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Abstract
This paper investigates the contribution of industrial robots to labor productivity growth and cross-country economic
convergence in a sample of 19 developed and 16 emerging countries over the period 1999 to 2019. To answer our
research questions, we extend the non-parametric production frontier framework by considering industrial robots as a
separate production factor. We find a positive contribution of robotization to labor productivity growth for all countries
in our sample. In the period after the financial crisis (2009 to 2019) the contribution of robot capital deepening to
productivity growth gained in importance. Over the period 1999 to 2019 we find some evidence of i) unconditional
β-convergence (countries with lower initial productivity levels grow faster), ii) a reduction in the dispersion of
productivity levels across economies (σ-convergence) and iii) a depolarization (shift from bimodal to unimodal
distribution) of the labor productivity distribution in our sample. Accumulation of ‘traditional’ physical capital is the
main driver of β-convergence. Robot capital deepening significantly contributed to economic convergence and the
depolarization of the labor productivity distribution, but its effect on the entire shift of the labor productivity
distribution is modest and dominated by other drivers of productivity growth such as ‘traditional’ physical capital
deepening and technological change.

Keywords Automation ● Robotization ● Decomposition ● Data envelopment analysis ● Emerging countries ● Developed
countries
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1 Introduction

Labor productivity growth drives economic growth and
plays a central role for the wealth and development of
nations and the improvement of living standards (Timmer
et al. 2010; Mendez 2020). Beside the general interest of
policy makers, media and the public, the ongoing and

accelerating diffusion of industrial robots (see, e.g.,
Dachs et al. 2022) attracted the attention of numerous
scholars aiming to explore the impact of this current wave
of automation on various economic outcomes, such as
employment, wages, and labor productivity. The current
empirical evidence, based on industry- and firm-level
data, suggests a positive relationship between robot use
and productivity growth (for studies based on industry-
level data see, e.g., Dauth et al. (2017), Graetz and
Michaels (2018), Jungmittag and Pesole (2019), Leitner
and Stehrer (2019), Kromann et al. (2020), Bekthiar et al.
(2021); for firm-level evidence see, e.g., EC (2015),
Acemoglu et al. (2020), Ballestar et al. (2020), Bonfi-
glioli et al. (2020), Dixon et al. (2020), Koch et al.
(2021)).

Despite the contemporary interest and the booming
number of studies exploring the economic and social con-
sequences of the ongoing diffusion of robots, relatively little
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is known about i) how the contribution of industrial robots
to labor productivity growth differs across countries1, and
ii) if the worldwide diffusion of industrial robots contributes
to a widening or closing of the productivity gap between
rich and poorer economies. While previous studies on the
impact of robotization on labor productivity mainly focused
on OECD or developed countries, investigations including
or focusing on emerging and developing countries are rare
(exceptions are Jung and Lim 2020; Zhu and Zhang 2021;
Fu et al. 2021).

We aim to fill these gaps in the literature by investigating
whether and how the contribution of robot adoption to labor
productivity growth differs across a sample of 19 developed
and 17 emerging countries over the period 1999–2019, and
the subperiods before (1999–2009) and after (2009–2019)
the financial crisis. To the best of our knowledge, this is the
first study analyzing to what extent the worldwide diffusion
of industrial robots contributed to the cross-country con-
vergence of labor productivity levels.

The rise of robots in emerging markets in the last 20
years is remarkable. While in developed countries (e.g.,
Germany, Japan, USA) the use of industrial robots started to
climb exponentially in the 1980s, at the beginning of the
new millennium robots virtually played no role in the
economies of, e.g., India, Turkey, or China. In 2016, China
replaced Japan as the country with the highest robot stock,
and nowadays more than 29% of the global robot stock is in
China (Müller and Kutzbach 2020). Between 2014 and
2019 the stock of industrial robots grew by 33, 32, 19, and
17% in China, Mexico, Turkey, and India, respectively, but
only by 6% in the United States, and 5% in Western Europe
(Müller and Kutzbach 2020).2 It will be interesting to

investigate whether and by how much the apparent
catching-up of emerging countries in terms of robotization
translates into convergence of labor productivity levels.

This article links three different strands of important lit-
erature: i) the non-parametric frontier production function lit-
erature based on the pioneering work of Farrell (1957), ii) the
work on the sources of cross-country economic growth and
international macroeconomic convergence (for a review of the
literature see Johnson and Papageorgiou (2020), and iii) the
literature on automation and economic growth. Regarding the
latter there is no consensus in the theoretical literature on how
automation should be modelled. The approaches can broadly
be grouped into three categories: a) modelling automation as
capital-augmenting technological change (Sachs and
Kotlifkoff 2012; Nordhaus 2015), labor-augmenting techno-
logical change (Bessen 2017) or Hicks neutral technological
change; b) differentiating between traditional capital and
automation capital, both entering the production function as
factor inputs, and regarding automation capital as a perfect
substitute for (low-skilled) labor (Steigum 2011; Prettner
2019; Anthony and Klarl 2020; Gasteiger and Prettner 2022);
c) the task-based approach to modelling automation advocated
by Acemoglu and Restrepo (2018a, 2018b), which originates
from the ideas of Zeira (1998).

Despite this theoretical effort and the empirical
regression-based studies, not much has been done to model
empirically the country-specific contributions of industrial
robots—probably one of the most advanced areas of auto-
mation—to economic growth and their role in cross-country
convergence dynamics. An exception is Cette et al.
(2021a, 2021b) applying the standard growth accounting
methodology by Solow (1956, 1957) to isolate the con-
tribution of industrial robots to labor productivity growth in
30 OECD countries over the period 1975–2019.

We advocate a refinement of the (deterministic) non-
parametric production frontier approach introduced by Kumar
and Russell (2002), and further developed by Henderson and
Russell (2005), Badunenko and Romero-Ávila (2013), Walheer
(2021) and others to investigate the contribution of automation
capital to labor productivity growth and convergence. Our
modelling approach extends the Henderson and Russell (2005)
framework by differentiating between traditional physical
capital (non-robot capital) and robot capital3, both entering the
production model as separate input factors. While the applica-
tion of Ceccobelli et al. (2012) differentiates between ICT and
non-ICT capital, to the best of our knowledge, we are the first
that incorporate industrial robots into a production frontier
framework. The estimation of the production frontier is based

1 While previous studies are mostly based on regression techniques
and focus on average effects, there are various reasons why we can
expect that the impact of robotization on labor productivity growth
differs across countries. Graetz and Michaels (2018) find diminishing
marginal gains from increased robot usage. Hence, we can expect that
the initial level of the robot stock affects the potential labor pro-
ductivity gains from increased robot diffusion. Since emerging coun-
tries are characterized by substantially lower robotization levels than
developed countries (see, e.g., Soto 2020) we might expect higher
productivity gains from increasing robotization in emerging countries.
Second, the productivity enhancing effect of robotization depends on
the industrial structure of an economy and the related type of tasks that
can be automated, as well as on the productivity of the workforce that
is replaced by robots. A priori it is difficult to hypothesize if the
economic structures favor the relative growth potential of emerging
vis-à-vis developed countries or the other way around. Third, some
macroeconomic growth models analyzing the consequences of auto-
mation predict that automation capital enables perpetual long-run
growth and that the constant growth rate of GDP per worker in the
balanced growth path increases with the share of savings devoted to
the accumulation of automation capital (Prettner 2019; Jungmittag
2021).
2 A discussion of the rise of robots in China is provided in Cheng et al.
(2019), for Central and Eastern European countries see Cséfalvay
(2020).

3 Contrary to many other studies (e.g., Graetz and Michaels 2018;
Cette et al. 2021a, 2021b) we apply quality-adjusted measures of
industrial robot stocks. Kromann et al. (2020) discuss the importance
of adjusting robot stock measures for quality changes.
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on linear programming techniques known as Data Envelopment
Analysis (DEA). A multiplicative decomposition of labor pro-
ductivity growth into five components representing the con-
tribution of technological change, efficiency change, human
capital accumulation, non-robot physical capital deepening, and
robot capital deepening to labor productivity growth is applied.
The effect of these proximate sources of economic growth on
the entire shift of the labor productivity distribution over the
period under investigation and the convergence dynamics is
analyzed by standard regression models, counterfactual ana-
lyses and statistical tests.

The advantage of this approach over theoretical macro-
economic models and regression-based studies, which are
heavily model-driven, is that it is a purely data-driven
approach, which does not require assumptions about the
functional form of the production function (e.g., Cobb-
Douglas or CES), the substitution and complementarity rela-
tionships among the inputs, the existence of perfectly com-
petitive markets and Hicks-neutral technological change.
Unlike standard growth accounting, this framework allows us
to distinguish between efficiency change, i.e., movements
toward the frontier, and technological change, i.e., shifts of the
frontier (Badunenko and Romero-Ávila 2013).

It is well known that slacks, or zero multipliers, in radial
DEA models can lead to an overestimation of efficiency scores.
So far, the many authors applying and extending the decom-
position analysis introduced by Kumar and Russell (2002)
ignored the problem of non-zero slacks. Following Portela and
Thanassoulis (2006) we provide a solution to this problem by
extending existing facets of the production frontier and pro-
jecting inefficient observations on (observed or extended) facets
with well-defined marginal rates of substitution/transformation
only. We find that if slacks are pervasive, ignoring them in the
decomposition analysis can produce misleading results.

The remainder of this article is organized as follows:
Section 2 describes the data and the construction of the robot
capital stocks, and provides some descriptive statistics on the
development of robot intensities (i.e., the robot-labor ratio) of
selected countries over 1999–2019 period. Section 3 constructs
the technology frontiers in 1999 and 2019 and provides the
efficiency scores, i.e., the distance from the frontier, for each of
the 35 countries analyzed. Section 4 presents the results of the
decomposition of productivity growth into its five components
and the β-convergence analysis. Section 5 assesses the relative
importance of the five growth factors in shifting the entire
productivity distribution and their contribution to σ-con-
vergence.4 Section 6 provides some sensitivity analyses. Sec-
tion 7 summarizes our results and concludes.

2 Data

We use two different data sources to construct the dataset
for our analysis: First, input data for labor, human capital
and non-robot physical capital, as well as output data is
derived from the Penn World Table (PWT) version 10.0
(Feenstra et al. 2015). Second, we use data from the Inter-
national Federation of Robotics (Müller and Kutzbach
2020) to estimate industrial robot capital stocks.

2.1 Sample selection

The PWT 10.0 covers 183 countries between 1950 and
2019. The selection of our sample of a balanced panel of 35
developed and emerging countries for the period
1995–2019 with a total of 875 observations is mainly driven
by the availability of data on industrial robot installations.5

Müller and Kutzbach (2020) provide data on annual robot
installations and robot stocks for 1993–2019 for Australia,
Austria, Belgium, Czech Republic, Denmark, Finland,
France, Germany, Hungary, Italy, Japan, Netherlands,
Norway, Poland, Portugal, Republic of Korea, Russian
Federation, Singapore, Slovakia, Slovenia, Spain, Sweden,
Switzerland, Taiwan, United Kingdom and the United
States. Japan, whose robot data are compromised by a
severe break in 2001 due to a change in underlying robot
definitions, could be included in the sample after a correc-
tion (see Section A of the supplementary material for more
details). Up to 2011 the data for the United States also
includes robot installations/stocks for Canada and Mexico.
Based on information provided in the annual reports of the
International Federation of Robotics (IFR 2005–2020) and
some simple assumptions we can separate the installations
for North America before 2011, and include Canada,
Mexico as well as the Unites States in our sample. In
addition to these 28 countries, data on robot installations for
Argentina, Brazil, China, Greece, India, Israel, Malaysia,
South Africa, and Turkey becomes available from 1999
onwards. Section A of the supplementary material describes
how we estimate robot installations prior to 1999 for those
countries. Finally, our data set excludes South Africa due to
incomplete data on average annual hours worked by persons
engaged in PWT 10.0 (missing for 1993–2000 and 2015)
and Greece, based on an overall evaluation of data quality
and outlier analysis.

The final decision on the sample is guided also by outlier
analyses and profited from suggestions by two anonymous
reviewers. On the one hand, outlier analysis is based on

4 Due to our endeavor to enhance comparability of methods and
results we have accepted that Sections 3, 4 and 5, in particular, are
structured similarly to corresponding parts in several other studies
employing the productivity frontier approach, such as Badunenko et al.
(2013) or Meng et al. (2023).

5 Though, we have data for the period 1995 to 2019, the period of
investigation throughout Sections 3 to 6 is 1999–2019. The reasons for
this are methodological considerations which are explained in
Section 3.1.
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visual inspection of time series plots of variables and their
ratios for every country considering available documenta-
tion and further information. In the case of Greece this
reveals the exceptional pattern of the evolution of labor
productivity, which shows a steep increase before 2008,
followed by a long period of decline. We take this as a
possible indication of unreliable data before 2008. We also
apply a method of outlier detection tailored for DEA based
on super-efficiency scores as suggested by Banker and
Gifford (1988) and Banker et al. (1989); for a performance
evaluation of this method see Banker and Chang (2006) and
Banker et al. (2017). We calculate super-efficiency scores
for all observations enveloped by the 1999 and 2019 pro-
duction frontier, respectively. Super-efficiency scores above
1.1, classified as outliers, are only found for some obser-
vations on Greece and China. Since a sensitivity analysis of
the results document considerable dependence on the
inclusion of Greece, but not of China, we decided to
exclude the first but include the latter. A sensitivity analysis
of the results regarding the exclusion of China from the
sample is provided in Section 6.3.

Our final sample spans the time period 1995–2019 and
covers 86% of global GDP and 93% of the world-wide
robot stock in 2019.

