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Abstract
In stochastic frontier analysis, the conventional estimation of unit inefficiency is based on the mean/mode of the inefficiency,
conditioned on the composite error. It is known that the conditional mean of inefficiency shrinks towards the mean rather
than towards the unit inefficiency. In this paper, we analytically prove that the conditional mode cannot accurately estimate
unit inefficiency, either. We propose regularized estimators of unit inefficiency that restrict the unit inefficiency estimators to
satisfy some a priori assumptions, and derive the closed form regularized conditional mode estimators for the three most
commonly used inefficiency densities. Extensive simulations show that, under common empirical situations, e.g., regarding
sample size and signal-to-noise ratio, the regularized estimators outperform the conventional (unregularized) estimators
when the inefficiency is greater than its mean/mode. Based on real data from the electricity distribution sector in Sweden, we
demonstrate that the conventional conditional estimators and our regularized conditional estimators provide substantially
different results for highly inefficient companies.
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1 Introduction

Since the publication of the papers by Aigner et al. (1977)
and Meeusen and van den Broeck (1977), stochastic frontier
analysis (SFA) has been a common approach to gain deeper
insights into the potential for productivity improvement

(Kumbhakar et al. 2020) and cost reduction in monopolized
markets (Bogetoft and Otto 2011). For unit inefficiency, the
standard estimation approach was developed by Jondrow
et al. (1982), acronymed “JLMS” in the SFA literature. The
JLMS estimator is based on the mean (and the mode) of the
inefficiency conditioned on the composite error (for later
studies of JLMS estimators, see Kumbhakar and Lovell
2000, and Battese and Coelli 1988).

Despite its widespread use, the JLMS estimator has been
criticized. Wang and Schmidt (2009) show that it shrinks
the inefficiency towards its mean, leading to a distribution
that is different from the distribution of the inefficiency. The
mean and mode are not fully representative characteristics
of the conditional distribution of the inefficiency, especially
if each unit is observed once. Thus, in cross-sectional
context, conditional estimator produces an inconsistent
estimator of the inefficiency. Moreover, a conditional esti-
mator is conditioned on an estimated composite error rather
than on the composite error itself (Horrace 2005 and
Kumbhakar et al. 2015). Therefore, the sampling distribu-
tion of the conditional estimator is different from the the-
oretically assumed conditional distribution of the
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inefficiency. Consequently, the inefficiencies are inaccu-
rately estimated, something regulatory agencies have stated
as an impediment for the practical use of SFA (Badunenko
et al. 2012; Stone 2002 and Tsionas 2017). This is also
illustrated in a simulation study by Andor et al. (2019),
where they show that both the SFA and Data envelopment
analysis (DEA) methods used by regulators underestimate
the true efficiency values. One way to reduce this problem is
to combine the SFA and the DEA (Andor et al. 2019 and
Tsionas 2021), but such combinatory approaches are not
able to eliminate the underestimation problem.

Our approach is similar to the combinatory approach in
that it can be viewed as a weighted average of unit ineffi-
ciency estimators, but in contrast, it is a weighted average of
the sample (industry), solely based on the SFA approach.
The proposed regularized estimators can be used as stand-
alone estimators along with any other estimators in a
combinatory approach. In addition, the regularized estima-
tors described here can be used in a variety of situations but
in this paper, we limit ourselves to studying unit ineffi-
ciency estimation in a cross-sectional context, using the
classical stochastic frontier model suggested by Aigner et al.
(1977).

We propose a regularized (constrained) estimator based
on Bayesian risk (expected loss) that restricts the ineffi-
ciencies to satisfy some underlying theoretical (and/or
intuitive) conditions. Restrictions on the moments are
common options for the imposed constraints upon the
likelihood functions (e.g., Hall and Presnell 1999). Our
regularized estimators are easily calculated, e.g., they can be
the JLMS (unregularized) estimators, with imposed con-
straints on the first and the second moments of the condi-
tional distribution of the inefficiency.

The proposed methodology is different from other recent
contributions in the field. For example, Kumbhakar et al.
(1991) suggest a single step procedure for the estimation of
unit inefficiency when they deploy firm-specific determi-
nants of the inefficiency in the maximum likelihood esti-
mation of the SFA model. They show that ignoring the
determinants would lead to biased and inconsistent esti-
mators. However, firm-specific determinants are often
unobserved, and even unknown. Another recent contribu-
tion is the use of non-parametric and semi-parametric esti-
mation methods, in which the JLMS estimator is used for
estimating unit inefficiency (Kumbhakar et al. 2007).
Another avenue of research is the use of quantile regression
into the estimation of the production function (Bernini et al.
2004; Wang et al. 2014 and Behr 2010). However, this
approach introduces a new challenge, specifically that one
needs to pay more attention to the selection of appropriate
quantiles which can be different for distinct densities of the
composite error (Jradi et al. 2019). In addition, no sound
and clear post-estimation method for estimating unit

inefficiency exists when using quantile regression (Kumb-
hakar et al. 2020).

Under mild assumptions, e.g., log-concavity of the dis-
tribution, which covers many of the distributions used in the
SFA literature, we analytically investigate some properties
of the conditional mode (maximum a posteriori probability
estimator) and give a general formula for the conditional
mode (and its functions) that can be used with any ineffi-
ciency density. Next, we derive a regularized conditional
mode estimator with the three most commonly used inef-
ficiency densities, i.e., the half-normal, truncated normal
and exponential distributions. The proposed unit ineffi-
ciency estimation is considered a restricted or penalized
estimation method that improves the estimation of unit
inefficiency based on the conditional mean/mode. There-
fore, the regularized estimators can be easily derived
wherever the JLMS (unregularized) estimators are used.
Therefore, the idea of our manuscript can be easily used in
any context where the unit inefficiency estimation is cal-
culated based on the optimization of an objective function,
by imposing some restrictions to improve the accuracy of
the unit inefficiency estimator.

An extensive simulation study is conducted, with varying
factors, such as the sample size, inefficiency density and
signal-to-noise ratio (relative variation of the inefficiency to
the variation of random shocks). The simulation results
show that the regularized estimators outperform the con-
ventional (unregularized) estimators when the inefficiencies
are greater than their mean/mode, especially with a larger
signal-to-noise ratio. As the unregularized conditional
mean/mode shrinks towards the mean/mode, the regularized
conditional mean/mode shrinks less towards the mean/
mode, especially for larger inefficiencies.

We apply both unregularized and regularized estimators
to data from the Swedish electricity distribution sector. The
results show that the estimated inefficiencies from the two
regularized and unregularized estimators are substantially
different, particularly for firms that are in the right tail of the
inefficiency distribution. Considering the results from the
simulations which are supported analytically (Theorem 3),
we recommend that regulators use the results from the
regularized estimators for the firms that are ranked highly
inefficient, based on their estimated inefficiency scores
using the conditional mean/mode.

The remainder of this paper is structured as follows. In
Section 2, we derive a general formula for the conditional
mode of the inefficiency and analytically investigate some
of its properties under mild distributional assumptions of
unconditional inefficiency. Next, the regularized estimator
is discussed and formally derived for both production and
cost functions. It is analytically shown that the regularized
conditional mode estimators serve to reduce the shrinkage
towards the mode. Regularized conditional mode estimators
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are presented under three different distributional assump-
tions. In Section 4, both regularized and unregularized
estimators are evaluated using extensive Monte Carlo
simulations. In Section 5, we present an application based
on real data. The data represent electricity distribution firms
in Sweden, and we estimate the cost inefficiency, which is
used by the Energy Markets Inspectorate as an input in their
revenue cap regulation. Section 6 concludes the paper and
discusses avenues for future research.

2 Theory

A stochastic frontier, cross-sectional, production model can
be formulated as

yi ¼ x0iβ þ vi � ui ð1Þ
where i indicates the unit, yi is the observed output, xi is the
given k × 1 vector of inputs, ui is the unobserved
inefficiency, vi is the unobserved noise and β is an unknown
k × 1 vector of functional parameters.

