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Abstract
The aim of this paper is to relate the condition for cost subadditivity to aggregative efficiency. In particular, we verify
that subadditivity of the cost function occurs when aggregate cost efficiency is not less than the cost efficiency of the
average production unit. This provides a simple way of examining the potential of merging two or more firms and of
making inference about the extent of industry concentration. It also provides a simple nonparametric test for
subadditivity of the cost function.
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1 Introduction

The notion of cost subadditivity, introduced by Baumol et al.
(1998), implies that the (minimum) cost of producing a
number of products jointly may not be greater than the sum of
(minimum) cost of producing separately mutually exclusive
subsets of them. In other words, the cost function is sub-
additive if it is not less expensive for two or more firms to
produce each a subset of a given bundle of products than it is
for a single firm to produce the whole array of products. When
each firm produces a single output or more generally, when we
have the case of mutually orthogonal firm output vectors, cost
subadditivity is a necessary and sufficient condition for scope
economies (Baumol et al. 1998, p. 71) while when all firms
produce some of the products and jointly with them, each one
produces a unique subset of the remaining products, cost
subadditivity implies economies of diversification (Grosskopf
et al. 1992), reflecting cost savings that may result from an
increase in the number of simultaneously produced products.

Färe (1986) developed a nonparametric test for cost
subadditivity using the relation between the dual and the
primal representations of the technology. In particular, he
showed that if the cost function is subadditive then effi-
ciency measured with respect to the “sum technology” is
not less than efficiency measured with respect to the
“combined technology”, where the former is defined by the
sum of the firm’s input requirement sets and the latter by the
input requirement set of the combined firm which is the sum
of the firms. The ratio of these two efficiency scores consist
Färe’s (1986) gain function, which is not less than one when
the cost function is subadditive.

The aim of this paper is to re-state Färe (1986) condition
for cost subadditivity in terms of aggregative efficiencies. In
particular, we show that if the cost function is subadditive
then aggregate cost efficiency is not less than the cost
efficiency of the average production unit.

On the other hand, Maindiratta (1991) considered a
non-parametric test, in the spirit of Afriat (1972), Hanoch
and Rothschild (1972), Diewert and Parkan (1983), Var-
ian (1984) and Banker and Maindiratta (1988), to examine
the consistency of observed production data with cost
minimization behavior under a subadditive cost function.
This test requires the solution of an integer programming
problem for each firm. Using our main result, namely that
if the cost function is subadditive then the aggregate cost
efficiency is not less than the cost efficiency of the aver-
age production unit, one can overcome the need for sol-
ving these integer programming problems as we provide
an equivalent condition to those stated in Maindiratta
(1991) that can directly be used to test whether a
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technology characterized by a subadditive cost function
rationalizes the observe data.

2 The main result

Let w 2 RJ
þ denote an input price vector, y 2 RI

þ an output
vector and x 2 RJ

þ an input vector, and consider a group of
k= 1,…,K firms that use the same technology, with which
they can produce either a single, some or even the whole set
of a number of products, and face the same input prices. The
cost function associated with w and y is subadditive if can
be written as:

XK

k¼1

C w; yk
� � � C w;

XK

k¼1

yk
 !

ð1Þ

where C(w, y)=minx {w′ x:x ∈ L(y)}, L(y)= {x:(x, y)∈ T} is
the input requirement set and T is the production possibility
set. The input requirement set is assumed to be closed and
non-empty for finite y, to satisfy strong (input and output)
disposability, input convexity, continuity, and 0I∉L(y) for
y ≥ 0J but 0I∈ L(0J).

1 Then, the cost function is continuous in
w and y, non-decreasing in y, and non-decreasing, positively
linearly homogenous and concave in w. From duality theory,
subadditivity of the cost function is equivalent to super-

additivity of the input requirement set, i.e., L
PK

k¼1 y
k

� � �
PK

k¼1 L yk
� �

(see e.g. Färe 1986). In addition, by using Li and

Ng (1995) results, one can show that L
PK

k¼1 y
k

� � ¼ KL yð Þ,
where y ¼ PK

k¼1 y
k

� �
=K.2

By dividing both sides of (1) by the sum (over firms) of
actual cost we get:

PK
k¼1 C w; yk

� �

w0 PK
k¼1 x

k
� � �

C w;
PK

k¼1 y
k

� �

w0 PK
k¼1 x

k
� � ð2Þ

which may also be re-written as follows:

XK

k¼1

sk
C w; yk
� �

w0xk

� �
�

C w;
PK

k¼1 y
k

� �

w0 PK
k¼1 x

k
� � ð3Þ

where sk ¼ w0xk=w0 PK
k¼1 x

k
� �

. The left-hand side of (3) is
the weighted average of firm’s cost efficiency scores C(w,
yk)/w′xk, which is referred to as the aggregate cost efficiency
(see Färe et al. 2004; Färe and Grosskopf 2004, pp. 118).3

The right-hand side of (3) may be viewed as the cost

efficiency score of a firm using
PK

k¼1 x
k to produce

PK
k¼1 y

k, i.e., of the combined firm.4 Since L
PK

k¼1 y
k

� � ¼
KL yð Þ we can verify that C w;

PK
k¼1 y

k
� � ¼ KC w; yð Þ.5 In

addition, w0 PK
k¼1 x

k
� � ¼ K 0x, where x ¼ PK

k¼1 x
k

� �
=K.

Then, by substituting these into (3) we obtain:

XK

k¼1

sk
C w; yk
� �

w0xk

� �
� C w; yð Þ

w0x
ð4Þ

That is, if the cost function is subadditive then aggregate
cost efficiency is not less than the cost efficiency of the
average production unit, which “is constructed by taking the
arithmetic average of each amount of inputs and outputs”,
and it is regarded “as an arbitrary observation on the same
line as the other observations” in constructing the best
practice frontier (Førsund and Hjalmarsson 1979, p. 300).6

If one further assumes cost allocative efficiency or that
all firms (including the average production unit) are equally
cost allocative inefficient, (4) may be re-written in terms of
the Farrell input-oriented technical efficiency F(x, y) as

XK

k¼1

skF xk; yk
� � � F x; yð Þ ð5Þ

where F x; yð Þ ¼ inf
λ

λ>0 : λx 2 L yð Þf g. Then it is clear that

the efficiency score with respect to the “sum technology” is
equal to the weighted average of efficiency scores with respect
to the conventional technology, i.e., the left-hand side of (5),
and the efficiency score with respect to the “combined

1 0I and 0J are I- and J-dimensional zero vectors, respectively.
2 By assuming that the production possibility set is identical and
convex across firms, Li and Ng (1995) showed that the production
possibility set of the combined firm is equal to K times that the each
individual firms. Then, one can verify that L

PK
k¼1 y

k
� � ¼ PK

k¼1 x
k :

�

PK
k¼1 x

k ;
PK

k¼1 y
k

� � 2 KTg ¼ PK
k¼1 x

k :
� PK

k¼1
xk

K ;

PK

k¼1
yk

K

� �
2 Tg=

K
PK

k¼1
xk

K :

PK

k¼1
xk

K ;

PK

k¼1
yk

K

� �
2 T

	 

¼ K x : x; yð Þ 2 Tf g ¼ KL yð Þ,

where x ¼ PK
k¼1 x

k
� �

=K.

3 Since the aggregation weights are given in terms of the cost shares,
i.e., the variable in the denominator of the cost efficiency measure, the
underlying aggregation rule for the left-hand side of (3) is referred as
the denominator rule by Färe and Karagiannis (2017).
4 This is usually referred to as structural efficiency, see e.g. Li and
Cheng (2007) and Karagiannis (2015), while it is referred to as group
potential efficiency by Nesterenko and Zelenyuk (2007).
5 The proof of this is: C w;

PK
k¼1 y

k
� � ¼

minPK

k¼1
xk

w0 PK
k¼1 x

k
� �

:
PK

k¼1 x
k 2 KL yð Þ� � ¼ minPK

k¼1
xk

w0 PK
k¼1 x

k
� �

:
�

PK

k¼1
xk

K 2 L yð Þg ¼ K minPK

k¼1
xk

� �
=K

w0
PK

k¼1
xk

K

� �
:

PK

k¼1
xk

K 2 L yð Þ
	 


¼

K min
x

w0x : x 2 L yð Þf g ¼ KC w; yð Þ.
6 Bob Chambers mentioned to us that the above manipulations are
closely reminiscent of manipulations well-known from the analysis of
subjectively discounted martingales and form the asset-pricing impli-
cations of the fundamental theorem of arbitrage.
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technology” is equal to the efficiency score of the average
production unit with respect to the conventional technology,
i.e., the right-hand side of (5). Consequently, Färe’s (1986)
gain function may be given equivalently as:

G ¼
PK

k¼1 s
kF xk; yk
� �

F x; yð Þ ð6Þ

which given (5) is not less than one if the cost function is
subadditive.