2.2 Categorization of countries

Since one goal of this article is to investigate how the
contribution of industrial robots to labor productivity
growth differs between developed and emerging countries it
seems natural to divide the countries in our sample into two
groups. Our definition of country groups is based on real
GDP per capita (in 2017 US$) in the starting year of our
investigation period. Real GDP per capita is derived from
the PWT 10.0 and calculated as CGDPE divided by POP.
CGDPE is expenditure-side real GDP at current PPPs (in
millions 2017 US$), and POP is a country’s population (in
millions). Countries having a real GDP per capita larger
than 32,500 US$ in 1999 are classified as developed
countries, and countries having a real GDP per capita lower
than 27,500 US$ in 1999 are classified as emerging coun-
tries. Hence, 19 out of the 35 countries in our sample are
developed countries, and 16 are emerging countries. The 19
developed countries include Australia, Austria, Belgium,
Canada, Denmark, Finland, France, Germany, Israel, Italy,
Japan, Netherlands, Norway, Singapore, Sweden, Switzer-
land, Taiwan, United Kingdom, United States. The 16
emerging countries are Argentina, Brazil, China, Czech
Republic, Hungary, India, Malaysia, Mexico, Poland, Por-
tugal, Republic of Korea, Russian Federation, Slovakia,
Slovenia, Spain, and Turkey. The categorization of coun-
tries is comparable to that developed in Niebel (2018) and
Walheer (2021). The latter uses the terms advanced and

follower countries instead of developed and emerging
countries.

2.3 Non-robot capital, labor input and output
variables

The data for the non-robot physical capital, human capital,
and output is derived from the Penn World Table (PWT)
version 10.0 (Feenstra et al. 2015). The labor input, mea-
sured in annual million hours worked, is obtained as
EMP×AVH, where EMP is the number of persons engaged
(in millions) and AVH is the average annual hours worked
by persons engaged. Human capital is measured by the
human capital index HC. Its calculation follows a common
approach in the literature and is based on data on years of
schooling and returns to education.6 The non-robot capital
stocks are computed as RNNA×RGDPO/RGDPNA minus our
estimate of the monetary robot capital stock described in
Section 2.4. Whereas RNNA is the total capital stock at
constant 2017 national prices, RGDPO is output-side real
GDP at chained PPPs and RGDPNA is real GDP at constant
2017 national prices, all three measured in million 2017
US$. Output is measured as RGDPO.7

2.4 Robot capital stock variables

The International Federation of Robotics (IFR) collects data
on annual robot installations by country, industry, and
application from nearly all major industrial robot suppliers
worldwide and from national robot associations (Müller and
Kutzbach 2020; p.21). The IFR uses the definition of a
‘manipulating industrial robot’ given by the ISO
8373:2012 standard from the International Organization for
Standardization. Accordingly, an industrial robot is defined
as ‘an automatically controlled, reprogrammable, multi-
purpose manipulator programmable in three or more axes,
which can be either fixed in place or mobile for use in
industrial automation applications’ (Müller and Kutzbach
2020, p. 23).

We construct the stock of industrial robots in physical
units based on annual installations i) using the perpetual
inventory method (PIM), assuming annual depreciation
rates of 5%, 10% and 15%, as well as ii) using a ‘one-hoss
shay’ depreciation method assuming that the average
operating service life of an industrial robot is 12 years.

6 Details on the calculation of the human capital index are provided in
“Human capital in PWT 9.0”: https://www.rug.nl/ggdc/docs/human_
capital_in_pwt_90.pdf.
7 The superscript NA indicates national-accounts based variables. The
superscript O is used for output-side real GDP as opposed to
expenditures-side real GDP denoted with superscript E in PWT 10.0.
For details, please see https://www.rug.nl/ggdc/productivity/pwt/pwt-
releases/pwt100.
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These procedures require that the time series of robot
installation start sufficiently prior to the robot stock series.
Section A of the supplementary material describes the data
preparation steps and the construction of the robot instal-
lation series and the robot stock series in detail. Section B.2.
of the supplementary material provides figures on the evo-
lution of our estimated robot stock series over the period
1995 to 2019 for each of the 35 countries in our sample.
These figures also reveal how the initial robot stock varies
according to the four different methods applied. We derive
monetary robot capital stocks in constant prices (of the base
year and country) by multiplying the robot stock in physical
units by the average unit price of robots in the United States
in 2017 and use the monetary robot capital stock only for
the calculation of monetary non-robot capital stock as
mentioned before in Section 2.3.

Kromann et al. (2020) and Graetz and Michaels (2018)
report that the quality of robots increased markedly between
1990–2005. To account for quality changes in the robot
stocks we follow Hulten (1992) and consider annual robot
installations in efficiency units by multiplying the robot

installations in physical units by an index of technical effi-
ciency (robot quality index). The robot quality index is based
on two price indices developed by the IFR (IFR 2006;
Chapter III and Annex C) for the period 1990–2005, one is
quality adjusted and one is not. The robot quality index is
derived by dividing the quality adjusted robot price index by
the non-quality adjusted robot price index. For the years
2006–2019 we use forecasted values of the robot quality
index based on a linear trend model. The index and its fore-
cast are shown in section B.1. in the supplementary material.

Throughout Section 2.5. to 5 we present our results based on
the quality-adjusted robot capital stock derived with the PIM
assuming a depreciation rate of 15%. The sensitivity of our
results regarding different assumptions on robot capital depre-
ciation and changes in robot quality is discussed in Section 6.

2.5 Descriptive statistics

Table 1 provides rankings of countries by robot intensities,
as measured by the number of robots per one hundred
million hours worked, for the years 1999 and 2019, as well

Table 1 Country ranking by (growth of) robot intensity

Ranking by robot intensity in 1999 Ranking by robot intensity in 2019 Ranking by growth of robot intensity
between 1999–2019

Rank Country Robot
Intensity

Country Robot
Intensity

Country Growth rate of robot
intensity

1 Japan* 136.99 Rep. of Korea 324.04 China 49,522%

2 Germany* 74.91 Japan* 199.36 India 7527%

3 Singapore* 56.81 Germany* 187.09 Hungary 5872%

4 Belgium* 45.13 Taiwan* 168.62 Poland 3519%

5 Italy* 44.92 Singapore* 148.64 Turkey 2442%

6 Sweden* 42.09 Slovenia 139.36 Czech Rep. 2137%

7 Rep. of Korea 34.12 Czech Rep. 112.40 Slovenia 1626%

8 Finland* 33.64 Slovakia 101.57 Slovakia 1496%

9 Switzerland* 26.46 Italy* 98.32 Mexico 1265%

10 France* 24.16 Sweden* 93.15 Argentina 1171%

⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞
26 Russian Fed. 2.57 UK* 21.01 France* 141%

27 Israel* 1.67 Mexico 19.52 Norway* 129%

28 Mexico 1.43 Norway* 18.77 Sweden* 121%

29 Brazil 1.19 Turkey 16.37 Italy* 119%

30 Hungary 1.03 Israel* 14.64 Finland* 86%

31 Poland 0.78 Australia* 14.17 Australia* 63%

32 Turkey 0.64 Argentina 8.16 UK* 57%

33 Argentina 0.64 Brazil 7.84 Belgium* 49%

34 China 0.06 Russian Fed. 2.69 Japan* 46%

35 India 0.02 India 1.47 Russian Fed 4%

Robot intensity is measured as number of (non-quality-adjusted) robots per one hundred million hours worked. Number of robots are estimated
with the perpetual inventory method assuming a depreciation rate of 15%. Developed countries and emerging countries are shown with and
without asterisk, respectively
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as a country ranking by growth rates of robot intensities
over the period 1999–2019. Developed countries are
marked with an asterisk, emerging countries are not. To
save space we only report the top ten and bottom ten
countries for each ranking. The full ranking and detailed
descriptive statistics of other variables used in our analysis
are available in the supplementary material in section B.3.
and B.4., respectively.

Table 1 shows that in 1999 Japan was the country with
by far the highest robot intensity, followed by other
developed countries such as Germany, Singapore, Belgium
and Italy. The countries with the lowest robot intensities in
1999 are almost exclusively emerging countries, with India
having the lowest robot intensity, followed by China,
Argentina and Turkey. We find that robot intensities
increased in all countries, though the growth rates of robot
intensities are highly heterogeneous.

The catching-up of the countries with the lowest robot
intensities in terms of robot diffusion is remarkable: Seven
out of the ten countries with the lowest robot intensities in
1999 rank among the top ten countries regarding robot
intensity growth over the 1999 to 2019 period. The speed of
robot diffusion was by far the fastest in China, followed by
India, Turkey, and the Eastern European countries Hungary,
Poland, Czech Republic, Slovenia, and Slovakia. This fast
diffusion of robots in these countries enabled China,
Poland, and Hungary to climb from rank 35, 32 and 31 to
rank 23, 24, and 17, respectively. While in 1999 Slovakia,
Slovenia, and the Czech Republic were ranked # 22, # 20,
and # 24, respectively, in 2019 they are among the top ten
countries with the highest robot intensities. Thus, it will be
interesting to explore if, and by how much, the apparent
catching-up of emerging countries in terms of robot inten-
sities has contributed to the convergence of labor pro-
ductivity across the 35 countries in our sample. Last but not
least, it is worth mentioning that Taiwan and Republic of
Korea have achieved about a ten-fold increase in robot
intensities, whereas Republic of Korea displaced Japan as
the country with the highest robot intensity, and Taiwan
ascended from # 15 to # 4.

3 Technology frontiers and efficiency
measurement (technological catch-up)

3.1 Data envelopment analysis

We refine the nonparametric Data Envelopment Analysis
(DEA) approach used by Kumar and Russell (2002),
Henderson and Russell (2005) and followers for con-
structing the production frontier and associated efficiency
levels of individual economies (distances from the frontier).
The basic idea is to envelop the data in a convex cone, and

the upper boundary of this set then represents the “best
practice” production frontier. One of the major benefits of
this approach is that it does not require a prior specification
of the functional form of the technology. It is a data-driven
approach implemented with standard mathematical pro-
gramming algorithms, which allows the data to tell the form
of the production function. Our refinement of the radial
DEA approach guarantees that the production frontier
consists of full dimensional efficient facets (FDEF) (Olesen
and Petersen 2015) only, which rules out projections of
inefficient economies on weakly efficient parts of the
frontier. Hence, no inputs are ignored in the efficiency
evaluation, i.e., zero weights in the multiplier version and
non-zero slacks in the envelopment version of the DEA
model are avoided.

Our technology contains five macroeconomic variables:
aggregate output and four aggregate inputs, which are labor,
human capital, (non-robot) physical capital, and robot
capital. Let Yit; Lit;Hit;Kit;Rith i, t= 1,2,…,T, i= 1,2,…,N
represent T observations on these five variables for each of
the N countries. The robot capital stock is subtracted from
the total physical capital stock and considered as autono-
mous production factor, either in physical or monetary
units.8 This is motivated by the fact that industrial robots
can perform a wide range of tasks with very little human
intervention and almost independently of conventional
machines9 (cf. the definition of robots by the IFR in
Section 2), which allows them to replace human workers
and normal machines almost completely. Thereby, we fol-
low numerous authors incorporating robot capital as sepa-
rate production factor into their analytical macroeconomic
frameworks (for economic growth models see, e.g., Steigum
2011; Prettner 2019; Lankisch et al. 2019; Krenz et al.
2021; Anthony and Klarl 2020; Gasteiger and Prettner
2022; for the analysis of elasticities of substitution with
robots as a third production factor see DeCanio 2016).

Following most of the macroeconomics literature, we
assume that human capital enters the technology as a mul-
tiplicative augmentation of physical labor, so that our NT
observations are hYit; bLit;Kit;Riti, t= 1,2,…,T, i= 1,2,…N,
where bLit ¼ LitHit is the amount of labor input measured in
efficiency units in country i at time t.

8 Due to data unavailability, we derive the monetary robot capital
stock for all countries by multiplying the robot stock in physical units
by one price: the average price of robots in the United States in 2017.
Since we apply radial DEA-models which are translation invariant,
i.e., insensitive to a multiplication of a variable by a constant factor,
the results are the same if the robot capital stock is measured in
monetary or physical units.
9 These capabilities set robots apart from earlier waves of automation
(ordinary tools and normal machines) and more conventional ICT
technologies, which left flexible movements in three dimensions firmly
in human hands (Graetz and Michaels 2018). Nevertheless, robot
programming and maintenance still requires human labour.
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Following Portela and Thanassoulis (2006) we construct a
convex, constant-returns-to-scale (CRS) technology that only
allows for trade-offs among inputs, as well as between inputs
and outputs, that are observed on full dimensional efficient
facets (FDEF) (Olesen and Petersen 2015) of the frontier.10

Thus, only trade-offs observed in the data are allowed and
judgments by experts or the researchers are prevented. The
approach modifies the production frontier by extending
existing facets and thereby guarantees that countries are pro-
jected on FDEF (observed or extended) only, and that no
factor of production is ignored in the performance evaluation
(i.e., zero weights in the multiplier version, or non-zero slacks
in the envelopment version of the DEA model are avoided).

In a first step, we use the R package Qhull to identify all
kt= 1, …, Kt FDEF that constitute the efficient frontier in
period t and identify the corresponding unique, non-zero
DEA inputs and output weights

�
v
�Fkt

L̂
; v

�Fkt
K ; v

�Fkt
R ; u

�Fkt
Y

�
,

where Fkt denotes the kth efficient facet of the period t
production possibility set. We allow the frontier in period t
to include all trade-offs observed in the data up to that point
in time. Like Los and Timmer (2005) we limit the decom-
position analysis to the time span that starts four years after
the first observations of robot stock data are available to us.
Hence, the first year of the analysis is 1999, for which
observed trade-offs based on the data for the period
1995–1999 are allowed. This makes it less likely that
frontier techniques observed for the first year of the analysis
are dominated by unobserved combinations in the past, and
avoids that part of what would be interpreted as frontier
movements is confused with ‘assimilation of knowledge’,
i.e., efficiency change (Los and Timmer 2005).