The conventions of a simple parametric cross-section
SFA assume i.i.d. random noise terms with a density
function gv(v) that is symmetric around zero and i.i.d.
nonnegative inefficiencies with a density function fu(u).
For example, the most common (semistandard) gv(v) is
assumed to be the density of a zero-mean normal dis-
tribution N 0; σ2v

� �
1, and the equivalent candidates for fu(u)

are assumed to be the densities of a half-normal dis-
tribution Nþ 0; σ2u

� �
, an exponential distribution Exp(σu)

with scale parameter σu, and a truncated normal distribu-
tion Nþ μ; σ2u

� �
with a general μ that can take any real

number.
The maximum likelihood estimation of an SFA model is

based on maximizing the likelihood of the i.i.d. composite
errors εi= vi − ui with the density function

hε εð Þ ¼
Z þ1

0
fu uð Þ gv uþ εð Þ du

where the composite error εi is εi= yi−x0iβ.
It has been argued (e.g., Greene 1990 and Ruggiero

1999), that the selection of different inefficiency density
functions should not result in noticeable differences
between the fit of the SFA models, or the ranks of the
estimated conditional unit inefficiencies. However, they
may differ in the magnitude of the estimated inefficiencies,
especially for highly inefficient units.

As mentioned in the Introduction, the most common way
of scoring the unit inefficiency is through the JLMS

estimators. For the ith unit, the inefficiency is estimated asbui ¼ E u εijð Þ or bui ¼ Mode u εijð Þ using the following con-
ditional density function of inefficiency u given a composite
error ε.

fu εj uð Þ ¼ fu uð Þ gv uþ εð Þ
hε εð Þ

However, as stated by Kumbhakar et al. (2020), the
conditional estimator of the inefficiency is an estimator of
a characteristic (mean or mode) of the conditional inef-
ficiency rather than of the inefficiency itself. Such a dis-
tinction between the two remains unchanged regardless of
the sample size. In fact, it depends on the size of the noise
variance rather than on the sample size. This fact is
proven by Wang and Schmidt (2009) for the conditional
mean when the inefficiency follows a half-normal dis-
tribution, and they argue that it also holds when the
inefficiencies are drawn from exponential and general
truncated normal distributions. However, such argument
has not been proven for the conditional mode, although
there is a general belief in the SFA literature that the
JLMS estimators, whether mean or mode, are shrinkage
estimators.

In Theorem 3, we provide a proof that, under mild dis-
tributional assumptions, the conditional mode of the inef-
ficiency analogously shrinks towards the mode of the
inefficiency. This means that the conditional mode esti-
mator underestimates large inefficiencies. It also over-
estimates the inefficiencies of almost fully efficient firms
when the inefficiency mode is a positive number (as it is the
case for a truncated normal distribution with location
parameter μ > 0).

The conditional mode estimator is the maximum a pos-
teriori probability estimator, which is the mode of the a
posteriori distribution, i.e., Mode u εijð Þ ¼
Argmaxu2Rþ fu εj uð Þ ¼ Argmaxu2Rþ fu uð Þgv uþ εð Þð Þ. In
Theorem 1, we give a general formula to calculate the
conditional mode of the inefficiency for any inefficiency
density function that fulfills the mild assumptions stated
below. We take smooth density functions fu(u) whose
supports are the real numbers in the range u 2 0; 1½ Þ. For
such densities, we define the “form” (kernel) of the density,
denoted as K(w), for w ∈ R, as follows,

f uð Þ ¼ cK uð Þ; if u � 0

0; if u < 0

�
where, c is a constant and possibly an expression containing
the parameters of the density function, but not a function of
the variable u itself. Note that the form of the density is in
fact the kernel of the density defined for both the support of
the density and its complement in the set of the real
numbers. First, we present the following corollary.

1 Other zero-mean symmetric distributions have been suggested, such
as Laplace (Horrace and Parmeter, 2018; Nguyen, 2010) and
t-distribution by Tancredi (2002) and Wheat et al. (2019).
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Corollary: Suppose the function K(w) > 0 is defined for
all w ∈ R, with the following properties:

1. K(w) is continuously differentiable for all w ∈ R, and
log-concave.

2. K 0 wð Þ
K wð Þ is bounded above, such that lim

w!þ1
K 0 wð Þ
K wð Þ <

Mj j< þ1.

3. K 0 wð Þ
K wð Þ is bounded below, such that lim

w!�1
K0 wð Þ
K wð Þ >

� mj j> �1.

For the convergence of the integral
Rþ1
�1e

�s w�K0 wð Þ
K wð Þ

h i
dw,

with l < s < r, we must have lim
w! ± 1

K0 wð Þ
K wð Þ
w

���� ����< 1.

We give the detailed proof in the Appendix. The results
of the following theory are based on the results of the
Corollary.

Theorem 1: Suppose the noise of the production function
in (1) is v � N 0; σ2v

� �
, and the inefficiency has the density

fu(u), for u ≥ 0. If fu(u) has the form K(w) which is con-
tinuously differentiable, with its first derivative K′(w), such
that limw! ± 1

K0 wð Þ
K wð Þ is bounded, then the inefficiency mode

conditioned on the composite error ε, denoted asbu ¼ Mode u εjð Þ, is unique. In addition, if

lim
~u! ± 1

K 0 ~uð Þ
K ~uð Þ
~u

�����
�����< 1

σ2v

then the conditional mode is bu ¼ Mode u εjð Þ ¼ max 0; ~uf g,
where

~u ¼ �ε�
Xþ1

k¼1

σ2v
� �k
k!

∂

∂ε

� �k�1

�K 0 �εð Þ
K �εð Þ

� �k

Proof:
Obviously, bu ¼ Mode u εjð Þ ¼ Argmaxu2Rþ fu uð Þgv uþ εð Þð Þ ¼

max 0; ~uf g, where ~u is defined as

~u ¼ Argmax
u2R

K uð Þgv uþ εð Þð Þ

By solving the above maximization problem, we have

K 0 euð Þ gv ~uþ εð Þ þ g0v ~uþ εð ÞK ~uð Þ ¼ K 0 ~uð Þ gv ~uþ εð Þ
� ~uþεð Þ

σ2v
gv ~uþ εð ÞK ~uð Þ ¼ 0

~u ¼ �εþ σ2v
K 0 ~uð Þ
K ~uð Þ ð2Þ

With fu(u) a log-concave density,
d ln fu ~uð Þ½ �

du ¼ f 0u ~uð Þ
fu ~uð Þ ¼ K 0 uð Þ

K uð Þ is
a decreasing function of u ≥ 0. Thus, there is a unique

solution of ~u in terms of bounded ε in (2), since σ2v
K 0 ~uð Þ
K ~uð Þ �eu ¼ ε also becomes a monotonically decreasing function of

~u � 0.

For the Lagrange reversion theorem (see Whittaker and
Watson (1927), pp. 132–133, and Grossman (2005)2) of Eq.
(2), we start with the bilateral Laplace transform of the
function ~u0 �εð Þ ¼ d~u

d �εð Þ ¼ � d~u
dε. Suppose for a complex

number s whose real part is in the interval k < Re(s) < r, the
bilateral Laplace transform exists, as follows.

