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Abstract
The Debreu–Farrell measure of technical efficiency is widely used to benchmark firm performance. A limitation of this
measure is that it is orientation restricted and evaluates the performance of a decision-making unit in an explicit direction
relative to the best-practice frontier and not the most productive point on the frontier. Therefore, the measure does not
provide policy insight on how to direct decision-making units to achieve the best possible productivity level. Taking a
departure from conventional nonparametric benchmarking studies, this study benchmarks the performance of commercial
farm businesses in the Western Australia’s wheatbelt region using total factor productivity efficiency (‘TFP efficiency’) and
compares the results to those when the conventional technical efficiency measures are applied. We find that the two measures
of firm performance differ and are influenced by different sources of firm heterogeneity. Therefore, derived policy insights
and prescriptions also differ. This is an important insight that policymakers and practitioners need to be aware of.
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1 Introduction

Agricultural productivity growth is essential for feeding the
world’s growing population, improving food security, and
lessening the need to bring virgin land into agricultural
production (ERS 2019). Globally, there are wide geo-
graphical variations in both crop and livestock productivity,
even in regions that experience similar climates. Agri-
cultural scientists and policymakers have been interested in
understanding what interventions or policies can be used to
eliminate mistakes in production given available production
technologies and management practices. Low agricultural

productivity may occur because of both institutional, tech-
nical and economic constraints, as illustrated by numerous
studies that have sought to understand the main drivers of
agricultural productivity (Julien et al. 2019; Scheiterle et al.
2019; Key 2019; Rada and Fuglie 2019; Thompson et al.
2019; Khan et al. 2019; Komarek and Msangi 2019; Kaila
and Tarp 2019; Nordjo and Adjasi 2019; Rada et al. 2020;
Chambers et al. 2020). Indeed, productivity and efficiency
analysis has emerged as a key subfield in agricultural pro-
duction. From a policy perspective, understanding how and
why productivity and efficiency vary across farm businesses
and regions is essential to aid in the design of policies that
promote competitiveness and viability.

Technical efficiency is a benchmarking metric that
measures how effectively input resources are used to pro-
duce output given the prevailing production technology. A
decision-making unit is input-oriented technically ineffi-
cient if it is technically possible to use a lesser bundle of
inputs to produce the given output bundle; it is output-
oriented technically inefficient if a higher bundle of output
is technically attainable for the given input bundle. In a
nonparametric approach, technical efficiency is widely used
to evaluate the performance of decision-making units in an
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explicit direction relative to points on the best-practice
frontier and regressed against selected covariates to inves-
tigate sources of farm performance heterogeneity. This is a
common practice both in developed (Silva and Stefanou
2007; Emvalomatis et al. 2011; Latruffe and Nauges 2014;
Qushim et al. 2016; Lambarraa et al. 2016; Abdul-Salam
and Phimister 2017; Latruffe et al. 2017; Skevas et al.
2018b; Kostov et al. 2019; Roll 2019; Gadanakis et al.
2020; Bonfiglio et al. 2020) and developing countries
(Chavas et al. 2005; Solís et al. 2009; Shee and Stefanou
2015; Murtaza and Thapa 2017; Pede et al. 2018; Lawin
and Tamini 2019; Mishra et al. 2019, 2020; Adamie et al.
2019). Despite its extensive use as a measure of managerial
performance by researchers and policymakers, technical
efficiency only compares a decision-making unit’s perfor-
mance by a vertical expansion (output-orientation) or hor-
izontal contraction (input-orientation) in the direction of the
best-practice frontier; it does not necessarily provide insight
into the firm’s performance relative to the position where its
productivity is maximised.

An alternative measure for performance benchmarking is
the total factor productivity (TFP) efficiency metric associated
with O’Donnell (2008, 2016). This metric measures the extent
to which a decision-making unit falls short from attaining the
best possible productivity in each production period. The
advantage of this metric is that it can be computed using TFP
indices that are transitive. Therefore, TFP efficiency can be
used to provide multilateral and multitemporal comparisons of
firm performance. Owing to its multiplicative completeness
(O’Donnell 2016, 2018), prior studies that have estimated TFP
efficiency have done so exclusively for the purpose of
decomposing it into different efficiency measures (Oude
Lansink et al. 2000; Giannakas et al. 2001; Brümmer et al.
2002; Karagiannis et al. 2004; Newman and Matthews 2006;
Atsbeha et al. 2017; Islam et al. 2014; Mugera et al. 2016;
O’Donnell 2016; Darku et al. 2016; Dakpo et al. 2018; Ang
2019). TFP efficiency, unlike conventional technical effi-
ciency, is not orientation restricted, i.e., it is not estimated from
an output or input-oriented perspective (O’Donnell 2008).
Despite these differences and their implications on how
researchers and policymakers use empirical results of perfor-
mance benchmarking to design policies to improve pro-
ductivity and overall competitiveness of enterprises, no study
has sought to clearly differentiate between TFP efficiency and
technical efficiency as measures of firm managerial perfor-
mance and investigate whether they are influenced by similar
sources of firm heterogeneity.

This study investigates how the choice of metric for per-
formance benchmarking, i.e., either TFP efficiency or con-
ventional technical efficiency, affects the empirical results and
policy implications deduced from analysis. We use a balanced
panel data of 64 broadacre mixed enterprise farm businesses in
Western Australia’s Wheatbelt region as a case study to show

that a firm can be technically efficient but not necessarily TFP
efficient, with the implication that elimination of technical
inefficiency may not necessarily imply improving total factor
productivity. The study shows that factors contributing to
variability in technical efficiency may not contribute to
variability in TFP efficiency across farms, implying that policy
measures derived from estimates of determinants of technical
efficiency may not necessarily be relevant for designing
policies to improve farm productivity and competitiveness.
This insight has broader implication for performance bench-
marking of decision-making units in the non-agricultural sec-
tors of the economy.

To the best of the authors’ knowledge, this is the first
study to contrast TFP efficiency and orientation-specific
technical efficiency as measures of firm performance. This
study extends the literature on efficiency and performance
benchmarking by highlighting the benefits of TFP effi-
ciency as a performance benchmarking metric and the
implications of this to policymakers and management
practitioners seeking to enhance enterprise viability and
competitiveness. This type of analysis is important in
understanding which management practices and policy
measures are associated with higher levels of efficiency and
productivity.