To extend existing facets we simultaneously collect
information on input and output optimal weights of the
period t frontier in the transformation matrix Dt:

Dt ¼
�v

�F1t

L̂

..

.
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26664
37775 ¼ �At Bt½ � ð1Þ

When the matrix is applied to the observed data the three
inputs and the single output are transformed into Kt ‘net-
puts’. Using these netputs the efficiency score for obser-
vation it can be obtained by solving the following
envelopment model with Kt constraints, where zit is the
vector of inputs and output of observation it, i.e.,
zit ¼ Xit;Yit

� � ¼ bLit;Kit;Rit; Yit
h iT

:

eit ¼ min eitjλit Dtzit þ eitAtXit � BtYit; λit � 0f g ð2Þ

The elements of DiZit in (2) are zero for observations
lying on a FDEF when CRS is assumed. As referent units
necessarily lie on a FDEF, the above reduces to choosing
the efficiency scores, eit, for each observation it as the
maximum value of the weighted outputs to the weighted
inputs (BtYit/AtXit). No linear program needs to be solved
for this purpose. If we have information regarding the
trade-offs applying at the efficient frontier we simply

have to find, eit ¼ maxkt
u
�Fkt
Y Yit

v
�Fkt
L̂

L̂itþv
�Fkt
K Kitþv

�Fkt
R Rit

� �
, by using

the optimal weights corresponding to each facet. The
efficiency scores provided by the model are radial in
relation to the modified frontier (with extended facets),
and therefore can be interpreted in the same way as tra-
ditional DEA scores (for details see Portela and Tha-
nassoulis 2006). Hence, the efficiency index can be
interpreted as the maximal proportional amount that
inputs Xit can be contracted while remaining technologi-
cally feasible. Due to the assumption of CRS 1/eit can be
interpreted as the maximal proportional amount that
output Yit can be expanded while remaining technologi-
cally feasible, given the technology and input quantities.
eit is less than or equal to unity and takes the value of
unity if and only if the it observation is on the period-t
production frontier. In our special case of a scalar output,
the efficiency index eit equals the ratio of actual to
potential output, evaluated at the actual input quantities.

3.2 Efficiency and technological catch-up

Table 2 shows the efficiency scores of each of the 35
countries for 1999 and 2019. The scores are presented for
two cases: where the physical robot stock is treated as a
separate production factor and where it is not. The
introduction of robots as separate production factor
leaves mean efficiency for 1999 unaltered at 0.73, and
slightly reduces mean efficiency from 0.69 to 0.68 in
2019. Considering the country-specific efficiency scores
up to two decimal places, we find that the efficiency index
in 1999 and 2019 changes for 23 and 28 countries,
respectively.11 Table 2 shows that irrespective of the
inclusion of robots Norway, Poland and the United States
are on the 1999 frontier. With or without robots, the
United States and Poland remain on the frontier in 2019,
whereas Norway is no longer on the 2019 frontier.

10 Marginal rates of transformation and substitution are well defined
only on FDEF, and therefore it is important to assess units relative to
projections on facets of this type.

11 In fact, the introduction of robots changes efficiency scores for all
countries (except for those being efficient with and without robots) if
more than two decimal places are considered. These differences cor-
respond to our expectations and document the importance of the use of
robots for production efficiency of a country.
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Figure 1 plots the distributions of the efficiency index in
1999 and 2019. We find a substantial shift of probability
mass away from efficiency scores above 0.73 toward lower
parts of the distribution. The mean efficiency score declined
from 0.73 to 0.68. We observe a decline in efficiency levels
for 24 out of the 35 countries. This indicates that in the
period 1999 to 2019 for most of the countries the distance to

the frontier increased and that they were falling behind the
best-performers against which they are benchmarked (in
most cases inefficient countries are compared with Norway,
Poland and the United States). The drop in efficiency levels
is severe for the Southern European countries, Italy, Spain,
and Portugal, plus France. Only seven countries were able
to catch-up to the technology leaders: three out of these
seven are transition countries in Eastern Europe including
Czech Republic, Russian Federation, and Slovakia. The
others are the two Southeast Asian countries Malaysia,
Singapore, and the European countries Sweden and
Switzerland.

However, we also observe that efficiency levels are less
dispersed in 2019 compared to 1999 as indicated by a
decrease of the coefficient of variation of the productivity
distribution in Fig. 1 from 0.22 in 2019 to 0.19 in 1999. It
will thus be interesting to analyze whether convergence in
efficiency levels drives the convergence and depolarization
of the labor productivity distribution, i.e., a shift from a
bimodal to a unimodal distribution.

4 Quinquepartite decomposition of labor
productivity change

4.1 Conceptual decomposition

We decompose labor productivity growth between base (b)
and current (c) period into components attributable to (1)
efficiency change (technological catch-up), (2) technologi-
cal change (shifts in the frontier), (3) human capital accu-
mulation, (4) physical (non-robot) capital deepening
(increase in the capital-labor ratio), and (5) robot capital
deepening (increase in the robot-labor ratio). Constant
returns to scale and labor augmentation of human capital
allow us to construct the production frontiers in the ŷ�
k̂ � r̂ space, where ŷ ¼ Y=L̂, k̂ ¼ K=L̂, and r̂ ¼ R=L̂ are the
ratios of output, capital and robots, respectively, to effective
labor. Since by definition the efficiency index is the ratio of
actual to potential output evaluated at the actual input
quantities, the potential output per efficiency unit of labor in
the two periods is given by ybðk̂b; r̂bÞ ¼ ŷb=eb, and
ycðk̂c; r̂cÞ ¼ ŷc=ec, where eb and ec

12 are values of the
efficiency indexes in the respective periods as calculated in
Eq. (2). Accordingly,

ŷc
ŷb

¼ ec
eb

� ycðk̂c; r̂cÞ
ybðk̂b; r̂bÞ

: ð3Þ

Table 2 Efficiency indexes

Without Robots With Robots

Country 1999 2019 1999 2019

Argentina 0.93 0.80 0.94 0.84

Australia 0.82 0.78 0.84 0.81

Austria 0.68 0.64 0.68 0.61

Belgium 0.70 0.61 0.68 0.58

Brazil 0.69 0.58 0.69 0.61

Canada 0.86 0.74 0.89 0.74

China 0.94 0.65 0.91 0.65

Czech Republic 0.41 0.57 0.42 0.54

Denmark 0.78 0.74 0.77 0.71

Finland 0.82 0.70 0.81 0.69

France 0.75 0.65 0.74 0.63

Germany 0.79 0.75 0.77 0.69

Hungary 0.61 0.63 0.62 0.62

India 0.71 0.67 0.76 0.67

Israel 0.85 0.81 0.89 0.84

Italy 0.69 0.52 0.68 0.49

Japan 0.68 0.64 0.65 0.57

Malaysia 0.59 0.65 0.59 0.65

Mexico 0.73 0.61 0.73 0.62

Netherlands 0.83 0.76 0.83 0.74

Norway 1.00 0.85 1.00 0.85

Poland 1.00 1.00 1.00 1.00

Portugal 0.54 0.44 0.54 0.43

Rep. of Korea 0.66 0.63 0.65 0.50

Russian Federation 0.34 0.62 0.34 0.70

Singapore 0.68 0.73 0.67 0.68

Slovakia 0.46 0.61 0.48 0.58

Slovenia 0.48 0.51 0.48 0.48

Spain 0.74 0.62 0.73 0.60

Sweden 0.66 0.72 0.65 0.69

Switzerland 0.73 0.77 0.72 0.75

Taiwan 0.80 0.84 0.79 0.73

Turkey 0.89 0.78 0.90 0.79

United Kingdom 0.72 0.68 0.72 0.70

United States 1.00 1.00 1.00 1.00

All countries (mean) 0.73 0.69 0.73 0.68

The DEA-models with robots are based on quality-adjusted physical
robot stocks, which are estimated with the perpetual inventory method
assuming a depreciation rate of 15%

12 For ease of readability, we skip the subscript i (referring to the
country under evaluation) in this section.
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To isolate the effect of each component, we define two sets
of new variables under the counterfactual assumption that
human capital has not changed. The first set includes the ratio
of (non-robot) physical capital to labor measured in efficiency
units, and the ratio of robot capital to labor measured in effi-
ciency units under the counterfactual assumption that human
capital has not changed from its base period: ~kc ¼ Kc=LcHb

and ~rc ¼ Rc=LcHb. The second set is given by the ratio of
(non-robot) physical capital to labor measured in efficiency
units, and the ratio of robot capital to labor measured in effi-
ciency units under the counterfactual assumption that human
capital is equal to its current year period: ~kb ¼ Kb=LbHc and
~rb ¼ Rb=LbHc. Then, ybðk̂c; r̂cÞ, ybð~kc; r̂bÞ, ybð~kc;~rcÞ are the
potential outputs per efficiency unit of labor at ðk̂c; r̂cÞ, ð~kc; r̂bÞ
and ð~kc;~rcÞ using the base-period technology, and ycðk̂b; r̂bÞ,
ycð~kb; r̂cÞ, ycð~kb;~rbÞ are the potential outputs per efficiency
units of labor at ðk̂b; r̂bÞ, ð~kb; r̂cÞ, ð~kb;~rbÞ using the current-
period technology. By multiplying the numerator and
denominator of Eq. (3) alternatively by
ybðk̂c; r̂cÞybð~kc; r̂bÞybð~kc;~rcÞ and ycðk̂b; r̂bÞycð~kb; r̂cÞycð~kb;~rbÞ,
we obtain two alternative decompositions of the growth of ŷ:

ŷc
ŷb

¼ ec
eb

� ycðk̂c; r̂cÞ
ybðk̂c; r̂cÞ

� yb k̂c; r̂c
� 	

yb ~kc;~rc
� 	� yb ~kc; r̂b

� 	
yb k̂b; r̂b
� 	� yb ~kc;~rc

� 	
yb ~kc; r̂b
� 	

ð4Þ

and

ŷc
ŷb

¼ ec
eb

� ycðk̂b; r̂bÞ
ybðk̂b; r̂bÞ

� yc ~kb;~rb
� 	

yc k̂b; r̂b
� 	� yc k̂c; r̂c

� 	
yc ~kb; r̂c
� 	� yc ~kb; r̂c

� 	
yc ~kb;~rb
� 	 :

ð5Þ

The growth of labor productivity, yt= Yt/Lt, can be
decomposed into the growth of human capital and the
growth of output per efficiency unit of labor, as follows:

yc
yb

¼ Hc

Hb
� ŷc
ŷb

: ð6Þ

Combing Eq. (4) and Eq. (5) with Eq. (6), we obtain

yc
yb

¼ ec
eb

� yc k̂c; r̂c
� 	

yb k̂c; r̂c
� 	� yb k̂c; r̂c

� 	
yb ~kc;~rc
� 	 � Hc

Hb

" #

� yb ~kc;r̂bð Þ
yb k̂b;r̂bð Þ �

yb ~kc;~rcð Þ
yb ~kc ;̂rbð Þ

� EFF � TECHc � HACCb � KACCb � RKACCb

ð7Þ

and

yc
yb

¼ ec
eb

� yc k̂b; r̂b
� 	

yb k̂b; r̂b
� 	� yc ~kb;~rb

� 	
yc k̂b; r̂b
� 	 � Hc

Hb

" #

� yc k̂c ;̂rcð Þ
yc ~kb;r̂cð Þ �

yc ~kb ;̂rcð Þ
yc ~kb;~rbð Þ

� EFF � TECHb � HACCc � KACCc � RKACCc

:

ð8Þ

Equations (7) and (8) decompose growth of labor
productivity between period b and c into changes in
efficiency (EFF), technology (TECH), human capital
accumulation (HACC), the capital-labor ratio (KACC),
and the robot-labor ratio (RKACC). For each component,
only the variable of interest is different between the
denominator and the numerator of each component. For
instance, for RKACCb only the robot-labor ratio changed

Fig. 1 Distributions of efficiency index (with robots). The solid curve is the estimated 1999 distribution, and the solid vertical line represents the
1999 mean value. The dashed curve is the estimated 2019 distribution, and the dashed vertical line represents the 2019 mean value
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(from r̂b ¼ Rb=LbHb to ~rc ¼ Rc=LcHb) while all the other
variables are held constant. Hence, RKACC indicates the
contribution of the robot-labor ratio change to labor
productivity growth. The same reasoning applies for the
other components.

While the decomposition in Eq. (7) measures technolo-
gical change by the shift in the frontier in the output
direction at the current-period capital/efficiency-labor ratio,
and the current-period robot/efficiency-labor ratio, the
decomposition in Eq. (8) measures technological change by
the shift in the frontier in the output direction at the base-
period capital/efficiency-labor ratio, and the base-period
robot/efficiency-labor ratio. Similarly, Eq. (7) measures the
effect of (non-robot) physical and robot capital deepening,
as well as human capital accumulation along the base-
period frontier, whereas Eq. (8) measures the effect of (non-
robot) physical and robot deepening, as well as human
capital accumulation along the current-period frontier.