A similar relation to (1) in terms of the revenue function,
i.e.,

XK

k¼1

R p; xk
� � � R p;

XK

k¼1

xk
 !

ð7Þ

is given in Nesterenko and Zelenyuk (2007), where R p; xð Þ ¼
max
y

p0y : y 2 P xð Þf g is continuous in p and x, non-decreasing
in x, and non-decreasing, positively linearly homogenous and
convex in p, and P(x)= {y:(x, y)∈T} is the producible out set
that is assumed to be closed and non-empty for finite x, to
satisfy strong (input and output) disposability, input convexity,
continuity, and 0J∈P(x) (inactivity) and y∉P(0I) for y ≥ 0J (no
free lunch). Nesterenko and Zelenyuk (2007) claimed that (7)
follows directly from their Lemma 2, i.e.,

P
P xk
� � �

P
P

xk
� �

, without any reference to the property of additivity.
At first glance, one may get the impression that their Lemma 2
and consequently, (7) holds under quite general conditions,
namely the axioms stated on their p. 108: no free lunch,
producing nothing is possible, boundness of the producible
output set, closeness of the production possibility set and free
disposability of outputs. However, this is not true: at the
middle of their proof of Lemma 2 (p. 116) they noticed:
“Furthermore,

PK
k¼1 x0;k; y0;k
� � 2PK

k¼1 T
k , PK

k¼1 x
0;k;

�
PK

k¼1 y
0;kÞ 2PK

k¼1 T
k , X0; Y0ð Þ 2 Tg, where X0 ¼PK

k¼1 x
0;k”. This is but the definition of the property of

superadditivity of the production possibility set: since
x0;k; y0;k
� � 2 Tk and

PK
k¼1 T

k ¼ Tg then x0;k; y0;k
� � 2 Tg

for all k= 1,…,K and superadditivity of the Tg implies thatPK
k¼1 x

0;k;
PK

k¼1 y
0;k

� � 2 Tg (see Färe and Primont 1995, p.
32).7 Thus, even not mentioned by the authors their proof rests
on the assumption that the production possibility set is
superadditive. Moreover, one can verify that superadditivity of
the production possibility set, i.e.,

P
T xk; yk
� � � T

P
xk;

�
P

ykÞ, is equivalent to either superadditivity of the input
requirement set, i.e.,

P
L yk
� � � L

P
yk

� �
or superadditivity of

the producible output set, i.e.,
P

P xk
� � � P

P
xk

� �
. If in

addition one assumes that the production possibility set is
convex, duality implies that the superadditivity of the input
requirement set is equivalent to the subadditivity of the cost

function, i.e., (1), and the supperadditivity of the producible
output set is equivalent to the superadditivity of the revenue
function, i.e., (7).8 Then, from (7) and following the same
steps as above we can extent our previous results to the case of
a revenue function, namely

XK

k¼1

mk R p; xk
� �

p0yk

� �
� R p; xð Þ

p0y
ð8Þ

where mk ¼ p0yk=p0
PK

k¼1 y
k

� �
and R(p, xk)/p′yk refers to

firms’ revenue efficiency scores. That is, if the revenue
function is superadditive then aggregate revenue efficiency
is not more than the revenue efficiency of the average
production unit. If as before we further assume output
allocative efficiency or that all firms (including the average
production unit) are equally output allocative inefficient, we
may re-write (8) in terms of the output-oriented technical
efficiency index E(xk, yk) as

XK

k¼1

mkE xk; yk
� � � E x; yð Þ ð9Þ

where E(x, y)=maxθ {θ:θy∈ P(x)}.
Lastly notice that as (1) is used as a condition for scope

or diversification economies, (7) may be used as a condition
for what we may referred to as synergy or coordination
economies reflecting the combined or cooperative action of
two or more firms that together increase each other’s
effectiveness and results in a higher outcome (i.e., revenue)
compared to the sum of their individual achievements. This
may be due to orderly arrangements of firms that create the
necessary conditions of working together smoothly, easily
and in a pleasing way.

