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Abstract
This study presents a random coefficients stochastic frontier model that can accommodate the flexible translog functional
form without being computationally demanding and thus time consuming to estimate. This is achieved by restricting the
second-order frontier parameters to be common to all firms. For comparison, random coefficients stochastic frontier models
with Cobb–Douglas, semi-translog and translog specifications with all parameters being firm-specific are estimated. The
models are applied to an unbalanced panel of German dairy farms, and Bayesian techniques are used for the estimation. The
results suggest that the time needed for the sampler to complete in the proposed model reduces dramatically as opposed to a
translog model where all parameters are firm-specific. The elasticities exhibit some differences, depending on the choice of
functional form, whilst the efficiency scores are less affected. Bayes factors suggest that the proposed model fits the data
best.
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1 Introduction

Efficiency measurement using the classical stochastic
frontier model requires, among others, the choice of a
functional form. In this model, this decision does not con-
stitute a dilemma as the translog is a standard choice thanks
to its flexibility. However, choosing a functional form is a
more cumbersome task when technology heterogeneity is
assumed and a random coefficients stochastic frontier model
(Kalirajan and Obwona 1994) is used. This is because this
model allows for firm-specific parameters in order to form
individual frontiers, and the standard translog specification
requires the estimation of a large number of parameters,
which is computationally demanding and thus very time
consuming. This is due to the precision (inverse variance)
matrix of the distribution of the random parameters, whose
elements are a quadratic function of the number of inde-
pendent variables. Hence, related studies have relied on

more parsimonious functional forms such as the
Cobb–Douglas or the semi-translog (Tsionas (2002);
Emvalomatis (2012); Skevas (2023)).

The present study argues that it is not necessary to use
parsimonious functional forms when the random coeffi-
cients stochastic frontier model is employed. The reasoning
is the following: A typical practice when a translog speci-
fication is employed is to normalize the right-hand-side
variables by their means so that the first-order terms are
interpreted as elasticities. This diminishes the importance of
the second-order terms. Furthermore, the second-order
terms in a translog specification tend to be insignificant.
Therefore, this study specifies a translog functional form
with firm-specific first-order terms, whilst restricting the
second-order terms to be the same across firms. This
approach still results in firm-specific frontiers whilst using
the typical translog specification and not having to estimate
a large number of parameters, as the elements of the pre-
cision matrix of the distribution of the random parameters is
a quadratic function of (only) the number of first-order
terms. This approach serves as a remedy to the arbitrary
choices of parsimonious functional forms made by related
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studies when estimating a random coefficients stochastic
frontier model.

2 Modeling approach & estimation

Let i denote firms and t denote time. A random coefficients
stochastic frontier model that restricts some parameters to
be common to all firms is:

yit ¼ x0itβi þ z0itγ þ vit � uit ð1Þ
where yit is the value of the dependent variable, xit is a K × 1
vector that stores the values of K independent variables
associated with firm-specific coefficients, βi is a K × 1
vector of parameters, zit is an L × 1 vector that stores the
values of L independent variables associated with coeffi-
cients common to all firms, γ is an L × 1 vector of
parameters, vit is a two-sided error term, and uit is a one-
sided non-negative error term that captures inefficiency.

The one-sided non-negative inefficiency component uit is
assumed to follow a Half-Normal distribution, whilst the
two-sided error term vit and the random parameters βi are
assumed to follow a Normal distribution:

vit � N 0; 1=τð Þ; uit � Nþ 0; 1=ϕð Þ; βi � N β;Ω�1
� � ð2Þ

where τ and ϕ are precision parameters to be estimated, β is
a K × 1 vector of parameters that represents the mean of the
βis, and Ω is a K × K precision matrix for the distribution of
the βis. Regarding the functional form, the proposal of this
study is to use the typical translog, with the first-order terms
along with a constant term to be included in the xit vector,
and all the remaining second-order terms to be included in
the zit vector.