L d~u
d �εð Þ

n o
sð Þ ¼ Rþ1

�1
e�s �εð Þ d~u

d �εð Þ d �εð Þ

¼ Rþ1

�1
e
�s ~u�σ2v

K0 ~uð Þ
K ~uð Þ

h i
d~u ¼ Rþ1

�1
e�s~u esσ

2
v
K0 ~uð Þ
K ~uð Þd~u

For the convergence of the above integral, we must have
the following condition (see Corollary above):

lim
~u! ±1

K0 ~uð Þ
K ~uð Þ
~u

�����
�����< 1

σ2v

Returning to the above integral, and using Taylor
expansion of sσ2v

K0ð~uÞ
Kð~uÞ , we have

L d~u
d �εð Þ

n o
sð Þ ¼ Rþ1

�1
e�s~u

Pþ1

k¼0

sk

k! σ2v
K 0 ~uð Þ
K ~uð Þ

	 
k
� �

d~u

¼ Pþ1

k¼0

Rþ1
�1e�s~u sk

k! σ2v
K0 ~uð Þ
K ~uð Þ

	 
k
d~u

� �
Applying the properties of bilateral Laplace transform

L f nð Þ� �
sð Þ ¼ snL ff g sð Þ� �

to the integral inside the sum-
mation, the summation is equal to

¼ Pþ1

k¼0

Rþ1

�1
1
k! e

�s~u dk

duk σ2v
K 0 ~uð Þ
K ~uð Þ

	 
k
d~u

� �
¼ Rþ1

�1
e�s~u

Pþ1

k¼0

1
k! :

dk

duk σ2v
K 0 ~uð Þ
K ~uð Þ

	 
k
� �

d~u

By changing the notation of the last integral and due to
the uniqueness of bilateral Laplace transform,

d~u

d �εð Þ ¼
Xþ1

k¼0

σ2v
� �k
k!

dk

d �εð Þk
K 0 �εð Þ
K �εð Þ

 �k

d~u

d �εð Þ ¼ 1þ
Xþ1

k¼1

σ2v
� �k
k!

dk

dεk
�K 0 �εð Þ

K �εð Þ
 �k

d~u

dε
¼ �1�

Xþ1

k¼1

σ2v
� �k
k!

dk

dεk
�K 0 �εð Þ

K �εð Þ
 �k

2 Contrast to Grossman (2005) in which the proof is based on uni-
lateral Laplace and the necessary condition that f 0u 0ð Þ ¼ 0, in our proof
such condition f 0u 0ð Þ ¼ 0 is not necessary since we use bilateral
Laplace transform.
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Solving the above differential equation gives us the
solution

~u ¼ �ε�
Xþ1

k¼1

σ2v
� �k
k!

dk�1

dεk�1
�K 0 �εð Þ

K �εð Þ
 �k

This completes the proof. ■
Note that the commonly used inefficiency densities of half

normal, exponential, general truncated normal and gamma
(with shape parameter ≥1) are log-concave distributions. When
the noise v and the inefficiency u are distributed as assumed in
Theorem 1, for each of the density and distribution functions

q 2 ~fbu uj ;
~Fbu uj ;

~fbu εj ;
~Fbu εj ;

~f
ujbu; ~Fu buj ; fu; Fu; ~fbu; ~Fbu� �

, and any

other differentiable function of bu � 0, we have,

q buð Þ ¼ q �εð Þ �
Xþ1

k¼1

σ2v
� �k
k!

∂

∂ε

� �k�1

� f 0u �εð Þ
fu �εð Þ

 �k

q0 �εð Þ
( )

When the ln fu uð Þð Þ½ �0¼ d ln fu uð Þ½ �
du is linear, as it is the case

for the half-normal, exponential and general truncated
normal densities, the conditional mode, in terms of the
mode of inefficiency m, is simplified as

bu ¼ Mode ujεð Þ ¼ �εþ σ2v ln fu mð Þð Þ½ �0�σ2vm ln fu mð Þð Þ½ �00
1� σ2v ln fu mð Þð Þ½ �00

where, [ln(fu(m))]′ and [ln(fu(m))]
′′ are the first and second

derivatives evaluated at the mode of the inefficiency (m). In
general, the conditional mode, theoretically and empirically,
is less covered in the SFA literature when JLMS estimators
are used, in favor of the conditional mean. To the best of
authors’ knowledge, the article by Papadopoulos (2021) is
an exception, in that the author elaborates on the conditional
model and proves its monotonicity in terms of the
composite error when the inefficiency follows a generalized
exponential distribution. Monotonicity of the conditional
mode in terms of the composite error is important in that
both (mean/mode) JLMS estimators must rank the unit
inefficiencies identically. If so, using the conditional mode,
the inefficiencies can be ranked based on their correspond-
ing composite errors, i.e., the coefficient of ranked
correlation between the conditional mode scores and the
composite errors becomes almost negative one. A similar
argument holds for conditional mean scores, as shown by
Bera and Sharma (1999) and Ondrich and Ruggiero (2001).
In Theorem 2, we show that under mild distributional
assumptions, the monotonicity of the conditional mode in
terms of the composite error is generalizable to any other
inefficiency distribution.

Theorem 2: Suppose v � N 0; σ2v
� �

. The inefficiency
density fu(u) is nonzero, twice differentiable and log-

concave at u ≥ 0. The conditional mode estimator of the
inefficiency conditioned on the composite error ε is a
monotonically decreasing function of the composite error.

Proof:
Since fu(u) is log-concave, we have d2 ln fu uð Þ½ �

duð Þ2 � 0 for all
u ≥ 0. As shown in Theorem 1, we can write Eq. (2) as
~u ¼ �εþ σ2v

d ln fu ~uð Þ½ �
deu . Then, by the chain rule of derivatives,

we have

∂~u

∂ε
¼ �1þ σ2v

d2 ln fu ~uð Þ½ �
d~uð Þ2

∂~u

∂ε
¼ �1

1� σ2v
d2 ln fu ~uð Þ½ �

d~uð Þ2
< 0

The above negative derivative would imply strict
monotonicity if negative scores (~u) were acceptable. Since
they are restricted to bu ¼ max 0; ~uf g, monotonicity is not
strict, in general. Thus, the proof is complete. ■

Wang and Schmidt (2009) show that the conditional
mean shrinks towards the mean of inefficiency rather than
towards inefficiency itself. This property is disadvantageous
to the unit inefficiencies that depart from the mean since it
underestimates highly inefficient firms and overestimates
the inefficiencies lower than the mean. It is also a dis-
advantage of the conditional mean for regulators to accu-
rately estimate the inefficiency in the lower and, especially,
in the upper tail of the inefficiency distribution. Although
being able to rank the units based on their inefficiencies is
of regulators’ interest, in some cases the magnitude of the
inefficiency is of crucial importance, for instance, EU
countries’ (in)efficiencies in their climate plans to cut
emissions of greenhouse gases.

In Theorem 3, we prove that the conditional mode has a
similar property, in that it is a shrinkage estimator towards
the mode of inefficiency rather than towards inefficiency
itself. With such property, although the conditional mode
would outperform the conditional mean in estimating the
lower tail of an inefficiency distribution with its mode in a
narrow positive neighborhood of zero, it is still a poor
estimator for highly inefficient firms, i.e., the right tail of the
distribution.

Theorem 3: Suppose v � N 0; σ2v
� �

and, the inefficiency
density fu(u) is nonzero, twice differentiable, log-concave
for u > 0 and with m ¼ Mode uð Þ ¼ Argmaxu2Rþ fu uð Þ. Let
the conditional mode estimator of the inefficiency bebu ¼ Mode u εjð Þ. Then,

a) as σ2v ! 0, bu !p u,
b) as σ2v ! 0, bu !d u,
c) as σ2v ! 0, bu�u

σv
!d N 0; 1ð Þ,

d) as σ2v ! 1, bu !p m ¼ Mode uð Þ.
e) as σ2v ! 1, σ2v ln fu mð Þð Þ½ �0þ σ2v ln fu mð Þð Þ½ �00�1

� �
bu� mð Þ !d εþ mð Þ.
Proof:
By assumption, fu(u) is differentiable and nonzero, for

u > 0. Then, d ln fu uð Þ½ �
du is bounded (differentiable functions
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have their derivatives bounded). Then, we can write
~u ¼ Argmax

u2Rþ
fu uð Þ � gv uþ εð Þð Þ,

f 0u ~uð Þ gv ~uþ εð Þ þ fu ~uð Þ g0v ~uþ εð Þ ¼ 0

1
σ2v

¼ 1
~uþ ε

d ln fu ~uð Þ½ �
deu

In addition, as σ2v ! 0, the normal density tends to
Dirac’s delta function,3 with its mass concentrated around
the mean, i.e., gv vð Þ !d δ E vð Þð Þ. Then, v !p E vð Þ ¼ 0.
(Note that it might be that ~u< 0, then the conditional mode
is bu ¼ max 0; ~uf g).

a) As σ2v ! 0, v !p E vð Þ ¼ 0 (Dirac’s delta function).
Then ε !p �u (since ε= v − u), or equivalently �ε !p u.

