codes are even more suitable when the large
codeword lengths are needed. For instance, to construct quantum code with the length
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n = 248832, all that we need to do is to design the Pauli block matrix [J ]21035 through
selecting p = 2, q = 3, m = 10 and s = 5. According to Table 1, it requires no
more than 497664 additions and 8709120 multiplications for the proposed algorithm
to generate the quantum code [[248832, k, d]].

6 Conclusions

The Pauli block jacket matrices and its applications in coding theory of quantum error-
correction codes are investigated in the paper. We investigate constructions of the
large order Pauli block jacket matrices. We suggest the fast construction (or decom-
position) algorithm for the Pauli block matrix based on the recursive relationship
of the identity matrix and successively lower order Pauli block matrices. Since
Pauli matrices are all complex orthogonal unitary matrices, we make an instructive
approach for the fast constructions of the large order Pauli block matrices, which can
be employed to span an Abelian operation group for the generation of the stabilizer of
a quantum code. The present stabilizer formalism enables us to structurally construct
quantum codes with the efficiency. It also provides the great flexibility in designing
quantum codes with large codeword length. These quantum codes have an advan-
tage of being fast constructed with the low complexity and the asymptotically good
behaviors.

Appendix: the concatenated matrices of the stabilizers

In this appendix, we list some of the concatenated matrices Hn of the size (n − k)× 2n,
which are required for the constructions of the stabilizers of the quantum codes
[[n, k, d]] for n = 6, 8, 8, 12, 16, 16, 16 in Table 2.

(1) The stabilizer of the [[6, 2, 2]] quantum code:

H6 =

⎛
⎜⎜⎜⎜⎜⎜⎝

111111 001110
111111 100011
111111 010101
111111 110001
111111 011100
111111 101010

⎞
⎟⎟⎟⎟⎟⎟⎠
. (34)

(2) The stabilizer of the [[8, 4, 2]] quantum code:

H8 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

11111111 00011110
11111111 10000111
11111111 01001011
11111111 00101101
11111111 11100001
11111111 01111000
11111111 10110100
11111111 11010010

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (35)

123



376 Y. Guo et al.

(3) The stabilizer of the [[8, 5, 2]] quantum code:

H8 =

⎛
⎜⎜⎝

10100101 10011001
01011010 01100110
10100101 01100110
01011010 10011001

⎞
⎟⎟⎠ . (36)

(4) The stabilizer of the [[12, 6, 2]] quantum code:

H12 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

000111000111 001110110001
000111000111 100011011100
000111000111 010101101010
111000111000 110001001110
111000111000 011100100011
111000111000 101010010101
000111000111 110001001110
000111000111 011100100011
000111000111 010101101010
111000111000 001110110001
111000111000 100011011100
111000111000 010101101010

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (37)

(5) The stabilizer of the [[16, 10, 2]] quantum code:

H16 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0000111100001111 0001111011100001
0000111100001111 1000011101111000
0000111100001111 0100101110110100
0000111100001111 0010110111010010
1111000011110000 1110000100011110
1111000011110000 0111100010000111
1111000011110000 1011010001001011
1111000011110000 1101001000101101
0000111100001111 0001111000011110
0000111100001111 1000011110000111
0000111100001111 0100101101001011
0000111100001111 0010110100101101
1111000011110000 1110000111100001
1111000011110000 0111100001111000
1111000011110000 1011010010110100
1111000011110000 1101001011010010

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (38)
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(6) The stabilizer of the [[16, 0, 8]] quantum code:

H16 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0001111100011110 0000111111110000
1000111110000111 0000111111110000
0100111101001011 0000111111110000
0010111100101101 0000111111110000
1111000111100001 1111000000001111
1111100001111000 1111000000001111
1111010010110100 1111000000001111
1111001011010010 1111000000001111
0001111000011111 1111000000001111
1000011110001111 1111000000001111
0100101101001111 1111000000001111
0010110100101111 1111000000001111

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (39)

(7) The stabilizer of the [[16, 4, 5]] quantum code:

H ′
16 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0001111100011110 0000111111110000
1000111110000111 0000111111110000
0100111101001011 0000111111110000
0010111100101101 0000111111110000
1111000111100001 1111000000001111
1111100001111000 1111000000001111
1111010010110100 1111000000001111
1111001011010010 1111000000001111
0001111000011111 1111000000001111
1000011110001111 1111000000001111
0100101101001111 1111000000001111
0010110100101111 1111000000001111

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (40)

which is obtained by selecting 12 rows from the full rank matrix H16 in Eq. 39.
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