2 Comparing concepts of efficiency

In the context of a multiple-input and multiple-output pro-
duction system, let firm i with a given production technol-
ogy T at time t use a vector of inputs, xit 2 <M

þ , to produce a
vector of outputs, qit 2 <N

þ. In the absence of environmental
variables, the production technology of an industry may be
defined by the production possibility set (Balk 1998):

T ¼ x; qð Þ : x can produce qf g ð1Þ
Using the individual input and output vectors, aggregated

inputs, (Xit≡ X(xit)) and aggregated outputs, (Qit≡Q(qit))
can be estimated subject to the aggregator functions being
nonnegative, non-decreasing and linearly homogenous. The
aggregate functions can be computed using various aggre-
gation methods (O’Donnell 2016). The ratio of aggregate
output to aggregate input is the measure of total factor
productivity (O’Donnell 2008):

TFPit ¼ Qit

Xit
ð2Þ

The computed TFP metric can be decomposed into the
maximum observable TFP in each production period
TFP�

t

� �
1 and TFP efficiency (TFPEit), which is the ratio of

1 The maximum observable TFP may or may not be achieved by one
or more producers in each production period (O’Donnell 2018).
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the TFP of a specific producer i in period t relative to the
maximum observable TFP in the period (O’Donnell 2012b):

TFPit ¼ TFP�
t � TFPEit ¼ TFP�

t �
TFPit

TFP�
t

ð3Þ

Total factor productivity efficiency can be viewed as a
measure of the overall productive efficiency of a producer
given the prevailing production technology. Measured in
levels, TFP efficiency provides an estimate of the ratio of
the TFP of a decision-making unit and the maximum
attainable TFP in a given production period.

Figure 1 shows six producers, A, B, C, D, E, and F.
Producer A both output-oriented and input-oriented tech-
nically inefficient. Subject to the assumptions of a common
production environment and a mix-restricted production
possibility set, whereby the production possibility set only
contains aggregates of input and output vectors that may be
written as scalar multiples of the input and output vectors at
point A, producer A can use available aggregate input XAt to
expand its aggregate output to that of producer C, who sits
on the variable return to scale mix-restricted production
frontier with an output of QCt. The output-oriented technical
efficiency of producer A may be expressed as the ratio of
the distances XAtQAt over XAtQDt. Alternately, to produce the
same output of QAt, producer A could reduce its aggregate
input to that of producer F, XFt, who like producer C, is
technically efficient since they sit on the mix restricted
variable returns to scale production frontier. The input-
oriented technical efficiency of producer A may be
expressed as the ratio of the distance QAtXFt over the dis-
tance QAtXAt.

Although producers F and C are technically efficient, they
are neither mix nor scale efficient. Scale efficiency is com-
puted as the ratio of a producer’s technical efficiency under a
constant return to scale production function to its technical
efficiency under a variable return to scale production function.
Subject to the imposed mix restriction, producer C would
become scale efficient by reducing its aggregate input to XEt

and its aggregate output to QEt, as observed in the case of
producer E that is located at the point of tangency between the
mix restricted constant and variable returns to scale production
functions. Mix efficiency is measured as the ratio of the
aggregate output on the mix restricted frontier over the
aggregate output on the mix unrestricted frontier that uses a
common aggregate input, with the mix unrestricted frontier
being the boundary of all technically feasible input-output
combinations regardless of input and output mix (O’Donnell
2011). By relaxing the assumption of restricted mix, the
maximum potential production using XAt may be expanded
from QCt to QDt. Producer D is both mix and technically
efficient but is not scale efficient.

The point that is mix, scale and technically efficient
occurs at the tangency between the constant returns to scale

and variable returns to scale mix unrestricted production
frontiers, which is where producer B sits. This is the point
where TFP is at its maximum. Therefore, a producer (as is
the case with producers C, D, E, and F) can be technically
efficient but not TFP efficient.

To understand why the differences between TFP effi-
ciency and technical efficiency are relevant to both pol-
icymakers and producers in the analysis of enterprise
viability, consider the decomposition of profitability (the
ratio of aggregate revenues to aggregate costs) offered by
O’Donnell (2012a, b) and investigated by Mugera et al.
(2016):

PROFit ¼ TFPit � TTit ð4Þ

Equation 4 shows that profitability PROFit can be
decomposed into TFP and Terms of Trade (TTit), which is
calculated as the ratio of an aggregate of prices received by
a producer over an aggregate of the prices paid. Restating
Eq. 4 using Eq. 3:

PROFit ¼ TFP�
t � TFPEit � TTit ð5Þ

In the presence of perfectly competitive markets where
all producers are price takers and have access to same
production technology Eq. 5 can be restated as PROFit=
κtTFPEit given κt ¼ TTt � TFP�

t . This suggests that in the
long term, and under the assumption that producers are
profit-maximising, policymakers should aim to assist pro-
ducers to maximise TFP efficiency, as this is the only
component measure of profitability that the individual farm
businesses can influence.

As previously stated, TFP efficiency can be decomposed
into different measures of efficiency because of its multi-
plicative completeness (see recent examples from O’Don-
nell 2016, Darku et al. 2016; Skevas et al. 2018a; Njuki
et al. 2018; Rada et al. 2019). For illustrative purposes, a

Fig. 1 Efficiency concepts (O’Donnell 2008)
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widely adopted decomposition approach, proposed by
O’Donnell (2012a), is provided in Eqs. 6a and 6b:

TFPEit ¼ OTEit � OSEit � RMEit ð6aÞ

TFPEit ¼ ITEit � ISEit � RMEit ð6bÞ

In Eq. 6a, OTE is a measure of output-oriented mix
restricted technical efficiency, OSE is output-oriented scale
efficiency, and RME is residual mix efficiency, which is a
measure of productive performance associated with econo-
mies of scope and provides a measure of the difference
between TFP at the point of mix-invariant optimal scale and
TFP at the point of maximum productivity (O’Donnell
2010). From Fig. 1, RME is the ratio QEt=XEt

QBt=XBt
, where producer

E is both technically and scale efficient but mix inefficient.
Equation 6b provides corresponding efficiency measures
from an input-orientation. Therefore, TFP efficiency is a
more complete measure of efficiency compared to the con-
ventional technical efficiency for policy analysis and design.
O’Donnell (2018) refers to TFPE as the technical, scale, and
mix efficiency (TSME) measure. By contrasting the location
of the TFP efficient point on the mix unrestricted production
frontier and the location of the technically efficient point on
the mix restricted frontier, TFP efficiency provides insight
into production rigidities and fixed structures that are not
discernible from technical efficiency estimates.