Additionally, as σ2v ! 0, 1euþε

d ln fu ~uð Þ½ �
deu ! 1 (due to the fact

that 1
σ2v
¼ 1euþε

d ln fu ~uð Þ½ �
deu ). Since dln fu uð Þ½ �

du is bounded, then, for a

bounded composite error, it must be that ~u ! �ε. It means
~u !p u. Then, bu ¼ max 0; ~uf g !p max 0; uf g ¼ u.

b) Although the convergence in probability, as shown in
point (a), automatically implies the convergence in dis-
tribution, another direct proof, independent from the result
of point (a) above, can be as follows.

ε ¼ σ2v
f 0u ~uð Þ
fu ~uð Þ � ~u

Then,

dε
d~u

���� ���� ¼ σ2v
d2 ln fu ~uð Þ½ �

d~uð Þ2 � 1

�����
�����

~f~u ~uð Þ ¼ hε σ2v
f 0u ~uð Þ
fu ~uð Þ � ~u

	 

dε
d~u

�� �� ¼ σ2v
d2 ln fu ~uð Þ½ �

d~uð Þ2 � 1
��� ���

� Rþ1

0
fu uð Þ gv uþ σ2v

f 0u ~uð Þ
fu ~uð Þ � ~u

	 

du

As σ2v ! 0,

~f~u ~uð Þ !d lim
σ2v

hε σ2v
f 0uð~uÞ
fu ~uð Þ � ~u

	 

dε
d~u

�� ��
¼ lim

σ2v
σ2v

d2 ln fu ~uð Þ½ �
d~uð Þ2 � 1

��� ��� Rþ1

0
fu uð Þ gv uþ σ2v

f 0uð~uÞ
fu ~uð Þ � ~u

	 

du

¼
Z þ1

0
fu uð Þ δ u� ~uð Þdu ¼ fu ~uð Þ

As σ2v ! 0, Pr ~u< 0ð Þ ! 0, and ~fbu uð Þ ¼ ~f~u uð Þ
1�Pr ~u<0ð Þ !

~f~u uð Þ, meaning that ~fbu uð Þ ! fu uð Þ, for u � 0.

c) Since v � N 0; σ2v
� �

, then � v
σv
� N 0; 1ð Þ. It means

� v

σv
¼ � uþ ε

σv
¼

~u� u� σ2v
f 0u ~uð Þ
fu ~uð Þ

σv
� N 0; 1ð Þ

As σ2v ! 0,
~u�u�σ2v

f 0uð~uÞ
fuð~uÞ

σv
!p

~u�u
σv
, then ~u�u

σv
!d N 0; 1ð Þ.

From point b, as σ2v ! 0, Pr ~u< 0ð Þ ! 0, and we havebu ¼ max 0; ~uf g, i.e., as σ2v ! 0, bu !p ~u. Then, bu�u
σv

!p
~u�u
σv
,

meaning that bu�u
σv

!d N 0; 1ð Þ.
d) Since we have 1

σ2v
¼ 1

~uþε
d ln fu ~uð Þ½ �

d~u , for a bounded value of
ε, as σ2v ! 1, it implies two possibilities. First, if
d ln fuð~uÞ½ �

d~u ! 0, then ~u ! Mode uð Þ since fu(u) is unimodal
(log-concave). Whether the Mode(u) is zero or a positive
number, we have bu ¼ max 0; ~uf g ! Mode uð Þ. Second, if
d ln fuð~uÞ½ �

deu =! 0, then we must have d ln fu ~uð Þ½ �
deu < 0 and the density

must be a monotonically decreasing function of u ≥ 0, since

for ~u ! þ1, d ln fuð~uÞ½ �
d~u 6 >0. Thus, it must be that ~u ! �1

(with a bounded ε), which is restricted tobu ¼ max 0; ~uf g ¼ 0. In such case, bu ¼ max 0; ~uf g ¼ 0 is
again the mode of u since fu(u) (that cannot have
d ln fu uð Þ½ �

du ¼ 0, for any u > 0, according to the second possi-
bility) must be strictly monotonically decreasing with its
Mode(u)= 0.

e) As σ2v ! 1, we can use the fact in point d and the
mean value theorem around the mode m to write

lim
σ2v!1

lnðfuð~uÞÞ½ �0� ln fu mð Þð Þ½ �0eu�m
¼ ln fu mð Þð Þ½ �00, since

lim
σ2v!1

~u� mð Þ ¼ 0. Therefore, using this fact and the Eq. (2),

~u ¼ �ε þ σ2v
d ln fuð~uÞ½ �

d~u , we have

lim
σ2v!1

~u ¼ lim
σ2v!1

�εþσ2v ln fu mð Þð Þ½ �0�σ2v m ln fu mð Þð Þ½ �00
1�σ2v ln fu mð Þð Þ½ �00 . This means, as

σ2v ! 1,

σ2v ln fu mð Þð Þ½ �0þ σ2v ln fu mð Þð Þ½ �00�1
� � bu� mð Þ !d εþ mð Þ. ■

Note that in point e of Theorem 3, for half normal and
general truncated normal densities, the first derivate of the
log density evaluated at the mode is ln fu mð Þð Þ½ �0¼ 0, while
for the exponential density, only the second derivate at the
mode is ln fu mð Þð Þ½ �00¼ 0.

A question that might arise is, does a larger sample
prevent the shrinkage of the JLMS estimators? In cross-
sectional context, the simple answer to this question is ‘no’
in the literature, for several reasons. First, since the ineffi-
ciencies are unobservable, the conditional estimators cannot
be improved by learning from more data (in contrast to
regression models). Second, the productivity of each unit is
observed only once, therefore, due to the assumption of
independence between the units, conditional estimator of
each unit inefficiency is conditioned on a single composite
error which corresponds to the unit itself. Third, due to lack

3 see Horrace and Wright (2020), for a similar argument, when the
half normal inefficiency density tends to Dirac’s delta function as
σ2u ! 0.
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of replication, the JLMS estimator is based on a guess (a
typical value, like the mean or the mode) from the condi-
tional distribution of the inefficiency, conditioned on a
single composite error. Therefore, inconsistency and high
uncertainty of the JLMS estimators are expected in the
cross-sectional context. In econometrics literature, it is
known that regularization increases the accuracy of an
estimator by reducing its variance. The accuracy of a reg-
ularized estimator is due to a trade-off between decreased
variance and increased bias.

3 Regularization

It has been shown in the literature that a maximum likelihood
estimator is improved by maximizing an a posteriori or
regularized (penalized) likelihood function; see for example,
Cox and O’Sullivan (1990) and Flynn et al. (2013). One can
consider the conditional mode and the conditional mean from
Bayes expected loss and the Bayes risk minimization per-
spective. For example, for the conditional mean, the loss
function is u� buð Þ2, whose risk minimization yields
Argminbu2Rþ Efðu� buÞ2jεg ¼ E u εjð Þ. For the conditional
mode, the loss function is a zero-one indicator function
I u ≠buð Þ � 1ð Þ, whose risk minimization yields
Argminû2Rþ E I u ≠buð Þ � 1jεf g ¼ Argminbu2Rþ �fujε buð Þ� � ¼ Argmaxbu2Rþ fu εj buð Þ ¼ Mode u εjð Þ.

A regularization of the risk minimization is achieved by
adding extra information to, or imposing more constraints
on, the risk function (expected loss). Suppose the con-
straints are a set of m zero-equality equations of twice dif-
ferentiable functions R(u), i.e., R(u)= 0m×1. The regularized
conditional mean of the inefficiency is the solution to the
following constrained objective function.

minbu2Rþ
Efðu� buÞ2jεg

Subject to : R buð Þ ¼ 0

The solution is Argminbu2Rþ E fðu� buÞ2jεg þ λ0R buð Þ,
where λ is the vector of Lagrange multipliers. The reg-
ularized conditional mean is the solution to the following
system of equations.