The model is estimated using Bayesian techniques. The
data likelihood, denoted as p yitf g; βif g; uitf gj xitf g; zitf g;ð
β; γ;Ω;ϕ; τÞ, is the product of two Normal distributions for
the error term vit and for the random parameters βi, and one
Half-Normal distribution for the inefficiency component uit.
The priors, denoted as p β

� �
; p γð Þ; p Ωð Þ; p ϕð Þ and p(τ),

consist of Multivariate Normal distributions for β and γ with
0 prior means and identity prior precision matrices multi-
plied by 0.001, a Wishart distribution for the precision
matrix Ω with the degrees of freedom parameter being equal
to 45 and the prior scale matrix being an identity matrix, and
Gamma distributions for τ and ϕ with the shape and rate
parameters being equal to 0.001 for τ, and 7 and 0.5 for ϕ,
respectively. The model’s posterior, denoted as
π β; γ; Ω;ϕ; τ; βif g; uitf g yitf g; xitf g; zitf gj� �

, is propotional
to the product of the data likelihood and the parameters’
prior distributions.

This study also estimates the typical random coefficients
stochastic frontier model that restricts z0itγ ¼ 0 in Eq. (1).

This model is represented as:

yit ¼ x0itβi þ vit � uit ð3Þ
In the empirical application, this model is estimated using

a Cobb–Douglas, a semi-translog, and a fully translog spe-
cification. The parameterization of priors is the same in all
models. Regarding Ω, the imposed Wishart distribution
integrates to unity only if the degrees of freedom parameter
is greater or equal to the number of independent variables
associated with firm-specific coefficients. Hence, in the fully
translog specification of Eq. (3) this parameter is set equal to
the total number of independent variables from the appli-
cation that follows (i.e., 45). However, setting the degrees of
freedom parameter equal to the total number of independent
variables in the remaining models would result in a lower
value, as they contain fewer firm-specific coefficients, which
would in turn result in less diffuse priors since the variance
of the elements of Ω is multiplied by the degrees of freedom
parameter. Therefore, in all models the degrees of freedom
parameter is set equal to 45 so that prior diffusion is similar
across all models. Bayes factors are used to compare the
models, with the marginal density of the data being obtained
using the Chib and Jeliazkov (2001) approximation.

3 Dataset & specification

The models are applied to an unbalanced panel of German
dairy farms that specialize in milk production and are
observed between 1999 and 2009. The dataset consists of
1691 farms and 13,384 observations. Two outputs are dis-
tinguished: cow’s milk and milk products (y1), and other
products (y2). Six inputs are specified: capital (K), labor (L),
land (A), intermediate inputs (I), animals (S), and purchased
feed (F). Table 1 presents summary statistics of the speci-
fied variables.

An output distance function is used. Using the linear
homogeneity property, choosing y1 as the normalizing
output, taking logs, and making rearrangements yields the

Table 1 Summary statistics of specified variables

Variable (Units) Mean Standard Deviation

y1 (1000€) 144.470 213.840

y2 (1000€) 26.200 30.440

K (1000€) 195.830 249.130

L (1000 hours) 3.970 6.000

A (hectares) 77.410 132.290

I (1000€) 60.250 98.550

S (livestock units) 108.170 130.410

F (1000€) 27.630 55.760

44 Journal of Productivity Analysis (2024) 61:43–46



following estimable form of the translog distance function:

� log y1;it ¼ β0;i þ
Pm
m¼1

βm;i log xm;it þ βp;i log
y2;it
y1;it

� �
þ βt;it

þ 1
2

PM
m¼1

PR
r
γmr log xm;it log xr;it þ 1

2 γp log y2;it
y1;it

� �

þ 1
2 γmp

PM
m¼1

log xm;it log
y2;it
y1;it

� �
þ γtt

2 þ PM
m¼1

γmtlogxm;it t

þ γpt log
y2;it
y1;it

� �
t þ vit þ uit

ð4Þ

Only the first-order terms and the constant term have
firm-specific coefficients, whilst the parameters of all
second-order terms are constant across firms. This model is
called “Translog 2”. Setting all γ parameters equal to zero
yields the “Cobb–Douglas” model, whilst keeping all γ
parameters and assigning them an “i” subscript gives the
“Translog 1” model. Finally, setting γmr, γp, γmp, and γt equal
to zero, and assigning γmt and γpt an “i” subscript yields the
“Semi-Translog” model. Before estimation, the data are
normalized by their geometric means, so that the first-order
terms are interpreted as distance elasticities.