These two decompositions do not yield the same results,
i.e., the decomposition is path dependent. In fact, the two
decompositions are only equal if technological change is Hick-
neutral (as assumed by Solow (1957) and the conventional
methods of growth accounting). Though, one advantage of the
growth accounting approach used in this study is that it allows
for non-neutral technological change. To overcome the path
dependence of the decomposition we follow Kumar and
Russel (2002), Henderson and Russell (2005) and others, and
adopt the “Fisher Ideal” decomposition introduced by Caves et
al. (1982) and Färe et al. (1994). This is based on the geo-
metric averages of the two measures of the effects of tech-
nological change, human capital accumulation, (non-robot)
physical capital deepening, and robot capital deepening, and
obtained mechanically by multiplying the numerator and

denominator of Eq. (3) by yb k̂c; r̂c
� 	

yb ~kc; r̂b
� 	

yb ~kc;~rc
� 	� 	1=2

yc k̂b; r̂b
� 	

yc ~kb; r̂c
� 	

yc ~kb;~rb
� 	� 	1=2

:

yc
yb

¼ EFF � TECHb � TECHc
� 	1=2� HACCb � HACCc

� 	1=2
� KACCb � KACCc
� 	1=2� RKACCb � RKACCc

� 	1=2
� EFF � TECH � HACC � KACC � RKACC:

ð9Þ

In the following, the results of the productivity ana-
lysis are presented both through summary statistic for
individual countries and country groups (Section 4.2) and
in a distributional analysis (Section 5). The distributional
analysis is based on and complements the results pre-
sented in Section 4.2. It reveals certain patterns of the
productivity distribution (such as dispersion, double
peaks and polarization) and of its changes and provides
some statistical tests.

4.2 Empirical results

Table 3 shows the country-specific components of the
decomposition of the growth rate of output per hour worked
(labor productivity) for the period 1999 to 2019, both with
and without considering robot capital as a separate pro-
duction factor. The change in labor productivity is reported
in the second column of Table 3, whereas the contributions
in percentage terms of changes in each of the five compo-
nents appear in column 3–7.13 Likewise, the first row for
each country reports the results from the quinquepartite
decomposition considering robots as separate production
factor, whereas the second row ignores the autonomous role
of robots in the production process.

The mean contribution of efficiency change is negative
(−4.5%). Physical capital deepening (37.3%) is by far the
most important driver of labor productivity growth, irre-
spective of the incorporation of robot capital or not. The
magnitude of the mean contribution of robot capital dee-
pening (11.8%)14 is comparable to that of technological
change (10.5%) but more than three times that of human
capital accumulation (3.3%).

Comparing the mean contributions of the components
of labor productivity change with and without separating
robot capital from other physical capital reveals that part
of physical capital accumulation, technological progress,
and efficiency change can be attributed to robot capital
accumulation. On average, the contribution of physical
capital accumulation, technological progress and effi-
ciency change to the 65.2% labor productivity change
falls from 45.4% to 37.3%, 16.1% to 10.5%, and from
−2.3% to −4.5%, respectively. The reduced rate of
technological progress and efficiency change might
indicate that robot capital accumulation goes hand in
hand with more general technological innovations that
have the potential to push the production possibility
frontier outward and facilitate movements towards the
frontier. The mean contribution of human capital accu-
mulation stays almost unchanged.

Table 4 presents mean changes in labor productivity
and the five components of productivity change for eight
groups of countries. We find that emerging countries
experienced productivity gains more than two times that
of developed countries primarily because of faster rates

13 These contributions in percentage terms can be easily transformed
into indexes using the formula (PERCENTAGE/100+ 1) so that Eq.
(9) holds.
14 The magnitude of the average percentage contribution rate of robot
capital deepening to labour productivity growth (11.8/65.2= 18%) is
comparable to that found by Graetz and Michaels (2018) for a sample
of 17 OECD countries for the period 1993 to 2007: They ‘find that the
contribution of the increased use of robots to productivity growth …

accounts for 15% of the aggregate economy-wide productivity
growth.’
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Table 3 Percentage Change of Quinquepartite Decomposition Indexes, 1999–2019

Country Productivity Change (EFF-1) × 100 (TECH-1) × 100 (HACC-1) × 100 (KACC-1) × 100 (RKACC-1) × 100

Argentina (AR) 40.5 −10.7 6.1 3.0 33.3 8.0

40.5 −14.9 19.1 1.5 36.6

Australia (AU) 35.8 −4.2 8.9 0.2 26.0 3.1

35.8 −4.5 14.3 0.2 24.2

Austria (AT) 50.2 −10.3 16.6 1.7 32.7 6.4

50.2 −7.0 19.6 2.2 32.0

Belgium (BE) 29.7 −14.3 20.2 1.1 21.1 2.9

29.7 −12.0 21.1 1.4 20.1

Brazil (BR) 40.7 −12.2 7.7 10.8 25.4 7.1

40.7 −16.3 20.1 7.0 30.8

Canada (CA) 24.1 −17.5 8.1 1.7 25.6 9.0

24.1 −14.6 13.5 2.1 25.3

China (CN) 252.2 −29.0 −0.3 3.3 233.3 44.4

252.2 −30.5 4.2 3.2 371.4

Czech Republic (CZ) 69.7 29.5 7.0 1.7 3.5 16.4

69.7 39.1 14.6 1.2 5.2

Denmark (DK) 60.5 −7.8 14.8 2.0 39.9 6.2

60.5 −4.8 18.4 2.6 38.8

Finland (FI) 27.0 −15.3 12.9 2.9 24.2 3.9

27.0 −15.1 17.0 3.5 23.5

France (FR) 34.8 −15.6 19.2 2.1 27.1 3.2

34.8 −14.2 21.1 2.6 26.4

Germany (DE) 33.8 −10.8 13.4 0.8 18.1 11.1

33.8 −4.8 17.4 1.0 18.5

Hungary (HU) 76.2 0.1 4.5 3.1 31.8 23.9

76.2 4.1 13.5 5.2 41.7

India (IN) 235.4 −12.5 1.8 7.3 156.7 36.7

235.4 −6.4 4.0 3.5 233.0

Israel (IL) 9.9 −5.5 4.8 4.8 −2.5 8.7

9.9 −4.6 14.1 3.9 −2.8

Italy (IT) 18.0 −27.6 20.0 2.4 26.1 5.1

18.0 −24.7 21.2 3.0 25.4

Japan (JP) 10.9 −12.0 10.2 1.2 0.6 12.3

10.9 −5.6 13.9 2.4 0.6

Malaysia (MY) 85.3 11.3 9.7 4.3 36.2 6.9

85.3 9.9 19.1 1.8 39.1

Mexico (MX) 21.9 −15.6 7.5 3.5 18.1 9.9

21.9 −16.5 18.8 3.3 19.1

Netherlands (NL) 34.4 −10.6 14.7 1.6 21.3 6.3

34.4 −9.2 18.7 2.3 21.9

Norway (NO) 66.0 −14.8 13.9 1.8 46.3 14.9

66.0 −14.6 18.9 2.6 59.4

Poland (PL) 104.1 0.0 8.6 2.3 68.3 9.1

104.1 0.0 14.0 1.6 76.1

Portugal (PT) 38.6 −19.4 9.8 4.6 25.9 18.8
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of (non-robot) physical capital accumulation and, to a
lesser extent, robot capital accumulation. Efficiency gains
and higher contributions of human capital accumulation
in emerging countries also supported this development.
Somewhat counteracting this development, we find that
technological progress in developed countries is sub-
stantially higher than in emerging countries. It is impor-
tant to note, that the mean percentage change of the robot
deepening index for emerging countries is 17.2%, and the
corresponding value for developed countries 7.3%.
Therefore, emerging countries appear, on average, to
have benefited more from industrial robot expansion. A
two-sample t test for differences in means indicates that
the mean contribution of robot capital deepening in
emerging countries is statistically and significantly higher
than in developed countries at the one percent sig-
nificance level. It is also interesting to note that for Tai-
wan and Slovenia, robot capital accumulation emerges as
the main growth engine, whereas for China, Czech

Republic, Hungary, India, Japan, Poland, Slovakia, and
Turkey robot capital deepening appears to be the second
major contributor to productivity change. Note that, only
two of the countries listed above, i.e., Taiwan and Japan,
are classified as developed countries.

The poor growth performance of Latin America is
caused primarily by efficiency losses and low contribu-
tions of (non-robot) physical capital accumulation to
productivity growth. Technological catch-up (positive
efficiency change) is only observed for a minority of
countries/country groups including emerging countries,
non-OECD, and transition countries. The trend of
declining average efficiency levels found by Badunenko
et al. (2008) for the period 1992 to 2000 seems to have
continued over the last twenty years.

Figure 2 gives a preliminary picture about which of the
productivity growth components may have contributed to
narrowing down the productivity gap between emerging
and developed countries. Productivity growth and the five

Table 3 (continued)

Country Productivity Change (EFF-1) × 100 (TECH-1) × 100 (HACC-1) × 100 (KACC-1) × 100 (RKACC-1) × 100

38.6 −18.0 20.2 3.2 36.2
Rep. of Korea (KR) 91.3 −22.4 14.1 3.9 66.8 24.8

91.3 −3.7 14.4 7.2 62.0

Russia (RU) 193.5 102.2 2.0 2.7 34.4 3.1

193.5 80.9 16.9 2.4 35.4

Singapore (SG) 124.5 1.0 9.5 15.2 60.6 9.8

124.5 6.3 11.9 19.0 58.6

Slovakia (SK) 58.0 20.2 7.8 2.7 2.8 15.5

58.0 32.7 11.4 4.3 2.5

Slovenia (SL) 46.3 −0.7 10.7 2.3 10.7 17.6

46.3 6.5 17.1 2.9 14.0

Spain (ES) 44.1 −17.6 16.6 2.7 40.0 4.4

44.1 −16.1 19.5 3.4 38.9

Sweden (SE) 38.6 5.6 16.7 1.7 5.2 5.2

38.6 8.1 19.5 2.0 5.1

Switzerland (CH) 66.1 3.7 15.8 1.1 31.4 4.2

66.1 5.6 19.0 1.3 30.5

Taiwan (TW) 27.3 −7.7 10.8 3.6 0.7 19.4

27.3 4.9 12.5 7.2 0.7

Turkey (TR) 126.3 −12.7 6.6 7.1 78.0 27.7

126.3 −12.8 16.6 8.7 104.7

United Kingdom
(UK)

28.3 −3.8 9.8 2.1 16.6 2.1

28.3 −6.4 15.3 2.4 16.0

United States (US) 37.2 0.0 7.4 1.5 20.1 4.8

37.2 0.0 12.6 1.6 19.9

Mean 65.2 −4.5 10.5 3.3 37.3 11.8

65.2 −2.3 16.1 3.5 45.4
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productivity-component growth rates are plotted against
output per hour worked in 1999, along with GLS regres-
sion lines.15 Panel (a) is a standard growth convergence
equation: the statistical significance of the slope coefficient
supports beta-convergence, i.e., countries with low initial
levels of output per hour worked tend to grow faster than
countries with high initial productivity levels. The statis-
tically significant negative slopes in Panel (d), (e), (f)
indicate that beta-convergence is primarily driven by (non-
robot) physical capital accumulation, and, though to a
lesser extent, by robot capital accumulation; human capital
accumulation also contributed to beta-convergence. The
statistically significant positive regression slope coefficient
in Panel (c) indicates that relatively wealthy countries have
benefited more from technological progress than have less-
developed countries. Therefore, technological progress
appears to have widened international productivity dis-
parities, and counteracts the tendency for physical capital,
and robot capital accumulation to narrowing down cross-
country productivity inequalities. Finally, the statistically
insignificant regression coefficient in Panel (b) suggests
that efficiency change has little effect on productivity
disparities.

Since these preliminary conclusions are based on first-
moment characterizations of the productivity distribution
and vulnerable to the Quah (1993, 1996, 1997) critique,
we turn now to examine the evolution of the entire cross-

section distribution of labor productivity. Quah’s critique
to previous approaches to examine convergence (basi-
cally those based on analysing β- and σ-convergence)
points out that conclusions are based just on (two)
summary statistics. However, relying on two specific
moments of the distribution (i.e., mean and the standard
deviation) may give an incomplete illustration and hide
important results. Instead, empirical works should con-
sider the entire distribution. This could reveal some
significant features such as the existence of
multiple modes.

5 Analysis of productivity distributions

Figure 3 shows the distributions of output per hour
worked across the 35 countries in our sample in 1999 and
2019. The solid (dotted) curve is the estimated 1999
(2019) distribution of output per hour worked, with their
corresponding mean values shown as vertical lines. By
visually inspecting both distributions, we observe i) a
shift from a bimodal to a unimodal distribution16, ii) a
substantial rise in average levels of output per hour
worked over the 20-year period, and iii) a reduction of

Table 4 Mean Percentage Changes of Quinquepartite Decomposition Indexes (Country Groupings)

Country Group TEb TEc Product. Change (EFF-1) × 100 (TECH-1) × 100 (HACC-1) × 100 (KACC-1) × 100 (RKACC-1) × 100

Emerging Countriesa 0.67 0.64 95.2 0.7 7.5 4.1 54.1 17.2

Developed Countriesb 0.78 0.71 39.8 −8.8 13.0 2.6 23.2 7.3

Non-OECD 0.71 0.69 124.9 5.3 5.9 6.3 72.6 16.9

OECDc 0.74 0.68 47.5 −7.4 11.9 2.4 26.9 10.3

Transitiond 0.61 0.65 114.3 17.5 5.8 2.6 55.0 18.6

Non-transition 0.76 0.69 52.9 −10.0 11.7 3.4 32.9 10.1

Asian Tigerse 0.67 0.63 67.9 −6.0 10.8 5.6 33.0 14.6

Latin Americaf 0.79 0.69 34.4 −12.8 7.1 5.7 25.6 8.4

All countries 0.73 0.68 65.2 −4.5 10.5 3.3 37.3 11.8

aReal GDP per capita < 27,500 (2017 US$) in 1999: Argentina, Brazil, China, Czech Republic, Hungary, India, Malaysia, Mexico, Poland,
Portugal, Rep. of Korea, Russia, Slovakia, Slovenia, Spain, Turkey
bReal GDP per capita > 32,500 (2017 US$) in 1999: Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany, Israel, Italy, Japan,
Netherlands, Norway, Singapore, Sweden, Switzerland, Taiwan, United Kingdom, United States
cOECD countries as of 2019
dChina, Czech Republic, Hungary, Poland, Russia, Slovakia, Slovenia
eJapan, Malaysia, South Korea, Singapore, Taiwan
fArgentina, Brazil, Mexico

15 Detailed GLS-regression results are available in the Appendix,
Table 8. The country codes used in Fig. 2 are explained in Table 9 of
the Appendix.