û� E ujεð Þ þ 0:5λ0 ∇R ûð Þ ¼ 0

R ûð Þ ¼ 0

�
For the conditional mode of the inefficiency, the objec-

tive function and the constraints are as follows.

maxbu2Rþ
fu εj buð Þ

Subject to : R ûð Þ ¼ 0
The regularized conditional mode is the solution to the

following system of equations.

f 0u εj buð Þ þ λ0∇R buð Þ ¼ 0

R buð Þ ¼ 0

(

The regularized JLMS estimators can be developed for
both the mean and the mode. However, in the next section,
we develop only the regularized conditional mode estima-
tors for the three most commonly used inefficiency den-
sities, which are the half normal, exponential and general
truncated normal. In fact, the idea of a restricted estimator
of the unit inefficiency can be easily generalized to any
method that estimates the unit inefficiency based on the
optimization of an objective functions (e.g., methods based
on the determinants of inefficiency, such as Wang and
Schmidt; 2002, Tran and Tsionas; 2009, Simar et al. 2017,
and Parmeter et al. 2017). This can be done by imposing
proper restrictions on the optimization of the objective
function that is used for estimating the unit inefficiency.

Restricted moments are common imposed constraints on
the likelihood functions (e.g., Hall and Presnell 1999). The
constraints can, for instance, be on the sum of the ineffi-
ciencies or the sum of squared inefficiencies. These are
constraints on the first and second moments of the ineffi-
ciencies, respectively. Based on the result of point e from
Theorem 3, we can write

lim
σ2v!1

~u� mð Þ ¼ lim
σ2v!1

� εþ mð Þ þ σ2v ln fu mð Þð Þ½ �0
1� σ2v ln fu mð Þð Þ½ �00

¼ � ln fu mð Þð Þ½ �0
ln fu mð Þð Þ½ �00

which shows the shrinkage of the conditional mode towards
the mode in response to the noise variance inflation. For
half normal and general truncated normal densities, the limit
is zero. With an exponential density, the ~u is restricted to be
non-negative, i.e., û ¼ maxf0; ~ug and m= 0. Then,
limσ2v!1ðû� mÞ ¼ 0. With a vector of constraints
R ûð Þ ¼ 0, the mode-difference limit becomes

lim
σ2v!1

~u� mð Þ ¼ lim
σ2v!1

� εþ mð Þ þ σ2v ln fu mð Þð Þ½ �0 þ σ2v λ
0∇R buð Þ

1 � σ2v ln fu mð Þð Þ½ �00

¼ � ln fu mð Þð Þ½ �0þλ0∇R ûð Þ
ln fu mð Þð Þ½ �00

Therefore, the above limit can be different from zero
with properly selected constraints. This means that reg-
ularization can serve to reduce the shrinkage of the condi-
tional mode estimator towards the mode. For the developed
regularized conditional modes in Table 1, this fact is
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obvious. For example, for the general truncated normal, the

conditional mode is �σ2uεþμσ2v
σ2vþσ2u

, which shrinks toward the

mode μ with noise variance inflation, i.e.,

limσ2v!1
�σ2uεþ μσ2v
σ2v þ σ2u

¼ μ. But, its regularized version based

on the first moment restriction is � σ2uεþσ2vε
σ2vþσ2u

, and its limit

when σ2v ! 1 is limσ2v!1 � σ2uεþσ2vε
σ2vþσ2u

¼ �ε ≠ μ. The same

argument holds for the other two cases (half normal and
exponential densities and their conditional modes and reg-
ularized conditional modes). Therefore, a weaker shrinkage
property of the regularized estimators, especially for highly
inefficient units, is expected. This fact is also supported by
the simulation results in Section 4, as expected.

4 First- and second-moment constraints

Inconsistency and high uncertainty of the JLMS estimators
are expected in the cross-sectional context since any JLMS
estimator of a unit inefficiency is conditioned on a single
composite error corresponding to the unit itself. For each
unit inefficiency estimation, we can also exploit extra
information from other composite errors. For example, one
can impose a restriction on all estimated inefficiencies such
that their sample mean equals the sample mean of the
composite errors. Such a restriction is equivalent to a
sample zero-mean constraint on the estimated random
shocks.

In terms of economic theory, the zero-mean random
shock constraint is interpreted as a condition where the
unit’s productivity is invariant to the random shocks in the
market. Let us take a production frontier model such as the
Cobb-Douglas or a translog model with the inefficiency as
the single source of shortfall.

yi ¼ f xi; βð Þ e�ui

If firm i experiences a random shock (vi), its production can
expand or shrink, depending on the sign of vi.

yi ¼ f xi; βð Þ e�ui evi

Random shocks for some units can cover part of their
inefficiencies, while for others, they might worsen their
productivities, depending on whether the random shocks
and the firm specific inefficiencies are in the same or
opposite directions. An assumption of the SFA model in (1)
is the zero-mean random shocks with a normal distribution.
A similar restriction can also be imposed on the estimated
random shocks, such that their sample mean is equal to
zero. This is equivalent to the counterfactual assumption
that if a firm were consecutively exposed to the shocks from
the whole market, its productivity would eventually return
to the same level, since it is assumed that the sum of the
random socks in the market is equal to zero.

yi ¼ f xi; βð Þ � e�ui ¼ f xi; βð Þ � e�ui � ev1 ¼ evi ¼ evn

¼ f xi; βð Þ � e�ui e
Pn

i¼1
vi ¼ f xi; βð Þ � e�ui

Imposing the above-mentioned market (industry) shock-
invariance assumption on the conditional mode of the
inefficiency and the constraint that εi ¼ vi � ui, for
i= 1,… , n, with a sample of n units, is translated into the
inefficiency sum (mean) restriction. The regularized con-
ditional mode is the solution of the following constrained
objective function.

max
u1;¼ ;un

Xn
i¼1

ln gv ui þ εið Þ½ � þ ln fu uið Þ½ �
( )

subject to:

Xn
i¼1

ui þ εið Þ ¼ 0

Using the Lagrange multiplier method, the above con-
strained objective function is written as

m0 u1; ¼ ; unjε1; ¼ ; εnð Þ
¼ Argmax

u1;¼ ;un

Pn
i¼1

ln gv ui þ εið Þ½ � þ ln fuðuiÞ½ � þ λ
Pn
i¼1

ðui þ εiÞ
� �

Then, the estimated inefficiencies are forced to fulfill the
constraint

Pn
i¼1 vi ¼ 0. We can extend the number of

restrictions, for example, by adding a restriction on the

Table 1 The unit inefficiency
estimator bu ¼ max 0; �~uf g,
with ~u given in the cells of the
following table

Measure Half Normal,
ui � Nþð0; σ2uÞ

Truncated Normal,
ui � Nþðμ; σ2uÞ

Exponential,
ui � Exp

ffiffiffiffiffi
σ2u

p� �
Unregularized Mode (u|εi) σ2uε

σ2v þ σ2u

σ2uε� μ σ2v
σ2v þ σ2u

εþ σ2vffiffiffiffi
σ2u

p

Mode (u|εi) with 1st

Moment Constraint
σ2uεþσ2vε
σ2vþσ2u

σ2uεþσ2vε
σ2vþσ2u

ε

Mode (u|εi) with 1st & 2nd

Moment Constraints
εþε

ffiffiffiffiffiffiffiffi
σ̂2ε

σ2u�ε2

q
�1

	 

ffiffiffiffiffiffiffiffi
σ̂2ε

σ2u�ε2

q εiþε

ffiffiffiffiffiffiffiffiffiffiffiffi
σ̂2ε

E u2ð Þ�ε2

q
�1

	 

ffiffiffiffiffiffiffiffiffiffiffiffi

σ̂2ε
E u2ð Þ�ε2

q εþε

ffiffiffiffiffiffiffiffiffi
σ̂2ε

2σ2u�ε2

q
�1

	 

ffiffiffiffiffiffiffiffiffi

σ̂2ε
2σ2u�ε2

q
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variance or the sum of squares of the estimated conditional
modes, as follows.