4 Results

The results are based on 60,000 draws from the posterior.
Table 2 presents the time elapsed for the completion of the
markov chain monte carlo (MCMC) sampler in each model.
The MCMC sampler in the “Translog 1” model took

46 hours to complete. However, in the “Translog 2” model
that this study proposes the MCMC sampler took only
3 hours to complete. This result highlights that, with the
same flexible translog functional form, specifying fewer
random parameters reduces the time needed for the sampler
to complete dramatically, thus freeing the researcher from
having to deviate from the typical translog functional form.

Table 3 presents the parameter estimates of only the first-
order terms from all models. The full set of results is presented
in Table A1 in the Appendix along with monte carlo standard
errors. The distance elasticity of output suggests that a 1%
increase in other output leads to a 0.084, 0.090, 0.118, and
0.115% increase in the distance function in the “Cobb–
Douglas”, “Semi-Translog”, “Translog 1”, and “Translog 2”
models, respectively. Obviously, the choice of the functional
form matters, as the output distance elasticity is deflated when
parsimonious functional forms are used. Small differences in
the distance elasticities of inputs are also observed.

Figure 1 presents boxplots of the efficiency scores for all
four estimated models. In all models average efficiency is
around 91–92%. Focusing on the two translog specifica-
tions, the reported similarities in the estimated efficiency

Table 2 Time elapsed for the completion of the MCMC sampler in
each model

Model Time elapsed
(hours)

Cobb–Douglas 3.000

Semi-Translog 5.353

Translog 1 46.051

Translog 2 3.000

Table 3 Parameter estimates of first-order terms from all models

Variable Cobb–Douglas Semi-Translog Translog 1 Translog 2

constant −0.112 −0.100 −0.104 −0.115

log(y2/y1) 0.084 0.090 0.118 0.115

logK −0.010 −0.012 −0.014 −0.008

logL −0.055 −0.058 −0.060 −0.055

logA −0.119 −0.123 −0.108 −0.117

logI −0.104 −0.091 −0.092 −0.109

logS −0.499 −0.524 −0.527 −0.483

logF −0.178 −0.171 −0.200 −0.196

t −0.023 −0.028 −0.028 −0.021

τ 1572.500 2575.750 4638.070 1016.060

ϕ 48.398 72.810 100.716 55.091

Bold values are associated with credible intervals that do not contain zero

Fig. 1 Boxplots of efficiency
scores across the four models
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scores can be perceived as a good sign, because they
highlight that the move to a more parsimonious random
coefficients translog specification does not change the effi-
ciency scores. Finally, Table 4 presents the marginal log-
likelihoods, the prior and the posterior model probabilities
of the four models. The model proposed in this study (e.g.,
“Translog 2”) is clearly favored by the data against the
remaining models.

5 Conclusions

Although the typical practice in random coefficients sto-
chastic frontier models is to specify parsimonious functional
forms so that estimation becomes less computationally
intensive and thus less time consuming, the present study
argues that researchers should not abandon the use of the
typical translog functional form. This can be possible by
specifying a translog random coefficients stochastic frontier
model with fewer firm-specific parameters. Such a model,
with firm-specific first-order terms and common to all firms
second-order terms is presented and estimated in this study.
For comparison, Cobb–Douglas, semi-translog and translog
random coefficients stochastic frontier models with all
parameters being firm-specific are also estimated.

The results show that the proposed translog model is
significantly less time consuming than the translog model in
which all parameters are firm-specific. The reported elasti-
cities exhibit some differences, whilst the efficiency scores
are similar across the four models. Finally, formal model
comparisons suggest that the proposed translog model
outperforms all the remaining models. The fact that the
efficiency scores do not differ between the translog models
is a desirable outcome, as it shows that the choice of a more
parsimonious translog model does not affect the efficiency
estimates. Furthermore, the proposed method can be more
useful in applications where multiple inputs are used to
produce multiple outputs, as is the case in dairy farming.
However, in applications where a single output is produced

using few inputs, the translog model with all parameters
being firm-specific can be preferable. Finally, for future
productivity growth studies, specifying the proposed
translog distance function implies that the geometric mean
of Malmquist output indices results in a Tornqvist index
(see Coelli et al. 2005). Exchanging the time dimension
with the firm dimension can form the basis for comparing
productivity growth between firms.
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