16 The results of the test developed by Silverman (1981) shown in
Table 5, row 1 and 2, indicate that we can reject the null hypothesis of
a single mode for the 1999 distribution at the 5% significance-level
(p-value= 0.01), but we cannot reject the null of one mode
(p-value= 0.15) for the 2019 distribution.
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the dispersion of productivity levels, as indicated by a
decrease of the coefficient of variation (CV) from 0.480
in 1999 to 0.424 in 2019.17

Following Henderson and Russell (2005) and others, we
aim to explain these features of the change of the pro-
ductivity distribution from 1999 to 2019 in terms of the five
components of productivity change, paying particular
attention to the robot capital deepening component. Using
the quinquepartite decomposition of productivity growth,
we rewrite Eq. (9) as follows:

yc ¼ EFF � TECH � HACC � KACC � RKACCð Þ � yb: ð10Þ

Fig. 2 Percentage change in output per hour worked (a) and percentage change in five decomposition indexes (b–f) plotted against 1999 output per
hour worked. Each panel contains a GLS regression line

17 The coefficient of variation is the most widely used indicator for σ-
convergence in the empirical macroeconomic literature (Benedek and
Koczisky 2015; Ram 2021) and is calculated as the ratio between the
standard deviation and the mean of a variable. While Panel (a) in Fig. 2
provides some evidence for β-convergence, the decreased coefficient
of variation points towards σ-convergence across the countries in our
sample.
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Fig. 3 Distributions of labor productivity. The solid curve is the esti-
mated 1999 distribution, and the solid vertical line represents the 1999

mean value. The dotted curve is the estimated 2019 distribution, and
the dashed vertical line represents the 2019 mean value

Fig. 4 Counterfactual distributions of output per hour worked. In each
panel, the solid curve is the actual 1999 distribution, the dashed curve
is the actual 2019 distribution. The dotted curves in each panel are the
counterfactual distributions isolating, sequentially, the effects of

efficiency ch. (a), technological ch. (b), human capital accumulation
(c), and capital deepening (d). The vertical lines represent the mean
values of the corresponding distributions
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Where b= 1999 and c= 2019. Accordingly, the labor
productivity distribution in the current year can be constructed
by consecutively multiplying the labor productivity variable in
the base year by each of the five components. To isolate the
impact of each component, we create counterfactual distribu-
tions by introducing each of the components in sequence. For
instance, we assess the shift of the labor productivity
distribution attributable solely to efficiency changes by
examining the counterfactual distribution of the variable,

yE ¼ EFF � yb ð11Þ

assuming no technological change, no human capital
accumulation, no (non-robot) capital deepening, and no
robot capital deepening. This counterfactual distribution is
shown, along with the actual distribution in the base (solid
curve) and current period (dashed curve), as a dotted curve in

Panel (a) of Fig. 4. We then include sequentially more
components in the counterfactual distribution to isolate their
effects. For instance, we can add technological change to yE:

yET ¼ EFF � TECHð Þ � yb ¼ TECH � yE: ð12Þ

This isolates the joint effect of efficiency change and
technological progress on the productivity distribution and
is drawn in Panel (b) of Fig. 4. The additional effect of
human capital accumulation on the distribution yET can be
assessed by multiplying by HACC such that:

yETH ¼ EFF � TECH � HACCð Þ � yb ¼ HACC � yET ð13Þ

drawn in Panel (c) of Fig. 4. Panel (d) in Fig. 4 incorporates
the effect of capital deepening in yEIH such that:

yETHK ¼ EFF � TECH � HACC � KACCð Þ � yb ¼ KACC � yETH :

ð14Þ

Table 5 Modality Tests (p-values)

H0: Distribution Has One Mode
H1: Distribution Has More than One Mode

Bootstrap
p-Value

1 f(y1999) 0.01

2 f(y2019) 0.15

3 f(y1999 × EFF) 0.10

4 f(y1999 × TECH) 0.01

5 f(y1999 ×KACC) 0.00

6 f(y1999 ×HACC) 0.04

7 f(y1999 × RKACC) 0.15

8 f(y1999 × EFF × TECH) 0.17

9 f(y1999 × EFF ×KACC) 0.04

10 f(y1999 × EFF ×HACC) 0.25

11 f(y1999 × EFF × RKACC) 0.26

12 f(y1999 × TECH ×KACC) 0.01

13 f(y1999 × TECH ×HACC) 0.04

14 f(y1999 × TECH × RKACC) 0.08

15 f(y1999 ×KACC ×HACC) 0.01

16 f(y1999 ×KACC × RKACC) 0.03

17 f(y1999 ×HACC × RKACC) 0.30

18 f(y1999 × EFF × TECH × KACC) 0.01

19 f(y1999 × EFF × TECH ×HACC) 0.20

20 f(y1999 × EFF × TECH × RKACC) 0.23

21 f(y1999 × EFF ×KACC ×HACC) 0.08

22 f(y1999 × EFF ×KACC × RKACC) 0.52

23 f(y1999 × EFF ×HACC × RKACC) 0.31

24 f(y1999 × TECH ×KACC ×HACC) 0.00

25 f(y1999 × TECH ×KACC × RKACC) 0.01

26 f(y1999 × TECH ×HACC × RKACC) 0.12

27 f(y1999 ×KACC ×HACC × RKACC) 0.08

28 f(y1999 × EFF × TECH × KACC ×HACC) 0.09

29 f(y1999 × EFF × TECH × KACC × RKACC) 0.23

30 f(y1999 × EFF × TECH ×HACC × RKACC) 0.29

31 f(y1999 × EFF ×KACC ×HACC × RKACC) 0.15

32 f(y1999 × TECH ×KACC ×HACC × RKACC) 0.20

We employ the bootstrapped calibrated Silverman test of multi-
modality due to Hall and York (2001) with 1000 bootstrap replications

Table 6 Distribution Hypothesis Tests (p-values)

H0: Distributions Are Equal
H1: Distributions Are Not Equal

Bootstrap
p-Value

1 g(y2019) vs. f(y1999) 0.011

2 g(y2019) vs. f(y1999 × EFF) 0.005

3 g(y2019) vs. f(y1999 × TECH) 0.076

4 g(y2019) vs. f(y1999 × KACC) 0.494

5 g(y2019) vs. f(y1999 ×HACC) 0.015

6 g(y2019) vs. f(y1999 × RKACC) 0.032

7 g(y2019) vs. f(y1999 × EFF × TECH) 0.051

8 g(y2019) vs. f(y1999 × EFF ×KACC) 0.114

9 g(y2019) vs. f(y1999 × EFF ×HACC) 0.009

10 g(y2019) vs. f(y1999 × EFF × RKACC) 0.021

11 g(y2019) vs. f(y1999 × TECH × KACC) 0.409

12 g(y2019) vs. f(y1999 × TECH ×HACC) 0.089

13 g(y2019) vs. f(y1999 × TECH × RKACC) 0.402

14 g(y2019) vs. f(y1999 × KACC ×HACC) 0.661

15 g(y2019) vs. f(y1999 × KACC × RKACC) 0.984

16 g(y2019) vs. f(y1999 ×HACC × RKACC) 0.040

17 g(y2019) vs. f(y1999 × EFF ×HACC × RKACC) 0.640

18 g(y2019) vs. f(y1999 × EFF × TECH ×HACC) 0.059

19 g(y2019) vs. f(y1999 × EFF × TECH × RKACC) 0.163

20 g(y2019) vs. f(y1999 × EFF ×KACC ×HACC) 0.154

21 g(y2019) vs. f(y1999 × EFF ×KACC × RKACC) 0.514

22 g(y2019) vs. f(y1999 × EFF ×HACC × RKACC) 0.024

23 g(y2019) vs. f(y1999 × TECH × KACC ×HACC) 0.456

24 g(y2019) vs. f(y1999 × TECH × KACC × RKACC) 0.478

25 g(y2019) vs. f(y1999 × TECH ×HACC × RKACC) 0.605

26 g(y2019) vs. f(y1999 × KACC ×HACC × RKACC) 0.975

27 g(y2019) vs. f(y1999 × EFF × TECH ×KACC ×HACC) 0.735

28 g(y2019) vs. f(y1999 × EFF × TECH ×KACC × RKACC) 0.990

29 g(y2019) vs. f(y1999 × EFF × TECH ×HACC × RKACC) 0.256

30 g(y2019) vs. f(y1999 × EFF ×KACC ×HACC × RKACC) 0.553

31 g(y2019) vs. f(y1999 × TECH × KACC ×HACC × RKACC) 0.403

The functions g(.) and f(.) are (kernel) distribution functions. We
employ bootstrapped Li (1996) tests with 5000 bootstrap replications
and the Silverman’s (1986) adaptive rule-of-thumb bandwith
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The effect of the last component, robot capital deepen-
ing, can be deduced from comparing the counterfactual
distribution of yEIHK and the actual distribution in 2019.

We employ the bootstrapped, calibrated version of the
Silverman (1981) test18 for multimodality to statistically assess
which component (or set of components) causes the shift from
bimodality to unimodality in the productivity distributions. In
addition, we use the bootstrapped version of the Li (1996) test
to identify the component (set of components) that con-
tribute(s) to the overall change in the distribution of labor
productivity. The Silverman (1981) and the Li (1996) test
results are reported in Tables 5 and 6, respectively.

Table 5 shows that when introduced alone, efficiency
change (EFF) and robot capital deepening (RKACC) could
bring about the unimodality in the distribution. The corre-
sponding p-values in rows 3 and 7 (0.10 and 0.15) in Table 5
indicate that we cannot reject the null-hypothesis of unim-
odality when the single effects of EFF and RKACC on the
1999 distribution are isolated. Panel (a) of Figs. 4 and 5 also

show the emergence of unimodalism in the counterfactual
distributions due only to the effect of EFF and RKACC,
respectively. When we consider the combined effect of two
components, we find that the presence of either of these effects
helps induce unimodality of the distribution (rows 8, 10, 11,
13, 14, and 17). However, capital deepening (KACC) exerts a
counteracting effect towards a bipolar distribution and leads to
a rejection of the null hypothesis of unimodality at the 5%
significance level even when combined with EFF or RKACC
(rows 9 and 16). A similar pattern is revealed by inspecting
rows 18 to 27 of Table 5, where three components are com-
bined together: whenever one of the effect of EFF or RKACC
is imposed on the 1999 distribution, unimodality cannot be
rejected, except for those cases where KACC is also present
and at the same time coincides only with one of the EFF or
RKACC components. When combining four components the
null hypothesis of unimodality cannot be rejected at the 5%
significance level. Thus, capital deepening counteracts the
depolarizing (combined) effect of efficiency change and robot
capital deepening.

The Li-test results shown in Table 6 indicate that (non-
robot) physical capital deepening, and to a lesser extent

Fig. 5 Counterfactual distributions of output per hour worked. In each
panel, the solid curve is the actual 1999 distribution, the dashed curve
is the actual 2019 distribution. The dotted curves in each panel are the
counterfactual distributions isolating, sequentially, the effects of robot

capital deepening (a), capital deepening (b), human capital accumu-
lation (c), and efficiency ch. (d). The vertical lines represent the mean
values of the corresponding distributions

18 For further details, see Hall and York (2001) and Henderson et al.
(2008).
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technical change, are the main contributors to the overall
change in the shape of the productivity distribution from 1999
to 2019. Row 3 and 4 reveal that the introduction of either the
effect of TECH or KACC alone to the 1999 distribution ren-
ders it statistically indistinguishable from the 2019 distribution
at the 10% and 5% significance level, respectively.19 Unsur-
prisingly, so does any combination of two or more pro-
ductivity change component effects which include TECH,
KACC, or both. Distributional equality between the 2019
productivity distribution and counterfactual distributions
evaluating the effect of efficiency change, human capital
accumulation, and robot capital deepening alone, or any
combination of two or three of these components on the 1999
distribution, can be rejected at the 5% significance level (see
p-values in row 2, 5, 6, 9, 10, 16, and 22 in Table 6).

Figures 3–6 illustrate that all components of labor pro-
ductivity change except technical change have a moderate
effect of reducing the dispersion of the labor productivity

distribution. For instance, as shown in Panel (a) of Fig. 5
introducing the robot capital deepening component reduces the
CV of the 1999 labor productivity distribution from 0.480 to
0.458. Further, sequentially adding the effect of (non-robot)
physical capital deepening, human capital accumulation, and
efficiency change results in a further decrease of the CV from
0.458 to 0.445, 0.436, and 0.4016, respectively.

Next, we inspect the shift of the 1999 mean value of output
per hour worked (solid vertical line in Figs. 4–6) to its 2019
mean value (dashed vertical line Figs. 4–6). We observe a shift
from 33.4 to 49.13 (both in 2017 PPP adjusted US$). For
instance, in Fig. 5 the largest change, in absolute values, in
output per hour worked is induced by capital deepening, fol-
lowed by technical change, efficiency change, robot capital
deepening and human capital accumulation.20 Efficiency
change is the only component that tends to decrease output per

Fig. 6 Counterfactual distributions of output per hour worked. In each
panel, the solid curve is the actual 1999 distribution, and the dashed
curve is the actual 2019 distribution. The dotted curves in each panel
are the counterfactual distributions isolating, sequentially, the effects

of technological change (a), robot capital deepening (b), human capital
accumulation (c), and efficiency change (d). The vertical lines repre-
sent the mean values of the corresponding distributions

19 The isolated effect of technological change on the 1999 pro-
ductivity distribution is shown in Panel (a) of Fig. 6. Its relevance can
also be inferred by comparing the counterfactual distribution in Panel
(d) of Fig. 5 with the actual 2019 distribution. The same reasoning
applies for the capital deepening effect regarding Panel (d) in Fig. 6.