Consider a scenario where a regulator chooses to
implement a policy that seeks to reduce barriers to credit
access through regulatory change that promotes debt use to
invest in agricultural technology (e.g., disc seeding for zero
tillage) and reduce technical inefficiency in crop production.
This policy, however, may cause farm businesses to
increase their scale of operations beyond their optimal size
resulting in scale inefficiency and mix inefficiencies. These
inefficiencies may contribute to low overall production
efficiency (i.e., TFP efficiency), which may ultimately
reduce TFP, profitability and viability of a farm business.

3 Estimation of efficiency measures

3.1 Total factor productivity efficiency estimation

In the absence of output and input price information, this
study uses the Färe–Primont aggregation method to estimate
Q and X (O’Donnell 2011). Assuming the production pos-
sibility set from Eq. 1 is subject to weak regularity condi-
tions, the computation of the Färe–Primont aggregators
requires estimation of an output-oriented distance function
and an input-oriented distance function (Eqs. 7a and 7b) to
solve for unknown nonnegative parameters α, β, φ, and η, as
well as the intercept terms that are used to estimate the input

and output shadow prices (O’Donnell 2010, 2011)2:

DO x0; q0; t0ð Þ�1¼ min
α;γ;β

γ þ x00β

s:t:

γιþ X0β � Q0α
q00α ¼ 1

α � 0

β � 0

ð7aÞ

DO x0; q0; t0ð Þ�1¼ max
ϕ;δ;η

q00ϕ� δ :

s:t:

Q0ϕ � διþ X0η
x00η ¼ 1

ϕ � 0

η � 0

ð7bÞ

In the above equations, ɩ is the unit vector, x0 is the vector
of J inputs (i.e., x01 ; x02 ; ¼ ; x0J½ �), and q0 is the vector of K
outputs (i.e., [q01, q02,…,q0j]) for the base case firm 0. Subject
to the presence of M decision-making firms, X is a M × J
matrix of all inputs used in production period t0 and Q is a
M ×K matrix of outputs produced in the same period.

The derivatives of the output and input distance functions
with respect to outputs and inputs (Eqs. 7a and 7b) are the
revenue and cost-deflated output and input shadow prices
(p and w). In the case of the Färe–Primont index, the
derivatives must be evaluated relative to the distance
functions of the base case production unit DO(x0, q0, t0) and
DI(x0, q0, t0) (O’Donnell 2011; Baráth and Fertő 2017):

p�0 ¼
δDO x0; q0; t0ð Þ

δq0
¼ α0ð Þ

γ0 þ x00β0
� � ð8aÞ

w�
0 ¼

δDI x0; q0; t0ð Þ
δx0

¼ η0ð Þ
q00ϕ0 � δ0
� � ð8bÞ

The aggregate output (Qit) and input (Xit) are solved for
firm i in each period t as follows:

Qit ¼ q0itp
�
0 ¼ q0it

α0ð Þ
γ0 þ x00β0
� � ð9aÞ

Xit ¼ x0itw
�
0 ¼ x0it

η0ð Þ
q00ϕ0 � δ0
� � ð9bÞ

The use of common shadow prices p�0 and w�
0 to construct

the output and input aggregators implies that the output and

2 The production technology function is estimated in this study
without an allowance for the possibility of technological regress under
and both variable returns to scale and constant returns to scale. The
assumption of no technological regress means that we have assumed
that technology (know-how and equipment) available to firms did not
decline (or ‘disappear’) or decay over the study period.
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input of different firms in different periods are constructed
relative to a common base case. Therefore, unlike other
aggregators, the Färe–Primont aggregators allow for the
comparison of cardinal TFP estimates both within and across
periods. Restated, the Färe–Primont aggregator satisfies the
transitivity axiom whereby, for example, the direct comparison
of the input index of a firm i in two periods (t and t+ 2) yields
the same input change as an indirect comparison through a
third period X(t, t+ 2)=X(t, t+ 1) × X(t+ 1, t+ 2) (O’Don-
nell 2012a, b). The same applies for the output aggregator.
Thus, the computed TFP measures are also transitive and
allow for inter-temporal comparison of relative firm perfor-
mance over time (per Eq. 3).

3.2 Technical efficiency estimation

This study uses the widely adopted radial Debreu–Farrell input
and output based measures (Debreu 1951; Farrell 1957) to
estimate technical efficiency. From a production frontier per-
spective, output-oriented technical efficiency is a measure of
the proportional expansion of outputs required to vertically
move an inefficient producer to the production possibility
frontier without a change in input levels. The input-oriented
technical efficiency is a measure of the proportional reduction
in inputs needed to horizontally move an inefficient producer
to the production possibility frontier without a change in
output level. The measures are solved for using the linear
programming technique specified in Eqs. 10 and 11 subject to
a variable returns to scale technology:

bFO
i qi; xi; q; x VRSjð Þ ¼ max

z;θ
θ

s:t:PN
i¼1

ziqin � θqn0

PN
i¼1

zixim � xm0

PN
i¼1

zi ¼ 1

i ¼ 1; 2; ¼ ; N

ð10Þ

bFI
i qi; x; q; x VRSjð Þ ¼ min

z;θ
θ

s:t:PN
i¼1

ziqin � qn0

PN
i¼1

zixim � θxm0

PN
i¼1

zi ¼ 1

i ¼ 1; 2; ¼ ; N

ð11Þ

where q is an n × N matrix of outputs, x is a m × N matrix of
inputs, zi are the intensity factors used to construct the best-
practice frontier and θ is the level of efficiency to be

estimated. The technical efficiency measures are calculated
on a year by year rather than pooled basis to allow for
appropriate comparison with TFP efficiency measures.