max
u1;¼ ;un

Xn
i¼1

ln gv ui þ εið Þ½ � þ ln fu uið Þ½ �
( )

Subject to:

Xn
i¼1

ui þ εið Þ ¼ 0

Xn
i¼1

u2i ¼ c

The c on the right side of the second constraint can be,
for example, c= nE(u2). With the Lagrange multiplier
method, the above constrained objective function is written
as

m0 u1; ¼ ; un ε1; ¼ ; εnjð Þ ¼ Argmax
u1;¼ ;unPn

i¼1
ln gv ui þ εið Þ½ � þ ln fuðuiÞ½ �þλ

Pn
i¼1

ui þ εið Þ þ θ
Pn
i¼1

u2i � c

� �� �

Table 1 shows the regularized conditional mode esti-

mators for a production model. Note that; ε ¼
Pn

i¼1
εi

n and

σ̂2ε ¼
Pn

i¼0
εi�εð Þ2
n , and for ui � Nþðμ; σ2uÞ,

E u2
� � ¼ σ2u 1þ μ

σu

ϕ μ=σuð Þ
Φ μ=σuð Þ þ

μ2

σ2u

 �

For half-normal and exponential distributions, E(u2) is σ2u
and 2σ2u, respectively. Thus, with the first- and second-
moment constraints, eu has the same closed-form solution in
terms of E(u2). The conditional mean E(u|εi) with each of
the densities shown in Table 1, has the following general
form:

E u εijð Þ ¼ ~σ
ϕ ~μ=~σð Þ
Φ ~μ=~σð Þ � ~μ

where ~μ is the negative of the cells of the 1st row in Table 1
(corresponding to �~u in Theorem 1), and ~σ ¼ σv for the
exponential density and ~σ ¼ σvσu

σ for each of the half-normal
and truncated normal densities, where σ2 ¼ σ2v þ σ2u.

As stated in Theorem 3, the conditional mode of ineffi-
ciency shrinks towards the mode of inefficiency in response
to any noise variance inflation. From Table 1, we realize
that the regularized estimators (explicitly with the first-
moment restriction) serve to hold the unit inefficiency
estimators away from the inefficiency mode by adding
fractions of the noise variance to the conditional mode
estimators, i.e., they serve to reduce the shrinkage of the

conditional mode estimator towards the mode of ineffi-
ciency (0 or μ > 0).

For each of the above inefficiency densities and the set of
the constraints, the same estimators are developed for a cost
function. To save space, they are not presented here, but
they are obtained straightforwardly by altering the signs of ε
and ε inside the above closed-form formulae in Table 1. The
purpose of presenting regularized conditional mode esti-
mators is to introduce the methodology with closed-form
mathematical expressions. Analogous to the conditional
mode, the methodology can also be applied to regularized
conditional mean estimators, with properly selected
constraints4.

5 Simulations

An extensive simulation study is conducted to assess the
performance of the proposed methodology relative to the
JLMS estimators. The varying factors of the simulation
study are (i) the sample size, (ii) the inefficiency distribu-
tion, (iii) the noise variance, (iv) the inefficiency variance
and (iv) the location parameter when the inefficiency fol-
lows a truncated normal distribution.

In addition, the performance of the regularized estimators
is assessed when the distribution is incorrectly specified.
For this purpose, we see Gompertz distribution a suitable
option, due to its desirable characteristics for being a
probability distribution of inefficiency. More precisely,
Gompertz distribution is a non-negative and log-concave
distribution with non-zero density and with flexibility to be
skewed to the left and to the right, and to have its mode
equal to zero or to a positive number. For more on Gom-
pertz distribution, see e.g., Lenart 2012.

Samples of size 20, 30, 50, 100 and 250 were simulated.
A Cobb-Douglas production model was assumed, and each
sample consisted of three simulated variables: production
output and labor and capital inputs. The values for the
intercept, elasticities, and means and variances of labor and
capital were selected to imitate a production model origin-
ally used in Cobb-Douglas (1928). Specifically, the
regression coefficients were selected as β ¼
�0:25; 0:25; 075f g and labor and capital were drawn from

the bivariate normal distribution x � N2 5:5; 5½ �;ð
0:25 0
0 0:04

� �
Þ.

The noise from N 0; σ2v
� �

and inefficiencies from
Nþð0; σ2uÞ, Nþðμ; σ2uÞ, ExpðσuÞ, and Gompertz η; bð Þ are

4 For instance, a quadratic interpolated polynomial through the points
0, maximum deterministic inefficiency (the negative of the minimum
composite error in a production function) and the estimated mean of
inefficiency.
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drawn and used to simulate the production model. The noise
variance was given the values of σ2v ¼ 0:1; 0:5; 0:9f g and
the inefficiency variance Var(u) was selected such that
Var uð Þ ¼ 1� σ2v , i.e., the variance of the composite error
was kept at unity with each simulated sample (σ2ε ¼ 1). For
the truncated normal inefficiency, the variance is also
affected by μ. In the simulations, μ= 0 (for half normal) and
μ= 0.1, and (for truncated normal). We select the basic
Gompertz distributions with their scale parameters equal to
one (b= 1). Then, their shape parameters η are selected
such that Var uð Þ ¼ 1� σ2v .

We randomly draw inefficiencies from basic Gom-
pertz(η, b) distributions. However, to assess the perfor-
mance of the regularized estimators of unit inefficiency with
an incorrectly specified distribution, we use Nþð0; σ2uÞ,
Nþðμ; σ2uÞ and Exp(σu) when estimating the SFA model and
the unit inefficiency scores. The results are shown in Fig. 4
for samples of size 100. The results are consistent with other
sample sizes, too.

Distributional parameters must be properly selected for
having VarðuÞ ¼ 1� σ2v . For Exp(σu), we select

σu ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� σ2v

p
, and for Nþð0; σ2uÞ, we select

σ2u ¼ ð1� σ2vÞ=ð1� 2
π
Þ. However, for each of Nþðμ; σ2uÞ and

Gompertz(η,b), there is no closed form solution to select the
proper distributional parameters. We found the parameters
numerically, as shown in Table 2.

The simulations were implemented as follows. For each
sample size, the simulated design matrix was fixed across
all simulations. To assess the performance of each estimator
across different ranks of inefficiency, we considered two
different scenarios. The first scenario is to rank the firms
constantly based on their inefficiencies such that the first
simulated firm always receives the lowest simulated ineffi-
ciency, and the last simulated firm always receives the
largest inefficiency. The second scenario is to randomly
rank the firms based on their inefficiencies. The results of
the two scenarios were consistent; hence, the second sce-
nario was followed to avoid any potential effect due to
differences in production input across the firms. This pro-
cess was repeated 100 times, i.e., 100 samples of ranked
inefficiencies were simulated from the above-mentioned
inefficiency probability distributions. For each of the
100 samples of inefficiencies, 100 samples of noise terms
were randomly generated from the normal distributions.
This resulted in 10,000 replications for each of the 60

combinations of the above factors (sample size, probability
distribution, σ2v , σ

2
u and μ).

With each replication of the simulation process, the four
measures of unit-level inefficiencies were calculated, which
were the conditional mean, conditional mode, conditional
mode with first-moment constraint and conditional mode
with first- and second-moment constraint. The Mean
Squared Error (MSE) for the ith firm’s inefficiency was
calculated as follows.

MSE buið Þ ¼
P100

k¼1

P100
j¼1 buji � uki

� �2
10000

The squared bias for the ith firm’s inefficiency measure
was calculated as follows.

Bias2 buið Þ ¼
P100

k¼1

P100

j¼1
buji

100 � uki

 �2

100

Each measure’s relative efficiency to the conditional
mean efficiency was calculated as

RelativeMSE buið Þ ¼ MSE E u εijð Þð Þ
MSE buið Þ

In the above formulae, i represents the unit, j is the
noise replication and k represents inefficiency replications.
The results of the relative MSE are shown in Fig. 1, Fig. 2,
Fig. 3 and Fig. 4. In the graphs, the x-axis represents the
rank of the inefficiency5 and the y-axis represents the
relative MSE. All the simulations and calculations were
run in STATA/SE 16 for Windows 64 bit using the sfcross
command by Belotti et al. (2013).