20 Fig. 5 shows that the effect or robot capital deepening increases the
1999 mean value of output per hour worked from 33.44 US$ to 36.46
US$. Adding sequentially the effect of capital deepening, human
capital accumulation, and efficiency change, results in a mean value of
46.33 US$, 47.60 US$, and 43.94 US$, respectively. Adding the last
component, technological change, induces an increase from 43.94 US$
to 49.13 US$.
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hour worked. Robot capital deepening induces a shift mainly
of the lower part of the distribution. The magnitude of the
average percentage contribution rate of robot capital deepening
to labor productivity growth (3.03/15.69= 19.3%) in Fig. 5 is
comparable to the 18.1 (=11.8/65.2) percentage contribution
rate found in the second last row of Table 3 (cf. footnote 14).

To sum up, the evidence from the counterfactual distribu-
tional analysis and statistical tests in Tables 5 and 6 indicates
that i) the increase in average output per hour worked is pri-
marily driven by (non-robot) capital deepening, and to a lesser
extent, also by technological change and robot capital dee-
pening. However, only focusing on changes of the first
moment of the productivity distribution would mask (ii) that
the depolarization (shift from bimodal to unimodal distribu-
tion) of the labor productivity distribution and the decreased
dispersion of productivity levels across countries (σ-con-
vergence) is primarily driven by efficiency change and robot
capital deepening21, and (iii) that the overall effect of robot
capital deepening on the change of the entire labor pro-
ductivity distribution for the 1999–2019 period is modest and
dominated by other growth drivers such as (non-robot) phy-
sical capital deepening and technological change.

6 Sensitivity analyses for quinquepartite
decomposition

Having presented the results for a sample of 35 countries over
the period 1999–2019 based on a specific robot stock estimate
obtained from the perpetual inventory model (PIM) and
assuming a depreciation rate of 15%, we now turn the focus to
present the summary results from a wide array of sensitivity
analyses. We examine the robustness of the results presented
in Section 4 to the following changes, paying particular
attention to differences between emerging and developed
countries: i) the use of alternative robot stock estimates based
on different assumptions about robot capital depreciation and
the change in the average robot quality, ii) the investigation of
the subperiods 1999–2009, and 2009–2019, and iii) the
exclusion of potential outlying observations. While Table 7
reports means of country groups, country-specific results of the
sensitivity analyses are available in section B.5. in the sup-
plementary material.

6.1 Alternative robot stock estimates

Panel A in Table 7 shows that the average efficiency scores
(both in the 1999 and the 2019) are almost identical up to
two decimal places, regardless of whether we estimate the

quality adjusted robot stock with the perpetual inventory
method assuming a 5%, 10% or 15% depreciation rate, or if
we assume an average service life of robots of 12 years with
an immediate withdrawal from service afterwards (one-hoss
shay depreciation). Accordingly, the mean contribution of
the five productivity components to average productivity
growth show little variation with respect to the robot stock
estimates. For instance, the mean contribution of robot
capital deepening across emerging, developed and all
countries, ranges from 14.7% to 17.3%, 6.8% to 7.6%, and
10.4% to 12.0%, respectively.

However, for some individual countries the results can vary
substantially between different types of quality-adjusted robot
stock estimates. For instance, regarding the contribution of
robot capital deepening we find the largest uncertainties for
Norway (6.1%–14.9%), Portugal (7.2%–18.8%), Turkey
(13.5%–27.7%), India (33.3%–49.1%), China (41.2%–53.7%)
and Hungary (18.2%–23.9%). For all other countries the dif-
ferences in the robot capital deepening component between
different quality-adjusted robot stock estimates are of less
importance.

Comparing the average contribution rates of the growth
components with and without adjusting the robot stock esti-
mates for robot quality changes reveals, that overall, there are
only modest changes and the qualitive results discussed above
remain unaltered. Though, the average contribution of robot
capital deepening to labor productivity growth is somewhat
reduced, especially for developed countries, if quality-changes
of robots are ignored. Hence, for the majority of the countries
we find that ignoring quality-changes leads to an under-
estimation of the contribution of robot capital deepening to
labor productivity growth.

6.2 Subperiods

Panel D and F in Table 7 present the mean productivity
growth rates and its five components for the subperiods
1999–2009, and 2009–2019, respectively. Panel E and G
show the corresponding results for the decomposition ignoring
robot capital as a separate production factor. First, we can
observe that, for both developed and emerging countries,
average productivity growth substantially slows down in the
period after the financial crisis (2009–2019); in both groups of
countries the average productivity growth rate over the period
2009–2019 is about half of the average growth rate of the
subperiod before. The average growth rate of output per hour
worked across all 35 countries is 36.5% and 19.0% for the
1999–2009, and the 2009–2019 period, respectively.

However, not only the magnitude of productivity growth
changes, but we also observe a shift in the relative importance
of the five productivity growth components: considering the
averages across all countries we observe that in the 1999–2009
period technological progress (8.2%) was the second largest

21 Whereas, non-robot physical and human capital accumulation also
contribute to the decreased dispersion of productivity levels, technical
change counteracts this development.
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driver of productivity growth (line 3 in Panel D) but is of rather
minor importance in the period 2009–2019 (1.4%) (line 3 in
Panel F). Non-robot capital deepening remains by far the most
important driver of productivity growth in both, the 1999–2009
(21.9%) and 2009–2019 (12.2%) period. In the period after the
financial crisis robot capital deepening as a driver of pro-
ductivity growth gains in relative importance and becomes the

second largest contributor to productivity growth across the 35
countries in our sample.22 The increasing importance of robot

Table 7 Mean Efficiency Scores and Percentage Change of Quinqupartite Decomposition Indexes

TEb TEc Productivity Change (EFF-1) × 100 (TECH-1) × 100 (HACC-1) × 100 (KACC-1) × 100 (RKACC-1) × 100

Period 1999–2019

Panel A: Alternative robot stock estimates

One-hoss shay depreciation, 12 years, quality change adjusted

Emerging 0.67 0.64 95.2 0.8 7.2 3.9 53.6 17.3

Developed 0.78 0.71 39.8 −8.3 11.9 2.5 23.6 7.6

All 0.73 0.68 65.2 −4.2 9.7 3.1 37.3 12.0

PIM, δ= 5%, quality change adjusted

Emerging 0.68 0.64 95.2 0.5 8.1 3.8 57.2 14.8

Developed 0.78 0.71 39.8 −8.7 12.5 2.5 23.8 7.3

All 0.73 0.68 65.2 −4.5 10.5 3.1 39.1 10.7

PIM, δ= 10%, quality change adjusted

Emerging 0.67 0.64 95.2 0.7 8.0 3.8 57.2 14.7

Developed 0.78 0.71 39.8 −8.8 12.9 2.5 24.0 6.8

All 0.73 0.68 65.2 −4.4 10.6 3.1 39.2 10.4

PIM, δ= 15%, quality change adjusted

Emerging 0.67 0.64 95.2 0.7 7.5 4.1 54.1 17.2

Developed 0.78 0.71 39.8 −8.8 13.0 2.6 23.2 7.3

All 0.73 0.68 65.2 −4.5 10.5 3.3 37.3 11.8

PIM, δ= 15%, not quality change adjusted

Emerging 0.68 0.64 95.2 0.2 10.0 3.9 54.3 15.0

Developed 0.78 0.71 39.8 −8.4 14.8 2.5 23.5 5.0

All 0.73 0.68 65.2 −4.5 12.6 3.1 37.6 9.6

Panel B: Removing potential outliers (without China)

PIM, δ= 15%, quality change adjusted

Emerging 0.67 0.64 84.8 1.3 8.1 3.9 42.4 18.2

Developed 0.78 0.71 39.8 −8.8 13.0 2.6 23.1 7.4

All 0.73 0.68 58.4 −4.4 10.8 3.2 31.6 12.1

Panel C: Without robots

Emerging 0.67 0.65 95.2 2.4 15.2 3.8 71.7

Developed 0.78 0.73 39.8 −6.2 16.9 3.3 23.4

All 0.73 0.69 65.2 −2.3 16.1 3.5 45.4

Subperiod 1999–2009

Panel D: With robots (PIM, δ= 15%, quality adjustment)

Emerging 0.67 0.67 51.0 3.3 4.3 2.1 27.7 9.3

Developed 0.78 0.71 24.2 −8.5 11.4 1.3 17.1 2.7

All 0.73 0.69 36.5 −3.1 8.2 1.7 21.9 5.7

Panel E: Without robots

Emerging 0.67 0.67 51.0 3.1 8.2 1.9 35.7

Developed 0.78 0.72 24.2 −7.6 12.7 1.3 17.9

All 0.73 0.70 36.5 −2.7 10.6 1.6 26.1

Subperiod 2009–2019

Panel F: With robots (PIM, δ= 15%, quality adjustment)

Emerging 0.67 0.64 26.7 −3.5 1.7 1.7 19.4 7.9

Developed 0.71 0.71 12.4 −0.3 1.1 1.0 6.1 4.1

All 0.69 0.68 19.0 −1.7 1.4 1.3 12.2 5.9

Panel G: Without robots

Emerging 0.67 0.65 26.7 −1.4 5.8 1.6 22.1

Developed 0.72 0.73 12.4 1.6 3.2 1.3 5.9

All 0.70 0.69 19.0 0.2 4.4 1.4 13.3

PIM is perpetual inventory method, and δ is the assumed depreciation rate

22 While in the 1999-2009 period the growth of the robot capital
deepening index was about four times lower than the growth rate of the
(non-robot) physical capital deepening index (5.7% relative to 21.9%),
in the period 2009–2019 it is about only half times lower (5.9%
relative to 12.2%).
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capital deepening in the period 2009–2019 is particularly
pronounced in developed countries, where the growth rate of
the robot capital deepening index increases from 2.7% to 4.1%,
whereas overall labor productivity growth halved from 24.2%
to 12.4%. Nevertheless, the main finding in Section 4.2. that
the mean percentage change of the robot deepening index for
emerging countries is higher than in developed countries over
the 1999–2019 period, holds for both, the 1999–2009 (9.3% in
emerging vs. 2.7% in developed countries) and the 2009–2019
period (7.9% in emerging vs. 4.1% in developed countries).
However, the gap in the average growth rate of the robot
capital deepening index between emerging and developed
countries narrows in the period after the financial crisis.

Finally, for both subperiods we compare the results of
the decomposition considering robots as separate produc-
tion factor with the results of the decomposition that does
not. Regarding the 1999–2009 period, comparing line 3 in
Panel D and Panel E of Table 7 reveals the tendency that
incorporating robot capital as separate production factor
into the analysis substantially reduces the average con-
tribution to productivity growth attributable to (non-robot)
physical capital deepening and technological progress as
found in our baseline results for the 1999–2019 period. This
trend seems to be broken as indicated by line 3 in Panel F
and G over the 2009–2019 period: the robot capital dee-
pening component absorbs relatively little form the (non-
robot) physical capital component, which shows a fall from
13.3% to 12.2%, but mainly reduces the average contribu-
tion to productivity growth attributable to technological
progress (reduction from 4.4% to 1.4%) and efficiency
change (0.2% to −1.7%). This indicates that ignoring robots
as separate production factor would efficiency change and
technological progress capture the favorable effect of
industrial robots on the catching up to the frontier and the
outward shift of the frontier, respectively, over the
2009–2019 period.

6.3 Potential outliers

Following the super-efficiency procedure for outlier
identification introduced by Banker and Gifford (1988)
we find high super-efficiency scores (above 1.2) for some
observations for China. This identifies China as potential
outlier. Therefore, we exclude China from our sample to
check the sensitivity of the results of the decomposition
analysis in Section 4. Panel B of Table 7 provides
arithmetic means of productivity change and its com-
ponents for the groups of emerging, developed and all
countries after removing China from the sample based on
robot stock estimates with the perpetual inventory
method assuming a depreciation rate of 15%. Country-
specific results are available in Table B5c of the sup-
plementary material.

We find that for the vast majority of countries the exclu-
sion of China does not affect the decomposition results,
except for India, Rep. of Korea, Poland and Singapore. While
the results for India change substantially23, changes for Rep.
of Korea are moderate and negligible for Poland and Sin-
gapore. Therefore, the mean values in Panel B of Table 7
only change slightly and the largest changes are observed for
the group of emerging countries. Having in mind that the
exclusion of China reduces average productivity growth for
emerging countries from 95.2% to 84.8%, we find that for
emerging countries the average robot capital deepening and
the average non-robot physical capital deepening component
increases from 17.2% to 18.2%, and decreases from 54.1% to
42.4% respectively. The latter can be explained by the fact
that the contribution of traditional physical capital deepening
to productivity growth is relatively large and the most
important driver of productivity growth in China.

6.4 Summing up

To sum up, the sensitivity analysis shows that overall i) the
baseline results presented in Sections 4 and 5 are robust to
other assumptions about the depreciation of the robot capital
stock and ii) the exclusion of potential outliers. iii) The
development after the period of the financial crisis is char-
acterized by a slowdown of average productivity growth and a
change in the relative importance of the productivity growth
components. In particular, after the financial crisis the average
contribution of robot capital deepening to productivity growth
has gained in importance, especially in developed countries
but to a lesser extend also in emerging countries. The
importance of technological progress as a driver of growth
declined over the 2009–2019 period relative to 1999–2009.