Recent literature has shown that the mean of efficiency
scores estimated from DEA models tend to have substantial
biases that may dominate the variance, a problem that Kneip
et al. (2015) called ‘bias killing the variance’. This implies that
the estimated mean technical efficiency score does not
necessarily converge to the true mean efficiency score as the
sample size of decision-making units under investigation
increases (Kneip et al. 2015; Simar and Zelenyuk 2018, 2020;
Daraio et al. 2018). Fortunately, Simar and Zelenyuk (2020)
and Kneip et al. (2015) have provided a simple method for
correcting the bias from the mean of DEA scores estimated
from a finite sample to comply with the central limit theory
(CLT). We follow Simar and Zelenyuk (2020) to correct for
bias in the mean technical efficiency scores from the estimated
DEA scores by first estimating the simple sample mean:

Fn ¼ n�1
XN
i�1

bF qi; xi; q; x VRSjð Þ: ð12Þ

The estimated simple sample mean is used to compute
the bias correction as follows:

bBn;k ¼ 2k � 1
� ��1

F
�
n=2 � Fn

� �
ð13Þ

where k, the rate of convergence of the estimated mean
to true mean, is equal to 2

xþq under a constant returns to
scale technology and 2

xþqþ1 under a variable returns to
scale technology. F

�
n=2 is a generalised jacknife of the

simple standard mean such that:

F
�
n=2 ¼

F
1ð Þ
n=2 þ F

2ð Þ
n=2

� �
2

ð14Þ

In Eq. 14, F
1ð Þ
n=2 is a random subset of the sample and F

2ð Þ
n=2

is the analogue based on the balance of the sample. It is
noted that any correction of the bias in the mean technical
efficiency estimates for both constant and variable returns to
scale necessitates re-estimation of the estimates for the
mean scale and residual mix efficiencies.

4 An empirical comparison of efficiency
measures

4.1 Investigating the determinants of TFP efficiency
and orientation restricted technical efficiency

To compare how sources of heterogeneity at the firm level
impact the efficiency measures, the generalised method of
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moments (GMM) is applied. GMM is a method that uses
two sets of population moment conditions (i.e., mean and
variance) in a manner that minimises the asymptotic var-
iance among the method of moment estimators of the
population mean (Wooldridge 2001). GMM is chosen
instead of a fixed-effects estimator because of its capacity to
address potential endogeneity in models, which can arise
where an unobserved factor related to an efficiency estimate
(our dependent variable) is also related to an independent
variable, resulting in a correlation between that independent
variable and the error term. For example, an anticipated case
of endogeneity arises from the use of a debt-to-equity ratio
as an explanatory variable because productive efficiency
may influence a firm’s financial performance through its
ability to access credit needed for capital investment.

The system GMM model is also preferred because of its
ability to deal with the potential serial correlation problem
when the lags of efficiency estimates are used as explana-
tory variables in a dynamic model (Arellano and Bond
1991). The application of the fixed-effects estimator
requires the strict assumption of exogeneity. In relaxing this
assumption, GMM provides a consistent estimator in the
presence of heteroscedasticity, i.e., where the variability of
efficiency estimates is unequal across a range of values of a
predictor variable over time (Baum et al. 2003).

The System GMM (Blundell and Bond 1998, 2000)
estimates a system of simultaneous equations as shown in
Eqs. 15 and 16:

Ei;t ¼ αEi;t�1 þ X0
i;tβ þ μi þ vi;t

� �
; ð15Þ

Ei;t � Ei;t�1 ¼ γ Ei;t�1 � Ei;t�2
� �þ X0

i;t � X0
i;t�1

� �
β þ vi;t � vi;t�1

� �
;

ð16Þ

where γ= 1+ α and Ei,t− Ei,t−1 is the difference in the
efficiency measures of firm i at time t and t – 1. The error
term in Eq. 15, (μi+ vi,t) consists of two identically and
independently distributed components, wherein μi is the
time-invariant unobserved heterogeneity within each pro-
duction unit and vi,t is the idiosyncratic term. Equation 15
provides an estimator in levels and Eq. 16 provides an
estimator based on first differences. Equation 16 alone is
referred to as the Difference GMM (Arellano and Bond
1991). The System GMM overcomes the finite sample bias
problem in the presence of weak instruments that the
Difference GMM is subject to, which is a product of unit
root property exhibition by individual time series. The use
of the System GMM enables the inclusion of year level
dummies in the model to account for year effects on the
efficiency estimates. This is not possible in the application
of the Difference GMM.

A two-step GMM estimator is chosen as it has greater
asymptotic efficiency than a one-step estimator. To overcome

the downward bias of the standard errors estimated by the
standard efficient two-step GMM estimator, the finite sample
corrected variance estimate, as proposed by Windmeijer
(2005), is implemented in the estimation of the standard
errors. To test the specification of the model, the
Arellano–Bond test (Arellano and Bond 1991) for auto-
correlation is used to test for serial correlation in the first
differenced errors. The Hansen test (Hansen 1982) is used to
test for over-identification restrictions to examine the validity
of the instruments used in the model.

4.2 Testing for convergence in efficiency measures

Given the wide heterogeneity across farms, efficiency
measures are expected to vary across and within farms over
time. Therefore, it is important to examine how the dis-
persion of TFP efficiency and orientation restricted techni-
cal efficiency measures differ as this has important policy
implications. The presence of sigma convergence within
periods is examined to investigate whether cross-sectional
dispersion of TFP efficiency and technical efficiency mea-
sures declines over time. Though several prior studies have
estimated sigma convergence of TFP estimates in the con-
text of agriculture inclusive of Suhariyanto and Thirtle
(2001), Ball et al. (2004, 2014), Poudel et al. (2011),
Mugera et al. (2012) and Baráth and Fertő (2017), there has
been limited prior investigation of convergence of either
TFP efficiency or technical efficiency at the farm level. To
examine sigma convergence, this study follows the
approach by Sala-i-Martin (1996), Liu et al. (2011) and
Baráth and Fertő (2017) whereby cross-sectional standard
deviation of the natural log of the variable of interest is
estimated (in the case of this study, the efficiency measure)
and regressed against time:

var ln Etð Þð Þ ¼ ω1 þ ω2t þ εt ð17Þ
where var(ln(Et)) is the across-farm variance of the
logarithm of the efficiency measure in period t (in the case
of this study, the year), ω1 and ω2 are parameters to be
estimated and ε is a zero-mean random error disturbance
term. If ω2 (the slope) is negative, this implies that sigma
convergence exists. That is, for sigma convergence to hold,
the cross-sectional standard deviations of the efficiency
measure (itself a cross-sectional measure) must decrease
over time. In the context of TFP efficiency and without
allowance for technical regress, sigma convergence would
imply that there is a reduction of disparities in the overall
productive efficiency of farms over the study period. If
sigma convergence is observed in technical efficiency
estimates, it will imply that the disparities in managerial
performance across farms are diminishing over time. This
study does not estimate beta convergence as the focus of the
study is not on whether or not there were farms that started
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with lower levels of efficiency at the beginning of the
sample period yet were able to catch up with those that had
higher levels of efficiency. However, it is important to note
that sigma convergence is a necessary condition for beta
convergence.