The results of the simulations in Figs. 1–4 show that
when estimating large inefficiencies, the regularized con-
ditional mode estimator, especially with the first-moment
constraint, outperforms the JLMS estimators as the signal-
to-noise ratio (σu/σv) increases. While the signal-to-noise
ratio seems to be more decisive for the relative performance
of the regularized estimator than the sample size and dis-
tributional assumption, its performance improves further
when inefficiencies are exponentially distributed and when
the sample size is not very large. Also, the larger the signal-

Table 2 Distributional
Parameters for VarðuÞ ¼ 1� σ2v

Distribution Var (u)= 0.1 Var (u)= 0.5 Var (u)= 0.9

Nþ μ; σ2u
� �

, with μ=−0.1 σ2u ¼ 0:3068604 σ2u ¼ 1:4465384 σ2u ¼ 2:5713615

Nþ μ; σ2u
� �

, with μ= 0.1 σ2u ¼ 0:2440010 σ2u ¼ 1:3058240 σ2u ¼ 2:3825505

Gompertz(η,b), with b= 1 η= 1.6707464 η= 0.2768683 η= 0.0805014

5 An alternative is to use the inefficiencies or technical efficiencies.
The conclusion is the same but on different scales.
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to-noise ratio, the more robust the regularized estimators
are, if the distribution is incorrectly specified, especially for
larger inefficiencies. Some points are listed as follows:

● The unregularized conditional mode is almost always
the most accurate estimator for units with no or small

inefficiency— a result that is expected due to its
shrinkage-towards-mode property. 6

Fig. 1 Normal—Half-Normal Model: Relative Inefficiency (MSE Ratio) compared to E(u|ε). Note: The larger the noise variance, the choppier the
curves of the regularized conditional mode estimators are

6 The modes are zero (for half-normal and exponential distributions)
and 0.1 for truncated normal distributions.
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● The unregularized conditional mean is the most accurate
estimator of the unit inefficiency for middle ranks since
it is a shrinkage estimator towards the mean.

● Regularized conditional mode estimators, especially the
one with the first-moment constraint, are the most
accurate estimators of unit inefficiencies that are more to

the right tail of the distribution (highly ranked), unless it
is a case with low signal-to-noise ratio, in which the
unconditional mode (for lower ranks) and unconditional
mean (for higher ranks) outperform the regularized
estimators. The same argument holds if the inefficiency
distribution is incorrectly specified, especially when an

Fig. 2 Normal—Exponential Model: Relative Inefficiency (MSE Ratio) compared to E(u|ε). Note: The larger the noise variance, the choppier the
curve of the unregularized conditional mode is
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exponential distribution is incorrectly chosen as the
inefficiency distribution.

● A summary of the above 3 points is that the analysts
should make an effort to learn the characterizing
conditions of the application at hand since the preferred
estimation approach is determined by the signal-to-noise

ratio and the location of the inefficiencies (see Badunenko
et al. 2012). The averaging of different estimators has
been proposed by Sickles (2005) with simple (naïve)
averaging, Huang and Lai (2012), with different func-
tional models, Parmeter et al. (2019), Andor et al. (2019)
and Tsionas (2021). A different weighted average

Fig. 3 Normal—Truncated Normal Model (with μ= 0.1): Relative Inefficiency (MSE Ratio) compared to E(u|ε). Note: The larger the noise
variance, the choppier the curves of the regularized conditional mode estimators are
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estimator can be developed using the regularized
estimators, depending on the signal-to-noise ratio and
the rank of the inefficiency. The preferred estimator can be
a mixture (or weighted sum) of the conditional mode (for
lower inefficiency ranks), conditional mean (for middle
inefficiency ranks) and regularized conditional mode,
especially the one subject to the first-moment constraint
(for high inefficiency ranks). Also, a smoother estimator
rather than the averaging can be an interpolated one that
passes through some points (nodes and their values), like
the unconditional mode, the unconditional mean and the
most extreme conditional inefficiencies from both tails
(skipping the lowest inefficiency if the mode inefficiency
is zero).

6 Application

We consider the Swedish electricity distribution market that
consisted of 154 local monopolies with complete data in

2013. The regulator wants to know the extent to which each
firm can improve relative to the efficient frontier. For that
purpose, we specify and estimate a variable cost (c) function
where the number of customers/connection points (s) is the
relevant output variable and the price of labor (l) and
electricity (e) are the corresponding input prices. This pro-
duction process is similar to what has been used in the past
in this field; see e.g., Söderberg (2008), p. 65-66, for an
extensive literature review. The price of electricity is
included because firms purchase electricity to cover net-
work losses and pay for transit on the high voltage network.
The electricity price is calculated as the total costs of transit
and the losses divided by the sum of the losses and high
voltage deliveries.

Since the estimation of the unit inefficiency is a post-
estimation procedure in SFA, entering the discussion of the
selection between different productivity models, for
instance between Cobb-Douglas and translog, might divert
our attention away from the purpose of our proposed reg-
ularized estimators. Therefore, to save space, we only

Fig. 4 Inefficiencies are drawn from basic Gompertz distributions
(scale parameter b= 1), but the inefficiency distributions are incor-
rectly specified, using each of exponential, half normal and general
truncated normal distributions. Relative Inefficiency (MSE Ratio)

compared to E(u|ε), with sample size n= 100. Note: The larger the
noise variance, the choppier the curves of the regularized conditional
mode estimators are
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assume a Cobb-Douglas production model, and specify the
variable cost function as ci ¼ αsβi e

γ
i l
δ
i , where i denotes the

firm. The homogeneity restriction can be imposed by nor-
malizing ci and li by ei, which after natural logarithm
transform allows us to write the model as:

ln
ci
ei

 �
¼ β0 þ β1 ln sið Þ þ β2 ln

li
ei

 �
This expression has normal Cobb-Douglas properties,

e.g., β1 reveals the nature of the scale of production. Spe-
cifically, if β1 < 1, then there are economies of scale; if
β1= 1, then there is constant returns to scale; and if β1 > 1,
there are diseconomies of scale. It is straightforward to
extend this Cobb-Douglas model to a stochastic frontier
setting with inefficiency (u) and idiosyncratic error (v) terms
(Coelli et al. 2005):

ln
ci
ei

 �
¼ β0 þ β1 ln sið Þ þ β2 ln

li
ei

 �
þ νi þ ui

Data on variable costs (Opex), the number of custo-
mers, and the price of electricity are collected from the
Swedish energy regulator (the Energy Markets Inspecto-
rate). The price of labor, which measures the average
regional salary for employees in the public sector, is
collected from Statistics Sweden. Data are cross-sectional
from the year 2013. Because the objective function, or
type of customers, can be different for different ownership
forms, as shown by Meade and Söderberg (2020), we
argue that the regulator has to restrict the benchmark to
the firms that have the same type of owners. For Swedish
electricity distribution, therefore, we need three different
benchmark samples: (i) municipality owned firms
(n= 99), (ii) cooperatively owned firms (n= 32), and (iii)
firms owned by private investors (n= 23). Some
descriptive statistics of the data are presented in Table 4 in
the Appendix.

In Fig. 5, we see that the regularized estimators sug-
gest that the highly inefficient firms have less technical
efficiency (or equivalently larger inefficiency scores)

Fig. 5 Relative technical efficiency based on restricted and unrestricted conditional mode estimates, compared to technical efficiency based on
unrestricted E(u|ε) estimtes

Journal of Productivity Analysis (2023) 59:79–97 93



compared to what the unregularized estimators estimate.
Any inference regarding unit inefficiency can be poor
when only a single sample is available, as it is in a cross-
sectional context. However, we know that the conditional
mean and the conditional mode (Theorem 3) are
shrinkage estimators, i.e., they underestimate larger
inefficiencies.