7 T g is referred to as group potential technology in Nesterenko and
Zelenyuk (2007) and as “combined technology” in our terminology.

8 It should be clear that not all technologies are superadditive. As
superadditivity means that the technology includes original and
aggregated firms, it is satisfied by what Grosskopf (1986, p. 506)
referred to as the Koopmans technology, which “ … includes the sum
of the observed points (and the convex combination thereof)”. (Being
a technology with non-increasing returns to scale, Koopmans tech-
nology also includes all radial contractions of the observed points and
their convex combinations). Two other technologies satisfy the prop-
erty of superadditivity when the production possibility set is convex,
namely the one exhibiting global constant returns to scale (Bogetoft
and Wang 2005) and the semi-additive (Ghiyashi and Cook 2021),
which is essentially a Koopmans type of technology without its
decreasing-returns-to-scale portion. For non-convex technologies, the
property of supperadditivity is satisfied for the free replicability hull
(Tulkens 1993) and the free coordination hull (Green and Cook 2004).
On the other hand, technologies exhibiting ordinary non-increasing
returns to scale or variable return to scale do not satisfy
superadditivity.
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3 Implications

In this section, we discuss three implications of the above
result. First, the gain function in (6) provides a simple way
to examine the potential of merging two or more firms
producing different outputs by comparing whether the
weighted average of their efficiencies is greater or less that
the efficiency of their average production unit, i.e., the unit
that uses the average of their inputs and produces the
average of their outputs.9 This result applies to the cases of
both orthogonal and non-orthogonal output vectors and
thus, it can be used to test either for economies of score or
for economies of diversification. In addition, we may use
(6) to identify which sub-group of firms provides the largest
efficiency gains of a merger: that will be the one with the
largest deviation between aggregate efficiency and the
efficiency of the resulting average production unit.

On the other hand, (6) can also be related to Evans and
Heckman (1984) test of conditions for natural monopoly by
means of cost subadditivity. In this case, the focus is on the
potential gains or losses associated with multi-firm versus
single-firm configurations. The latter has an advantage
under cost subadditivity and this can be examined by
comparing the aggregate efficiency under alternative sce-
narios, within the limits of the admissible region, of hypo-
thetical multi-firm configurations with that of the single-
firm configuration, under the assumption that the sum of
outputs of the former is equal to the output of the latter.

Second, Chakravarty (1992, 1998) has shown that Färe’s
(1986) gain function, when interpreted in terms of costs, can
be regarded as a concentration index. Based on this, one
may argue in terms of (6) that as concentration in an
industry increases the weighted average of firms’ efficiency
scores tends to the efficiency of the average production unit.
In other words, in more (less) concentrated industries
aggregate efficiency tends to deviate less (more) from the
efficiency of the average production unit. As this difference
decreases, the industry is expected to be closer to the
monopoly end of the monopoly to competition spectrum,
and vice versa. Hence, in less (more) concentrated indus-
tries where performance heterogeneity is more pronounced,
the performance of the average production unit reflects less
(more) accurately aggregate performance.

All in all, economies of scope or economies diversifi-
cation tend to reduce the deviations of aggregate efficiency
from the efficiency of the average production unit and to
increase concentration in the industry through mergers. The
choice of the sub-group with the greatest impact in terms of

efficiency gains is related to the extent of these differences
and this provides policy makers and regulators with a
practical decision-making tool.

Third, the gain function in (6) may also serve another
purpose as it can be added to the conditions stated in
Maindiratta (1991) to provide a set of four equivalent
conditions for the observed production data to be consistent
with cost minimization under a subadditive cost function.
In other words, (6) may be considered as a nonparametric
test for optimizing behavior with a superadditive technol-
ogy. Their main advantage compared to those provided by
Maindiratta (1991) is that they require no additional esti-
mation effort except that of estimating with linear pro-
gramming techniques (i.e., data envelopment analysis) the
underlying technology and including the average produc-
tion unit in the data set. In computational terms, this should
to be compared to integer programming problems proposed
by Maindiratta (1991) for the same purpose.
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