5 Application to Western Australia

5.1 Survey region

The study used a balanced panel of 64 mixed crop-livestock
farms in Western Australia’s Wheatbelt region over the
period 2002–2011. In 2017/2018, the value of Western
Australia’s grain exports was A$5 billion, accounting for
approximately 40% of Australia’s grain exports. The
Wheatbelt region is in the south–west corner of Western
Australia and covers a total area of about 197,300 square
kilometres, of which over 60% is used for agriculture. In the
period 2015–2016, the gross value of agricultural produc-
tion in the region was about A$4.6 billion, which was over
55% of the total gross value of agricultural production in
Western Australia. A survey of more than 550 farms over a
6-year period (Planfarm-Bankwest 2013) showed the pri-
mary driver of revenue variance between the performance
of the top 25% and the bottom 25% was production yields
rather than received prices. The difference in average prices
received between these groups was less than 3%.

5.2 Production data and variable selection

The data were obtained from a consulting business that
services the study region. Only farms that provided data for
all ten years were included; it is noted that this may intro-
duce some potential bias through the failure to capture the
entry and exit of farm businesses in this period (see Foster
et al. 2008). The farm sizes ranged from 1150 to 12,730
hectares with an average size of 3990 hectares and an
average revenue of A$1.30 million. The survey group may
be considered representative of farms in Western Australia’s
Wheatbelt: the Planfarm-Bankwest Benchmarks (2011) for
2010/2011, the largest comprehensive survey of financial
and production performance measures of over 500 farms in
Western Australia, shows average farm size in 2010/2011 at
4185 hectares and average revenue at A$1.03 million.

The farm data collected contain information about input
and output quantities, farm size, and enterprise character-
istics. It also includes information on financial performance,
as well as farmer characteristics such as age and education.
Aggregate crop and livestock output variables, input vari-
ables and other variables that describe farm characteristics
were constructed from the data set. In selection of the
production inputs and outputs, it is important to consider

dimensionality. Recent simulation studies have shown that
in the context of limited sample sizes, a greater number of
dimensions (i.e., inputs and outputs) slows the rate of
convergence of estimates towards their ‘true’ values, which
may adversely impact the inference drawn from analysis of
efficiency estimates (Kneip et al. 2015, 2016; Daraio et al.
2018; Simar and Zelenyuk 2018, 2020; Zelenyuk 2020).

The present study achieves a reasonable level of dis-
crimination as set forth by Dyson et al. (2001), since the
number of units (in our case 64) is more than twice the sum
of the inputs and outputs (7). Following recent studies in
agricultural economics (Mugera et al. 2016; Baráth and
Fertӧ 2017; Dakpo et al. 2018; Ang 2019), our study only
includes discretionary inputs in the production model.
Discretionary inputs are inputs such as seeds, fertiliser, and
fuel that farm businesses can directly control and adjust.
The present study was limited by the absence of specific
rainfall, temperature, or soil condition variables amongst the
farm level data used. Future studies and applications of TFP
efficiency may benefit from the inclusion of environmental
variables into their production models per the recent works
of Liang et al. (2017), Njuki et al. (2018), Chambers and
Pieralli (2020) and Plastina et al. (2021). Despite not being
able to adjust these factors of production directly, it is
expected that farm businesses would adjust their use of
discretionary inputs in anticipation and reflection of their
production environments. For example, a rational farm
manager may tactically reduce the rate of application of
fertiliser or herbicides in anticipation of drought. Table 1
provides a summary of the variables used in the estimation
of the Färe–Primont output and input aggregator functions.

Two output variables were used for the construction of
the Färe–Primont output aggregate. Crop output (q1) is the
total revenue for all crops produced on an individual farm
per year measured in Australian dollars and normalised by
the crop price index to the base year of 2002 (ABARES
2012). Livestock output (q2) is a measure of the total rev-
enue in Australian dollars from livestock activities (live-
stock sales and wool) normalised by the Australian Bureau
of Agricultural and Resource Economics and Sciences
(ABARES) index of livestock prices with 2002 as the base
year (ABARES 2012).

Five discretionary input variables were used in the esti-
mation of the Färe–Primont input aggregate. Labour (x1) is
calculated as the aggregate number of weeks of both per-
manent and casual labour used per year. Expenditure on
crop inputs (x2), operational inputs (x3) and livestock pro-
duction inputs (x4) were all normalised with 2002 as the
base year by their respective component price indexes as
provided by ABARES (2012). The crop input is an aggre-
gate measure of expenditure on fertiliser, chemicals, and
seeds. The operational cost is an aggregate measure of
expenditure on contract services, repair and maintenance,
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and fuel. The livestock production input is an aggregate
measure of expenditure on livestock purchased and live-
stock expenses such as feed and treatments. The final
variable is land under both crop and livestock (x5) measured
in hectares.

5.3 Potential determinants of efficiency

Table 2 provides a summary of the key variables used to
investigate the determinants of the estimated efficiency
measures3.

Diversification is considered to examine whether choices
in the production mix influence the efficiency of farms in
the survey area. Diversification is represented by the Berry
index (Berry 1971) computed as follows:

dB ¼ 1�
XN
i¼1

s2i ð18Þ

where si is the share of revenue generated by the ith
enterprise and N is the number of enterprise types. There are
two main enterprise types for the farms in this study, crop
production and/or livestock production. The Berry index
ranges from 0 and 1, where a higher score indicates more
degree of diversification. Production diversification reflects
a farm’s risk management strategy consistent with standard
portfolio theory (Markowitz 1952). In a prior study of
Australian mixed enterprise farming, Sheng et al. (2016)
identify a negative and significant association between TFP
and production diversification.

The ratio of off-farm income to aggregate revenue is
included to examine whether reduced reliance on farm
income, as a component of total income, influences the
efficiency estimates. A higher ratio of off-farm income to
aggregate receipts is expected to have a negative effect on
farm-level efficiency; this is because farm operators must
direct more time and knowledge away from farming

activities to generate off-farm income (Mishra and San-
dretto 2002; Yee et al. 2004; Sabasi et al. 2019).

The ratio of debt-to-equity (i.e., the capital structure) is
included in determining the impact of greater debt use on
farm-level efficiency. It is expected that increased access to
capital will improve access to technology and hence relative
performance (Zhengfei and Oude Lansink 2006). The ratio
of debt-to-equity is a prospective source of endogeneity in
the System GMM model to be estimated since farm pro-
ductive performance may affect farm business cred-
itworthiness and therefore its capital structure. The impact
of capital investment (money spent on land, plant, and
equipment) on the various efficiency measures is considered
by the inclusion of the ratio of capital expenditure to
aggregate payments of the farm businesses in both the
present period and its lag. Aggregate payment includes
capital, operational and financial expenses of a farm busi-
ness in a period. It is included to examine whether higher
relative capital expenditure improves efficiency. Investment
in improved capital equipment and the plant is hypothesised
to improve efficiency.