7 Conclusion

We analyze the contribution of robotization and five other
growth factors (i.e., efficiency change, technological change,
non-robot physical capital deepening, and human capital
accumulation) to labor productivity growth over the period
1999 to 2019 in 19 developed and 16 emerging countries, and
study if and by how much industrial robots contributed to
convergence of cross-country productivity levels observed in
our sample. We apply the non-parametric production frontier
approach developed by Kumar and Russell (2002), refined by
Henderson and Russell (2005) and others, and extend it by
considering industrial robots as separate production factor.

23 For India we find that both, the non-robot capital and the robot
capital deepening component increase from 156.7% to 169.4% and
from 36.7% to 73%, respectively. The efficiency change component
declines from −12.5% to −32.8%.
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Production frontiers and distances to the frontiers are estimated
by Data Envelopment Analysis (DEA), a method based on
linear programming models. One weakness of radial DEA
models is that slacks, i.e., leftover portions of inefficiencies
after proportional (radial) reductions in all inputs (expansions
of all outputs), may arise. This can distort the DEA estimates
and Pareto-Koopmans inefficient countries can be located on
the production frontier. So far, the many previous authors
applying the decomposition analysis in the spirit of Kumar and
Russell (2002) ignored this problem. Following Portela and
Thanassoulis (2006), we provide a solution to this problem
and find that if slacks are pervasive, ignoring them in the
decomposition analysis can produce misleading results.

Our results confirm the positive relationship between
robot adoption and labor productivity growth found in
previous studies (e.g., Graetz and Michaels 2018; Cette
et al. 2021a, 2021b). Substantial contributions of
robotization to labor productivity growth over the period
1999 to 2019 are found in both, developed and emerging
countries. Examples for the latter are the Eastern Eur-
opean countries Hungary, Slovenia, Slovakia and Czech
Republic but also Argentina, Brazil, Mexico, China,
India, and Portugal. Considerable contributions of
robotization to labor productivity growth are also found
for certain developed countries (Canada, Germany,
Israel) and the Asian countries Japan, Republic of Korea
and Taiwan. We observe that after the financial crisis
(2009–2019) the contribution of robot capital deepening
to productivity growth gains in importance, especially
for developed countries, but to a lesser extent also for
emerging countries.

We find some evidence of unconditional beta-con-
vergence, and sigma-convergence in our sample of 35
robot-adopting countries over the period 1999 to 2019.
First, countries with lower initial productivity levels
experienced, on average, faster productivity growth.
After (non-robot) physical capital deepening, robot-
ization seems to be the second most important driver
behind this development. Second, the dispersion of
levels of productivities across countries decreased, as
indicated by the reduced coefficient of variation of the
productivity distribution in 2019 relative to 1999. This
result is primarily driven by the dynamics of efficiency
change and robot capital deepening across countries. To
a lesser extent, human capital accumulation and (non-
robot) capital deepening also contributed to this devel-
opment. However, the effect of robot capital deepening
on the shift of the entire labor productivity distribution is
modest and dominated by other growth factors such as
(non-robot) physical capital deepening. Finally, statis-
tical tests confirm that robotization significantly con-
tributed to the depolarization (a shift from a bimodal to

unimodal distribution) of the labor productivity
distribution.

Note that our sample of countries is not representative
for the entire world and only includes robot adopting
countries. In particular, developing countries from
Africa and some Latin American countries are excluded
due to limited data availability on industrial robot usage.
Including non-robot adopting countries in our sample
could lead to very different results regarding the con-
vergence of worldwide labor productivity levels. It is
conceivable that an analysis based on such a larger
sample of countries could reveal that industrial robot
diffusion contributes to a widening of worldwide income
and productivity disparities.

Furthermore, we find that disembodying robot capital
from total physical capital and considering robots as sepa-
rate production factor changes the relative importance of the
growth factors: On average, the importance of physical
capital deepening, technological change and efficiency
change decrease by about the same magnitude as the robot
capital deepening component gains in importance. This
indicates that robotization is not only affecting productivity
growth via capital accumulation but might be linked to
broader technological innovations that have the potential to
push the world production frontier outward and facilitate
movements towards the frontier.

Our results indicate, that the fast diffusion of industrial
robots in emerging market economies in the two decades
prior to the covid–19 pandemic substantially contributed
to improving their living standards and competitiveness
vis-à-vis developed countries. For developed countries,
the diffusion of industrial robots mitigated the losses in
competitiveness. Analyzing the proximate causes of
economic growth does not allow us to derive direct policy
recommendations. For designing policies that create a
favorable environment for robot adoption, a deeper
understanding on the fundamental causes of robot adop-
tion is needed.

The application of industrial robots is highly con-
centrated in a few manufacturing sectors, such as the
automobile, electrical/electronics, metal, and machinery
industry (Müller and Kutzbach 2020). For less developed
countries that have a sufficiently large manufacturing sector
and a favorable industry structure, robotization provides a
chance to boost productivity levels and to contribute to the
catching-up with developed countries. Future research
could analyze how the effects of robotization on labor
productivity growth, employment change and sectoral
convergence differ across industries.
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8 Appendix

Table 8 Growth regressions of the percentage change in output per hour worked and the five decomposition indices on output per hour worked in
base (1999) period

Variable Dependent Variable

(a) (b) (c) (d) (e) (f)

Productivity Change (EFF-1) × 100 (TECH-1) × 100 (HACC-1) × 100 (KACC-1) × 100 (RKACC-1) × 100

Constant 146.56*** (17.39) 7.27 (8.58) 2.65* (1.40) 6.35*** (1.01) 85.01*** (15.43) 24.04*** (3.20)

Output per hour
worked in 1999

−2.43*** (0.47) −0.35 (0.23) 0.24*** (0.04) −0.09*** (0.03) −1.43*** (0.42) −0.37*** (0.09)

Number of obs. 35 35 35 35 35 35

R-squared 0.448 0.065 0.538 0.258 0.262 0.353

Significance at the 10%, 5%, and 1% level is indicated by *, **, and ***, respectively. Coefficient estimates of GLS-regressions are reported.
Standard errors are shown in parenthesis

Table 9 Country-Codes and Classification

Emerging Countries Developed Countries

Code Country Code Country

AR Argentina AU Australia

BR Brazil AT Austria

CN China BE Belgium

CZ Czech Republic CA Canada

HU Hungary DK Denmark

IN India FI Finland

MY Malaysia FR France

MX Mexico DE Germany

PL Poland IL Israel

PT Portugal IT Italy

KR Republic of Korea JP Japan

RU Russian Federation NL Netherlands

SK Slovakia NO Norway

SL Slovenia SG Singapore

ES Spain SE Sweden

TR Turkey CH Switzerland

TW Taiwan

UK United Kingdom

US United States

Emerging countries: GDP per capita < 27,500 (2017 US$) in 1999

Developed countries: Real GDP per capita > 32,500 (2017 US$) in 1999

Journal of Productivity Analysis (2024) 61:157–181 179

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


References

Acemoglu D, Lelarge C, Restrepo P (2020) Competing with robots:
Firm-level evidence from France. AEA Pap Proc 110:383–388

Acemoglu D, Restrepo P (2018a) Modeling Automation. AEA Pap
Proc 2018(108):48–53. https://doi.org/10.1257/pandp.
20181020

Acemoglu D, Restrepo P (2018b) The race between man and machine:
Implications of technology for growth, factor shares and
employment. Am Econ Rev 108:1488–1542. https://doi.org/10.
1257/aer.20160696

Anthony J, Klarl T (2020) The implications of automation for
economic growth when investment decisions are irreversible.
Econ Lett 186:108757. https://doi.org/10.1016/j.econlet.2019.
108757

Badunenko O, Henderson DJ, Russell RR (2013) Polarization of the
worldwide distribution of productivity. J Product Anal
40:153–171. https://doi.org/10.1007/s11123-012-0328-5

Badunenko O, Henderson DJ, Zelenyuk V (2008) Technological
change and transition: Relative contributions to worldwide
growth during the 1990s. Oxf Bull Econ Stat 70:461–492. https://
doi.org/10.1111/j.1468-0084.2008.00508.x

Badunenko O, Romero-Ávila D (2013) Financial development and the
sources of growth and convergence. Int Econ Rev 54:629–663.
https://doi.org/10.1111/iere.12009

Banker RD, Gifford JL (1988) A relative efficiency model for the
evaluation of public health nurse productivity. Mellon University
Mimeo, Carnegie

Banker RD, Das S, Datar SM (1989) Analysis of cost variances for
management control in hospitals. Res Gov Nonprofit Account
5:269–291

Banker RD, Chang H (2006) The super-efficiency procedures for
outlier identification, not for ranking efficient units. Eur J Op Res
175:1311–1320

Banker RD, Chang H, Zheng Z (2017) On the use of super-efficiency
procedures for ranking efficient units and identifying outliers.
Ann Op Res 250:21–35

Ballestar MT, Díaz-Chao Á, Sainz J, Torrent-Sellens J (2020)
Knowledge, robots and productivity in SMEs: Explaining the
second digital wave. J Bus Res 108:119–131. https://doi.org/10.
1016/j.jbusres.2019.11.017

Bekthiar K, Bittschi B, Sellner R (2021) Robots at work? Pitfalls of
industry level data. EconPol Work Pap 58. https://www.ifo.de/en/
publications/2021/working-paper/robots-work-pitfalls-industry-
level-data

Benedek J, Kocziszky G (2015) Paths of Convergence and Polariza-
tion in the Visegrád Countries. In: Lang T, Henn S, Sgibnev W,
Ehrlich K (eds) Understanding Geographies of Polarization and
Peripheralization. New Geographies of Europe. Palgrave Mac-
millan, London, https://doi.org/10.1057/9781137415080_12

Bessen JE (2017) Automation and Jobs: When Technology Boost
Employment. Boston University Law and Economics Research
Paper 17–09. https://scholarship.law.bu.edu/cgi/viewcontent.cgi?
article=1809&context=faculty_scholarship

Bonfiglioli A, Rosario C, Fadinger H, Gina G (2020) Robot imports
and firm-level outcomes. CESifo Working Paper No. 8741.
https://www.econstor.eu/bitstream/10419/229559/1/cesifo1_w
p8741.pdf

Caves DW, Christensen LR, Diewert WE (1982) The economic theory
of index numbers and the measurement of inputs, output, and
productivity. Econometrica 50:1393–1414

Ceccobelli M, Gitto S, Mancuso P (2012) ICT capital and labour
productivity growth: A non-parametric analysis of 14 OECD-
countries. Telecommun Policy 36:282–292. https://doi.org/10.
1016/j.telpol.2011.12.012

Cette G, Devillard A, Spiezia V (2021a) The contribution of robots to
productivity growth in 30 OECD countries over 1975-2019. Econ
Lett 200:109762. https://doi.org/10.1016/j.econlet.2021.109762

Cette G, Devillard A, Spiezia V (2021b) Growth factors in devel-
oped countries: A 1960-2019 growth accounting decomposi-
tion. Comp Econ Stud. https://doi.org/10.1057/s41294-021-
00170-3

Cheng H, Jia R, Li D, Li H (2019) The rise of robots in China. J Econ
Perspect 33:71–88. https://doi.org/10.1257/jep.33.2.71

Cséfalvay Z (2020) Robotization in Central and Eastern Europe:
Catching up or dependence. Eur Plan Stud 28:1534–1553. https://
doi.org/10.1080/09654313.2019.1694647

Dachs B, Fu X, Jäger A (2022) The diffusion of industrial robots. In:
Kurz HD, Schütz M, Strohmaier R, Zilian SS (Eds.) The Rou-
tledge Handbook of Smart Technologies (Chapter 15). Taylor &
Francis Group, Routledge

Dauth W, Findeisen S, Südekum J, Wößner N (2017) German robots
—The impact of industrial robots on workers. CEPR discussion
paper 12306. https://papers.ssrn.com/sol3/papers.cfm?abstract_
id=3039031

DeCanio SJ (2016) Robots and humans—complements or substitutes?
J Macroecon 49:280–291. https://doi.org/10.1016/j.jmacro.2016.
08.003

Dixon J, Hong B, Wu L (2020) The robot revolution: Managerial and
employment consequences for firms. NYU Stern School of
Busines. https://doi.org/10.2139/ssrn.3422581

EC (European Commission), Directorate-General for the Information
Society and Media, Zanker C, Moll C, Jäger A, et al. (2015).
Analysis of the impact of robotic systems on employment in the
European Union. Publications Office. https://data.europa.eu/doi/
10.2759/516348

Färe R, Grosskopf B, Norris M, Zhang Z (1994) Productivity growth,
technical progress, and efficiency change in industrialized coun-
tries. Am Econ Rev 84:66–83

Farrell MJ (1957) The measurement of productive efficiency. J R Stat
Soc 120:253–290. https://doi.org/10.2307/2343100

Feenstra RC, Inklaar R, Timmer MP (2015) The next generation of the
Penn World Table. Am Econ Rev 105:3150–3182. https://doi.
org/10.1257/aer.20130954

Fu XM, Bao Q, Xie H, Fu X (2021) Diffusion of industrial robots and
inclusive growth: Labour market evidence form cross country
data. J Bus Res 122:670–684. https://doi.org/10.1016/j.jbusres.
2020.05.051

Gasteiger E, Prettner K (2022) Automation, stagnation, and the
implications of a robot tax. Macroecon Dynam 26:218–249.
https://doi.org/10.1017/S1365100520000139

Graetz G, Michaels G (2018) Robots at work. Rev Econ Stat
100:753–768. https://doi.org/10.1162/rest_a_00754

Hall P, York M (2001) On the calibration of Silverman’s test for
multimodality. Stat Sinica 11:515–536

Henderson DJ, Russell RR (2005) Human capital and convergence: A
production-frontier approach. Int Econ Rev 46:1167–1205.
https://doi.org/10.1111/j.1468-2354.2005.00364.x