Therefore, our regularized estimators behave better in
that sense, i.e., they estimated larger inefficiencies further
from the mean/mode compared to the unregularized esti-
mators. In addition, they have desired properties in the
sense that they follow the theoretical first and second
moments of inefficiency, i.e., their sample mean and var-
iance are close to the estimated industry mean and
variance.

The inference with a single sample is challenging. We
checked the relative performance of each estimator by
running a simulation with the same sampled data (number
of customers and prices) but with the costs generated from
the estimated parameters (bσ2v , bσ2u , bμ and bβ) in Table 3. The
simulation procedure was the same as that explained in the
simulation section (Fig. 6 in the Appendix).

7 Conclusions

The conditional mean/mode estimator of unit inefficiency is
a shrinkage estimator towards the inefficiency mean/mode,
depending on the noise variance (or signal-to-noise ratio). It
is mostly different from the firm’s inefficiency itself unless
there is no noise in the productivity model. The proposed
regularized conditional mode estimators outperform the
classical conditional mode/mean estimators, especially for
highly inefficient units, and when the inefficiency dis-
tribution is incorrectly specified.

The constraints used in this paper were imposed on the
first and the second moments of the inefficiencies when
estimating the conditional mode of inefficiency. The idea
can be further generalized to other types of constraints,
distributions, or constraints on the conditional mean. In
this article, the methodology is discussed in a cross-
sectional context. However, it can be directly applied to a
panel data context wherever the conditional mode/mean of
the unit inefficiency is estimated. According to Tsionas
(2017), one issue that continues to plague SFA is the
endogeneity of the inputs. Our methodology is also

Table 3 Model estimates
Estimate (S.E.) Half Normal Exponential Truncated Normal

Municipality
Owned, n= 99

β0 −8.510 (0.3309) −8.4294 (0.329) −8.5354 (0.4585)

β1 0.8087 (0.0255) 0.8075 (0.0259) 0.8090 (0.0257)

β2 1.1079 (0.0325) 1.1078 (0.0328) 1.1079 (0.0325)

σ2u 0.0529 (0.0301) 0.013 (0.0104) 0.0459 (0.0669)

σ2v 0.0222 (0.0097) 0.0287 (0.0090) 0.0204 (0.0243)

μ – – 0.0827 (0.8431)

H0:
Noinefficiency

LR test, χ2 (p-
value): 1.58
(0.104)

LR test, χ2 (p-
value): 1.24
(0.133)

Z test, z (p-value): 1.24
(0.108)

Cooperatively
Owned, n= 32

β0 −9.122 (0.3741) −9.0215 (0.3026) −9.0329 (0.3117)

β1 0.8854 (0.0279) 0.8912 (0.0275) 0.8903 (0.0278)

β2 1.1198 (0.0336) 1.1101 (0.0276) 1.1113 (0.0286)

σ2u 0.0925 (0.0393) 0.0358 (0.018) 0.5632 (2.3897)

σ2v 0.0064 (0.0090) 0.0087 (0.005) 0.0083 (0.0051)

μ – – −2.5088 (12.5981)

H0:
Noinefficiency

LR test, χ2 (p-
value): 5.67
(0.009)

LR test, χ2 (p-
value): 6.47
(0.005)

Z test, z (p-value): 2.321
(0.010)

Private Investors,
n= 23

β0 −8.0991 (1.2217) −7.9061 (0.6246) −7.919 (0.6574)

β1 0.9424 (0.0435) 0.9441 (0.028) 0.9442 (0.0283)

β2 0.9589 (0.1033) 0.9513 (0.0679) 0.9514 (0.0685)

σ2u 0.0201 (0.1272) 0.0367 (0.0357) 0.8233 (11.2301)

σ2v 0.1549 (0.4719) 0.0388 (0.023) 0.0375 (0.029)

μ – – −3.6906 (58.5673)

H0:
Noinefficiency

LR test, χ2 (p-
value): 1.22
(0.134)

LR test, χ2 (p-
value): 1.24
(0.132)

Z test, z (p-value): 1.163
(0.122)
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directly applicable to SFA methods dealing with endo-
geneity. And most importantly, the proposed regularized
estimators are beneficial to regulators for accurately esti-
mating high unit inefficiencies since the benchmark
methods systematically underestimate the inefficiency of
less efficient units.
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Fig. 6 The MSE ratio of unrestricted and restricted conditional mode estimators, compared to the unrestricted E(u|ε) with the simulations based on
the data in the Application section

Table 4 Descriptive statistics of the data used in the application
section

Variable Mean S.D. Min Max

Panel A: municipality owned (n= 99)

Variable cost (c) 57 593 75 404 7 207 612 999

Number of customers (s) 22 160 31 480 2 303 256 549

Price of electricity (e) 0.3673 0.3379 0.0390 1.9990

Price of labor (l) 21 746 356 21 250 23 160

Panel B: cooperatively owned (n= 32)

Variable cost (c) 18 602 14 536 2 851 57 421

Number of customers (s) 4 916 4 599 808 19 120

Price of electricity (e) 1.3177 1.0874 0.0660 4.4560

Price of labor (l) 21 860 390 21 250 23 160

Panel C: owned by private investors (n= 23)

Variable cost (c) 242 954 506 236 509 2 304 885

Number of customers (s) 89 709 193 788 158 802 484

Price of electricity (e) 0.5683 0.5803 0.0380 2.5280

Price of labor (l) 21 777 586 21 250 23 160
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8 Appendix

Theorem: Suppose the function K(w) > 0 is defined for all
w 2 R, with the properties:

1. K(w) is continuously differentiable for all w 2 R, and
log-concave, with its first derivative K′(W).

2. K 0 wð Þ
K wð Þ is bounded above, such that lim

w!þ1
K 0 wð Þ
K wð Þ <

Mj j< þ1:

3. K 0 wð Þ
K wð Þ is bounded below, such that lim

w!�1
K0 wð Þ
K wð Þ >�

mj j> �1:

For the convergence of the integral
Rþ1
�1e

�s w�K0 wð Þ
K wð Þ

h i
dw,

with l < s < r, we must have limw! ± 1
K0 ðwÞ
KðwÞ
w

���� ����< 1.
Proof:
We simplify the notation and use K 0 wð Þ

K wð Þ ¼ H wð Þ. Then,
the integral can be written as follows.Zþ1

�1
e�s½w�H wð Þ�dw ¼

Zþ1

0

e�s½w�H wð Þ�dwþ
Zþ1

0

es½wþH �wð Þ�dw

Taking the first integral on the right side of the equation,
[w−H(w)] is always increasing. Then,
limw!þ1 w � H wð Þ½ � ¼ þ1. In its functional form, it is
similar to Laplace transform of esH wð Þ. Then, it must be the
case that (see Widder 1946, Theorem 2.4a)

lim
w!þ1

sH wð Þ
w

¼ l ) sl ¼ lim
w!þ1

H wð Þ
w

< lim
w!þ1

M

w
¼ 0

which implies that l < 0. For all s such that l < s, the integral
converges if the rate of change is H(w) is slower than the
rate of change in w, i.e., lim

w!þ1
H wð Þ
w < 1.

Taking the second integral on the right side of the
equation, limw!þ1 wþ H �wð Þ½ � ¼ þ1. In its func-
tional form, it is similar to Laplace transform of esH wð Þ (with
−s from s-domain). Then, it must be the case that

lim
w!þ1

sH �wð Þ
w

¼ r ) sr ¼ lim
w!þ1

H �wð Þ
w

> lim
w!þ1

� mj j
w

¼ 0

which implies that r > 0. For all s such that s < r, the integral
converges if the rate of change in H(−w) is faster than the
rate of change in w, i.e.,

1< limw!þ1
H �wð Þ

w ¼ limw!�1
H wð Þ
�w , which means

limw!�1
H wð Þ
w > � 1.

Taking the conditions of both integrals together for the
convergence, it means lim

w! ±1
H wð Þ
�w

��� ���< 1. This completes
the proof.

Figure 6 and Table 4
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