The ratio of contract service expenditure to total
operational costs is included to examine how the use of
contract services influences farm level efficiency. The
study of Key and McBride (2003) on United States hog
production found that contract services increased partial
factor productivity, which was attributed to enhanced
knowledge transfer and development across operations.
The effect of farm enterprise size on efficiency is con-
sidered through the inclusion of scaled total farm revenue4.
It is expected that farm size will influence scale efficiency
as a component of relative efficiency. The use of gross farm
revenue for the classification of farm size is consistent with
the method used by Mugera and Langemeier (2011) as well
as Briggeman (2011).

Primary operator age is included to examine whether
management experience is significant to efficiency; older
farm operators are hypothesised to have greater experience
and use resources more efficiently. A dummy for primary
operator education is included to examine whether human

Table 1 Summary statistics of
production data (N= 64)

Measure Units Mean SD Minimum Maximum

Crop output (q1) A$ 1,092,580 854,861 0 7,318,886

Livestock output (q2) A$ 114,702 126,025 0 1,318,364

Labour (x1) Person weeks 122 44 52 305

Crop inputs (x2) A$ 329,053 220,483 23,206 1,758,859

Operational costs (x3) A$ 150,153 104,423 41,612 969,225

Livestock production inputs (x4) A$ 21,144 40,996 0 545,667

Land under production (x5) Hectares 3990 2086 1150 12,730

3 The variables selected are based on those provided by the farm
business consultants. Other metrics such as soil quality may also have
been considered, but data were not available. 4 Total farm revenue is divided by 1,000,000
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capital, as measured by university-level education, has an
impact on efficiency estimates. Reimers and Kaslan (2012)
used a dummy variable with farmers categorised as either
university or not university-educated to investigate the
effect of schooling on agricultural productivity in devel-
oping and emerging countries. A dummy for rainfall zone is
included to examine whether farm businesses in the med-
ium rainfall zone are less efficient than those in the low
rainfall zone. It is important to note that a rainfall zone
captures more than average precipitation levels: farm busi-
nesses in the low rainfall zones of the study region are
located further east (inland) than medium rainfall regions
positioning them further from major ports and population
centres, with typically sandier soil profiles, higher tem-
peratures, and lower humidity levels. In a study of farms in
Western Australia’s Wheatbelt between 1998 and 2008,
Islam et al. (2014) found that farm businesses in the med-
ium rainfall zone experienced higher TFP efficiency growth
than farm businesses in the low rainfall zone.

6 Efficiency estimates and trends

This section reports selected estimates of TFP efficiency
and its components. All the estimates were obtained using
the standard version of DPIN 3.0 software, Stata 16.0 and
several packages in R including stargazer (Hlavac 2018),
texreg (Leifield 2013), dplyr (Wickham et al. 2021), and np
(Hayfield and Racine 2008).

Figure 2 shows the average annual estimates of TFP,
TFP efficiency and the highest observable TFP that could be
produced given the available technology in the referenced
year. Notable from the figure is that TFP efficiency seems to
have been the main driver of TFP until 2005 when increases
in the maximum observable TFP dominated TFP efficiency
as the primary driver of farm level TFP in the survey region.
Total factor productivity estimates generally rose over the

study period, except for 2006, a period of drought in the
survey region, where the lowest average estimate of 0.2014
was observed. The average TFP efficiency ranged between
its lowest value of 0.3973 in 2006 and the highest value of
0.5686 in 2005. Figure 2 suggests that improvements in
TFP over the survey period were largely driven by increases
in the maximum observable TFP (i.e., upward shifts in the
technological frontier), as opposed to an improvement in
TFP efficiency. Figure 2 shows that average TFP does not
vary much across the years and are driven by both max-
imum observable TFP and TFP efficiency. A table of the
averages for TFP, TFP efficiency and technology is reported
in Appendix 1.

Figure 3 shows box plots for TFP efficiency and both
output-oriented technical efficiency (OTE) and input-
oriented technical efficiency (ITE) scores by year. The top
and bottom parts of the boxes indicate the 75th and 25th
percentiles, while the line in the middle of the box indicates
the median efficiency measure across the study period. The
distribution of the measures of TFP efficiency is different

Table 2 Summary of farm-level heterogeneity variables

Measure N Mean SD Minimum Maximum

Diversification 640 0.1787 0.1452 0.0000 0.5000

Off-farm income/aggregate receipts 640 0.0561 0.0938 –0.1641 0.8564

Debt/equity 640 0.2674 0.2129 0.0034 1.5560

Capital expenditure/aggregate payments 640 0.1309 0.1291 –0.0032 0.7793

Contract expenditure/operational costs 640 0.0336 0.0359 0.0000 0.3059

Enterprise size 640 1.2456 0.8915 0.0509 7.6120

Primary operator age 640 44.8594 10.8545 18 69

Rainfall zone (dummy) %

Low 330 51.5625

Medium 310 48.4375

Education (dummy)

Tertiary—non-university 500 78.1250

Tertiary—university 140 21.8750

Fig. 2 Mean TFP, maximum TFP observable, TFP efficiency estimates
(2002–2011)
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from that of the oriented technical efficiency measures. TFP
efficiency has a maximum observed score of 1 in 2002,
2003, 2007, 2008, and 2011. This implies that the TFP
efficiency estimates may be interpreted as the competitive-
ness of a farm business relative to the most productive firm
from the sample in these periods. In periods where no TFP
efficiency score of 1 is observed, it suggests that no firm was
able to maximise its productive output given the technology
available. The lowest minimum TFP efficiency score was
observed in 2008, when the minimum estimate was 0.0642,
while the highest minimum score was 0.2756 in 2003. In
contrast to TFP efficiency, the median ITE and OTE scores
were very high. In 2002, the median estimates for both ITE
and OTE equalled to 15, meaning that the median estimate
was on the mix restricted production frontier. In 2003, 2004,
2007, and 2008, the top quartile of firms within the sample
had OTE and/or ITE estimates of 1. By contrast in 2002, the
median TFP efficiency was only 0.4726. This means that by
relaxing the assumption of mix restriction, the median
observation was only 47.26% as productive as the best
performing firm within the sample in 2002.