Henderson DJ, Parameter CF, Russell RR (2008) Modes, weighted
modes and calibrated modes: evidence of clustering using mod-
ality tests. J Appl Econ 23:607–638. https://doi.org/10.1002/jae.
1023

Hulten CR (1992) Growth accounting when technical change is
embodied in capital. Am Econ Rev 85:964–980

International Federation of Robotics (2006) World Robotics 2006. IFR
Statistical Department, VDMA Services GmbH, Frankfurt am
Main, Germany

International Federation of Robotics (2005-2020). World Robotics:
Industrial Robots. Annual Reports, IFR Statistical Department.
http://www.worldrobotics.org

180 Journal of Productivity Analysis (2024) 61:157–181

https://doi.org/10.1257/pandp.20181020
https://doi.org/10.1257/pandp.20181020
https://doi.org/10.1257/aer.20160696
https://doi.org/10.1257/aer.20160696
https://doi.org/10.1016/j.econlet.2019.108757
https://doi.org/10.1016/j.econlet.2019.108757
https://doi.org/10.1007/s11123-012-0328-5
https://doi.org/10.1111/j.1468-0084.2008.00508.x
https://doi.org/10.1111/j.1468-0084.2008.00508.x
https://doi.org/10.1111/iere.12009
https://doi.org/10.1016/j.jbusres.2019.11.017
https://doi.org/10.1016/j.jbusres.2019.11.017
https://www.ifo.de/en/publications/2021/working-paper/robots-work-pitfalls-industry-level-data
https://www.ifo.de/en/publications/2021/working-paper/robots-work-pitfalls-industry-level-data
https://www.ifo.de/en/publications/2021/working-paper/robots-work-pitfalls-industry-level-data
https://doi.org/10.1057/9781137415080_12
https://scholarship.law.bu.edu/cgi/viewcontent.cgi?article=1809&context=faculty_scholarship
https://scholarship.law.bu.edu/cgi/viewcontent.cgi?article=1809&context=faculty_scholarship
https://www.econstor.eu/bitstream/10419/229559/1/cesifo1_wp8741.pdf
https://www.econstor.eu/bitstream/10419/229559/1/cesifo1_wp8741.pdf
https://doi.org/10.1016/j.telpol.2011.12.012
https://doi.org/10.1016/j.telpol.2011.12.012
https://doi.org/10.1016/j.econlet.2021.109762
https://doi.org/10.1057/s41294-021-00170-3
https://doi.org/10.1057/s41294-021-00170-3
https://doi.org/10.1257/jep.33.2.71
https://doi.org/10.1080/09654313.2019.1694647
https://doi.org/10.1080/09654313.2019.1694647
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3039031
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3039031
https://doi.org/10.1016/j.jmacro.2016.08.003
https://doi.org/10.1016/j.jmacro.2016.08.003
https://doi.org/10.2139/ssrn.3422581
https://data.europa.eu/doi/10.2759/516348
https://data.europa.eu/doi/10.2759/516348
https://doi.org/10.2307/2343100
https://doi.org/10.1257/aer.20130954
https://doi.org/10.1257/aer.20130954
https://doi.org/10.1016/j.jbusres.2020.05.051
https://doi.org/10.1016/j.jbusres.2020.05.051
https://doi.org/10.1017/S1365100520000139
https://doi.org/10.1162/rest_a_00754
https://doi.org/10.1111/j.1468-2354.2005.00364.x
https://doi.org/10.1002/jae.1023
https://doi.org/10.1002/jae.1023
http://www.worldrobotics.org


Johnson P, Papageorgiou C (2020) What remains of cross-country
convergence. J Econ Lit 58:129–175. https://doi.org/10.1257/jel.
20181207

Jung WJ, Lim DG (2020) Industrial robots, employment growth, and
labor cost: A simultaneous equation analysis. Technol Forecast Soc
Change 159:120202. https://doi.org/10.1016/j.techfore.2020.120202

Jungmittag A (2021) Robotisation of the manufacturing industries in
the EU: Convergence or divergence. J Technol Transf
46:1269–1290. https://doi.org/10.1007/s10961-020-09819-0

Jungmittag A, Pesole A (2019) The impacts of robots on labour pro-
ductivity. A panel data approach covering 9 industries and 12
countries. Seville: European Commission. JRC118044. https://ec.
europa.eu/jrc/sites/default/files/jrc118044.pdf

Koch M, Manuylov I, Smolka M (2021) Robots and firms. Econ J
131:2533–2584. https://doi.org/10.1093/ej/ueab009

Krenz A, Prettner K, Strulik H (2021) Robots, reshoring, and the lot of
low-skilled workers. Eur Econ Rev 136:103744. https://doi.org/
10.1016/j.euroecorev.2021.103744

Kromann L, Malchow-Møller N, Skaksen JR, Sørensen A (2020)
Automation and productivity – a cross-country. cross-industry
comparison. Ind Corp Change 29:265–287. https://doi.org/10.
1093/icc/dtz039

Kumar S, Russell RR (2002) Technological change, technological
catch-up, and capital deepening: Relative contributions to growth
and convergence. Am Econ Rev 92:527–548. https://doi.org/10.
1257/00028280260136381

Lankisch C, Prettner K, Prskawetz A (2019) How can robots affect
wage inequality. Econ Modelling 81:161–169. https://doi.org/10.
1016/j.econmod.2018.12.015

Leitner S, Stehrer R (2019) In need of higher productivity growth.
WIIW Working Paper 171. https://wiiw.ac.at/the-automatisation-
challenge-meets-the-demographic-challenge-inneed-of-higher-
productivity-growth-dlp-5158.pdf

Li Q (1996) Nonparametric testing of closeness between two unknown
distribution functions. Econom Rev 15:261–274. https://doi.org/
10.1080/07474939608800355

Los B, Timmer MP (2005) The ‘appropriate technology‘ explanation of
productivity growth differentials: An empirical approach. J Dev
Econ 77:517–531. https://doi.org/10.1016/j.jdeveco.2004.04.001

Mendez C (2020) Convergence clubs in labor productivity and its
proximate sources: Evidence from developed and developing
countries. Springer, Singapore

Meng Y, Parmeter CF, Zelenyuk V (2023) Is newer always better? A
reinvestigation of productivity dynamics using updated PWT
data. J Product Anal 59:1–13. https://doi.org/10.1007/s11123-
022-00649-w

Müller C, Kutzbach N (2020) World Robotics 2020 – Industrial
Robots. IFR Statistical Department, VDMA Services GmbH,
Frankfurt am Main, Germany

Niebel T (2018) ICT and economic growth – Comparing developing,
emerging and developed countries. World Dev 104:197–211.
https://doi.org/10.1016/j.worlddev.2017.11.024

Nordhaus WD (2015) Are we approaching an economic singularity?
Information technology and the future of economic growth.
National Bureau of Economic Research Working Paper 21547.
https://www.nber.org/papers/w21547

Olesen OB, Petersen NC (2015) Facet Analysis in Data Envelopment
Analysis. In: Zhu J (Ed.) Data Envelopment Analysis. Interna-
tional Series in Operations Research & Management Science, vol
221. Springer, Boston, MA., p 145–190. https://doi.org/10.1007/
978-1-4899-7553-9_6

Portela MCAS, Thanassoulis E (2006) Zero weights and non-zero
slacks: Different solutions to the same problem. Ann Op Res
145:129–147. https://doi.org/10.1007/s10479-006-0029-4

Prettner K (2019) A Note on the Implications of Automation for
Economic Growth and the Labor Share. Macroecon Dynam
23:1294–1301. https://doi.org/10.1017/S1365100517000098

Quah D (1993) Galton’s fallacy and tests of the convergence
hypothesis. Scand J Econ 95:427–443. https://doi.org/10.2307/
3440905

Quah D (1996) Convergence empirics across economies with (some)
capital mobility. J Econ Growth 1:95–124. https://doi.org/10.
1007/BF00163344

Quah D (1997) Empirics for growth and distribution: Stratification.
polarization. and convergence clubs. J Econ Growth 2:27–59.
https://doi.org/10.1023/A:1009781613339

Ram R (2021) International convergence in population happiness:
evidence from recent data. Appl Econ 53:3984–3991. https://doi.
org/10.1080/13504851.2017.1391992

Sachs JD, Kotlifkoff LJ (2012) Smart machines and long-term misery.
National Bureau of Economic Research Working Paper 18629.
https://www.nber.org/papers/w18629

Silverman BW (1981) Using kernel density estimates to investigate
multimodality. J R Stat Soc 43:97–99. https://doi.org/10.1111/j.
2517-6161.1981.tb01155.x

Silverman BW (1986) Density estimation for statistics and data ana-
lysis. Chapman and Hall, London (UK)

Solow RW (1956) A contribution to the theory of economic growth. Q
J Econ 70:65–94. https://doi.org/10.2307/1884513

Solow RW (1957) Technical change and aggregate production
function. Rev Econ Stat 39:312–320. https://doi.org/10.2307/
1926047

Soto DA (2020) Technology and the future of work in emerging
economies: What is different. OECD Social, Employment and
Migration Working Papers No. 236. https://doi.org/10.1787/
55354f8f-en

Steigum E (2011) Chapter 21 Robotics and Growth. In: de La
Grandville O (Ed.) Economic Growth and Development (Fron-
tiers of Economics and Globalization. Vol. 11). Emerald Group
Publishing Limited, Bingley, p 543–555. https://doi.org/10.1108/
S1574-8715(2011)0000011026

Timmer PM, Inklaar R, O’Mahony M, van Ark B (2010) Economic
growth in Europe: A comparative industry perspective. Cam-
bridge University Press, New York (US)

Walheer B (2021) Labor productivity and technology heterogeneity. J
Macroecon 68:103290. https://doi.org/10.1016/j.jmacro.2021.
103290

Zeira J (1998) Workers, Machines, and Economic Growth. Q J Econ
113:1091–1117

Zhu H, Zhang X (2021) The impact of robots on labor productivity
and employment: Evidence from the three largest economies.
https://doi.org/10.2139/ssrn.3969627

Journal of Productivity Analysis (2024) 61:157–181 181

https://doi.org/10.1257/jel.20181207
https://doi.org/10.1257/jel.20181207
https://doi.org/10.1016/j.techfore.2020.120202
https://doi.org/10.1007/s10961-020-09819-0
https://ec.europa.eu/jrc/sites/default/files/jrc118044.pdf
https://ec.europa.eu/jrc/sites/default/files/jrc118044.pdf
https://doi.org/10.1093/ej/ueab009
https://doi.org/10.1016/j.euroecorev.2021.103744
https://doi.org/10.1016/j.euroecorev.2021.103744
https://doi.org/10.1093/icc/dtz039
https://doi.org/10.1093/icc/dtz039
https://doi.org/10.1257/00028280260136381
https://doi.org/10.1257/00028280260136381
https://doi.org/10.1016/j.econmod.2018.12.015
https://doi.org/10.1016/j.econmod.2018.12.015
https://wiiw.ac.at/the-automatisation-challenge-meets-the-demographic-challenge-inneed-of-higher-productivity-growth-dlp-5158.pdf
https://wiiw.ac.at/the-automatisation-challenge-meets-the-demographic-challenge-inneed-of-higher-productivity-growth-dlp-5158.pdf
https://wiiw.ac.at/the-automatisation-challenge-meets-the-demographic-challenge-inneed-of-higher-productivity-growth-dlp-5158.pdf
https://doi.org/10.1080/07474939608800355
https://doi.org/10.1080/07474939608800355
https://doi.org/10.1016/j.jdeveco.2004.04.001
https://doi.org/10.1007/s11123-022-00649-w
https://doi.org/10.1007/s11123-022-00649-w
https://doi.org/10.1016/j.worlddev.2017.11.024
https://www.nber.org/papers/w21547
https://doi.org/10.1007/978-1-4899-7553-9_6
https://doi.org/10.1007/978-1-4899-7553-9_6
https://doi.org/10.1007/s10479-006-0029-4
https://doi.org/10.1017/S1365100517000098
https://doi.org/10.2307/3440905
https://doi.org/10.2307/3440905
https://doi.org/10.1007/BF00163344
https://doi.org/10.1007/BF00163344
https://doi.org/10.1023/A:1009781613339
https://doi.org/10.1080/13504851.2017.1391992
https://doi.org/10.1080/13504851.2017.1391992
https://www.nber.orghttps://www.nber.org/papers/w18629/papers/w18629
https://doi.org/10.1111/j.2517-6161.1981.tb01155.x
https://doi.org/10.1111/j.2517-6161.1981.tb01155.x
https://doi.org/10.2307/1884513
https://doi.org/10.2307/1926047
https://doi.org/10.2307/1926047
https://doi.org/10.1787/55354f8f-en
https://doi.org/10.1787/55354f8f-en
https://doi.org/10.1108/S1574-8715(2011)0000011026
https://doi.org/10.1108/S1574-8715(2011)0000011026
https://doi.org/10.1016/j.jmacro.2021.103290
https://doi.org/10.1016/j.jmacro.2021.103290
https://doi.org/10.2139/ssrn.3969627

	The contribution of industrial robots to labor productivity growth and economic convergence: a production frontier approach
	Abstract
	Introduction
	Data
	Sample selection
	Categorization of countries
	Non-robot capital, labor input and output variables
	Robot capital stock variables
	Descriptive statistics

	Technology frontiers and efficiency measurement (technological catch-up)
	Data envelopment analysis
	Efficiency and technological catch-up

	Quinquepartite decomposition of labor productivity�change
	Conceptual decomposition
	Empirical results

	Analysis of productivity distributions
	Sensitivity analyses for quinquepartite decomposition
	Alternative robot stock estimates
	Subperiods
	Potential outliers
	Summing�up

	Conclusion
	ACKNOWLEDGMENTS
	Compliance with ethical standards

	ACKNOWLEDGMENTS
	Appendix
	References