Figure 4 presents pooled scatter plots of TFP efficiency
against ITE and OTE. The results show a weak positive
correlation exists between TFP efficiency and technical
efficiency measures. In many cases where a farm achieves

technical efficiency and sits on the mix-restricted frontier,
its overall production efficiency is low. To support the
results of the scatter plot, Spearman rank correlations are
estimated between TFP efficiency, ITE and OTE estimates.
The rank correlation estimates are shown in Fig. 5.

The highest rank correlation between TFP efficiency and
ITE is 0.6711, while the highest rank correlation between TFP
efficiency and OTE is 0.7346; both estimates were in 2004.
The lowest rank correlation between TFP efficiency and ITE is
0.2200 in 2007, while the highest rank correlation between
TFP efficiency and OTE is 0.4386 in 2002. A strong rank
correlation exists between ITE and OTE estimates in all years,
ranging from 0.8332 in 2007 to 0.9870 in 2002. A table of the
rank correlations is provided in Appendix 2.

To further contrast TFP efficiency against ITE and OTE
as benchmarks of productive performance, we investigate
the variability that exists within periods for each of the
measures. Figure 6 provides a graphical representation of the
coefficients of variation (CV) for TFP efficiency, OTE, and
ITE. The CV estimates over the survey period indicate TFP
efficiency estimates vary more than ITE and OTE estimates.

To examine the dispersion of TFP efficiency, ITE and
OTE estimates over time, sigma convergence was tested per
the method of Sala-i-Martin (1996). The results of the
regression analysis are reported in Table 3. The coefficient
for the time variable is positive and significant at 1% level in
the TFP efficiency, ITE and OTE models. This result sug-
gests that all measures diverged over the study period. The

Fig. 3 TFP efficiency, output-oriented technical efficiency, and input-oriented technical efficiency box plots (2002–2011)

5 The bias correction factors estimated pursuant to Kneip et al. (2015)
all may be approximated to zero.
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coefficient of the time variable for the TFP efficiency esti-
mate was 0.0074, as opposed to 0.0030 for OTE and 0.0018
for ITE. This indicates TFP efficiency estimates diverged
more widely than ITE and OTE over the study period.

To examine the impact of the different component of
efficiency measures on TFP efficiency, Fig. 7 presents the
nonparametric kernel density estimate plots6 of TFP effi-
ciency and its component measures using the pooled results
for the study period. Summary statistics for TFP efficiency
and these component measures are reported in Appendix 3.
Figure 7 shows that ITE and OTE estimates, as well as
output scale efficiency (OSE) and input scale efficiency
(ISE) estimates, are all strongly concentrated around 1. By
contrast to measures of technical and scale efficiency, the
distribution of residual mix efficiency (RME) estimates more
closely reflect the distribution of TFP efficiency estimates.

We extend the analysis in Fig. 7 by attempting to illus-
trate the contribution of each of the three multiplicatively
complete efficiency components of TFP efficiency to its
distribution; we do this by sequentially introducing each
component as in Eqs. 6a and 6b. The output-oriented
introducing effects and input-oriented introducing effects

are shown in Figs. 8 and 9, respectively. In both figures, the
top left panel shows the distribution of TFP efficiency while
the top right panel shows the distributions of TFP efficiency
and either OTE or ITE. The lower left panel in Fig. 8 shows
the distributions of TFP efficiency, OTE and the measure
multiplying OTE and OSE (OTSE). The lower left panel in
Fig. 9 shows the distributions of TFP efficiency, ITE and
the measure multiplying ITE and ISE (ITSE). The dis-
tributions of the multiplicative measures OTSE and ITSE
are strongly skewed relative to the more normal distribution
of TFP efficiency. The lower right panels in Figs. 8 and 9
show the distribution of the measure multiplying technical
efficiency by both scale efficiency and residual mix effi-
ciency (OTSE × RME and ITSE × RME). The multi-
plication of the OTSE and ITSE measures by RME results
in the combined distributions being shifted to overlay the
distribution of TFP efficiency. Therefore, the primary driver
of the distribution of TFP efficiency and hence relative
productive performance appears to be residual mix effi-
ciency, as opposed to orientation-restricted technical effi-
ciency or scale efficiency. The implication of this result is
that the relative productive competitiveness of farm

Fig. 4 Pooled scatter plot
comparisons of TFP efficiency
and orientation-restricted
technical efficiency measures

Fig. 5 Spearman’s rho between TFP efficiency, output-oriented tech-
nical efficiency, and input-oriented technical efficiency (2002–2011)

Fig. 6 TFP efficiency, output-oriented technical efficiency, and input-
oriented technical efficiency coefficients of variation (2002–2011)

6 The bandwidth of the kernels estimated is optimised through
application of the Mean Integrated Squared Error criterion.
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businesses in the study area was influenced more by the mix
of production inputs and outputs chosen by farm managers
than the effectiveness with which these inputs were used.

To further investigate the impact of the counterfactual
distribution components on the distribution of TFP effi-
ciency estimates, we follow Kumar and Russell (2002) in
testing for equality of the distribution generated by the
density function of TFP efficiency against the distributions
generated by the density functions of the counterfactual
components. The study adopts the method of Li et al.
(2009) to generate kernel-based tests for equality of the
density functions. This method uses data-driven bandwith
selection methods and smooths continuous and discrete
variables through least-squares cross-validation. In our
application, bootstrapping is used to obtain a limiting
(asymptotic) null distribution. The results of the hypothesis
test in Table 4 show that the null hypothesis that the dis-
tributions of TFP efficiency and those of OTE, ITE, OTE ×
OSE, and ITE × ISE are identical can be rejected at a 1%
level. As expected from their construction, the null

hypothesis that the distributions of TFP efficiency and those
of OTE × OSE × RME and ITE × ISE × RME are identical
cannot be rejected at 10% level.

Fig. 7 Density distributions—TFP efficiency and component efficiency measures

Table 4 Li equality of distribution tests7

Null hypothesis (H0) Li-test statistic

f(TFPE)= g(OTE) 139.75***

f(TFPE)= g(ITE) 139.87***

f(TFPE)= g(OTE ×OSE) 85.815***

f(TFPE)= g(ITE × ISE) 85.816***

f(TFPE)= g(OTE ×OSE× RME) –1.6557

f(TFPE)= g(ITE × ISE× RME) –1.6569

***H0 rejected at a 1% level

7 The null hypothesis is that the two distributions are equal. Gaussian
kernel estimation is used with the bandwidth selected using Silver-
man’s (1986) rule, and with 2000 bootstrap iterations

Table 3 Variance convergence
analysis of TFP efficiency
(TFPE), output-oriented
technical efficiency (OTE), and
input-oriented technical
efficiency (ITE)

Parameter Coefficient Standard error 95% Confidence interval

TFPE Intercept –14.6521*** 1.9881 –18.5487 –10.7555

Slope 0.0074*** 0.0010 0.0054 0.0093

OTE Intercept –5.8437*** 0.7655 –7.3441 –4.3433

Slope 0.0030*** 0.0004 0.0022 0.0037

ITE Intercept –3.5281*** 0.2184 –3.9563 –3.1002

Slope 0.0018*** 0.0001 0.0016 0.0020

***Significant at a 1% level
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7 Efficiency determinant results and
comparison

The second stage of the analysis compares sources of
observable heterogeneity at the farm level that affect TFP
efficiency, ITE and OTE. The System GMM regression
results are reported in Table 5. For robustness, ordinary
least squares (‘OLS’) and Tobit regression results are
reported in Appendix 48.

The regression for each model uses 55 instruments,
satisfying the requirement that the number of instruments is

less than the number of observations, 64. The
Arellano–Bond test indicated no second-order autocorrela-
tion in the first differenced errors of all three equations. This
suggests that the models are correctly specified in their use
of instruments from the t−2 and prior periods. The Hansen
test results show that the over-identification restrictions are
valid since the null hypothesis that the instruments used are
valid instruments (uncorrelated with the error term) and that
the excluded instruments are correctly omitted from the
estimated equations cannot be rejected for each equation at
the 5% level.

The regression results demonstrate that different deter-
minants influence TFP efficiency and technical efficiency
measures9. The only common determinant that is significant
and positive to all measures, considered at a level of 10% or

Fig. 8 Counterfactual distributions of TFP efficiency—multiplicative output-oriented component measures

8 Banker et al. (2019) have demonstrated through extensive simula-
tions that the simple two-stage DEA+OLS model outperforms all the
other two-stage approaches when the contextual variables influence
firm performance. However, unlike the System GMM models esti-
mated in this section, DEA+OLS models ignore the potential endo-
geneity and reverse causality problem arising from efficiency estimates
potentially influencing some of the contextual variables. Though
instrumental variables may be used to overcome this problem, it is
difficult to find suitable instruments that influence the contextual
variables and not efficiency measure within our sample data.

9 The results of the ordinary least squares regression reported in
Appendix 4 show the same farm characteristics as significant for each
performance measure, confirming the findings of the System GMM
regression provided in Table 4.

Journal of Productivity Analysis (2022) 57:193–211 205



greater, is farm enterprise size, where larger farms perform
better. Despite the shared significance, the magnitude of the
impact of farm enterprise size on the performance measures
varies substantially: the effect of farm enterprise size is
greater in the TFP efficiency model (0.1567) compared to
the OTE model (0.1227) and the ITE model (0.0709). Both
production diversification and the farm business debt-to-
equity ratio are positively and significantly associated with
OTE; production diversification is also positively associated
with ITE at a significance level of 1%.

The positive association of enterprise production diver-
sification and technical efficiency may be explained by farm
businesses being better able to adapt to variable environ-
mental and market conditions, for instance, through
improved land and soil management practices arising from
pasture and crop rotation. Several prior studies globally
have found that diversification by crop producers leads to
technical efficiency gains; those include Rahman (2009)
who analysed rice and wheat producers in Bangladesh,
Ogundari (2013) who examined mixed cropping enterprises

in Southwestern Nigeria, and Ho et al. (2017) who studied
coffee farmers in the Central Highlands region of Vietnam.

The positive impact of a higher debt-to-equity ratio on
technical efficiency may be explained by the free cash flow
theory (Jensen and Meckling 1976). The theory postulates that
businesses with greater cash on hand will make more risky
investments and apply less effort in the use of their resources;
conversely, as a firm’s level of debt increases, management
will be more prudent and efficient in their resource use. By
contrast, farm businesses that have higher costs associated
with debt will be motivated to use their available resources
more efficiently (Mugera and Nyambane 2014).

By contrast, the reliance of farm businesses on off-farm
income is shown to be significant and negatively associated
with TFP efficiency. A 10% rise in the ratio of off-farm
income to total income leads to a 1.738% decline in TFP
efficiency. This finding may imply that farm owners that
earn a larger proportion of their total income away from
their farming operation may be less concerned about opti-
mising the productivity of their farm operations relative to

Fig. 9 Counterfactual distributions of TFP efficiency—multiplicative input-oriented component measures
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those farm owners who solely rely on farm income. The
incidence of lower TFP efficiency, where the proportion of
income received from off-farm activities is greater, may also
reflect the trade-off in time allocated to farm and non-farm
commercial activities. Location in low rainfall regions
relative to medium rainfall regions is shown to a negative
association with TFP efficiency. This finding is significant
at a 1% level. This result may be explained by farm man-
agers being more conservative in their selection and use of
inputs because of potentially greater downside yield risk in
low rainfall areas.

The impact of the year level dummies in the estimated
models shows that year level effects appear to have a lim-
ited impact on input-oriented technical efficiency estimates
with only 2011 being observed as negatively affecting
input-oriented technical efficiency relative to a 2003 base.

Year fixed-effects are shown in several instances to have a
negative impact on output-oriented technical efficiency
estimates with 2010 and 2011 shown to be significant at a
1% level, 2006 significant at a 5% level, and 2009 at a 10%
level. Relative to 2003 as a base year, 2005 is shown to
influence TFP efficiency estimates positively at a 1% level,
whilst 2006, 2008, 2009, 2010 and 2011 are shown to
negatively influence TFP efficiency at a 1% level. These
results accord with the mean TFP efficiency results pre-
sented in Fig. 2. The increased significance of year dum-
mies to TFP efficiency may support these estimates being
influenced more by unobserved factors emanating from
macro and environmental conditions than orientation-
restricted technical efficiency measures, since production
mix choices that impact TFP efficiency are made before
late-season rainfall and yield prospects are known.

Table 5 System GMM estimates
of the determinants of TFP
efficiency, output-oriented
technical efficiency (OTE), and
input-oriented technical
efficiency (ITE)

TFP efficiency OTE ITE

Coef RSE Coef RSE Coef RSE

Y-Lagt–1 –0.0463 0.0422 0.0369 0.0550 0.1140 0.0720

Diversification –0.0082 0.0870 0.3485** 0.1353 0.2876*** 0.0948

Off-farm income –0.1738*** 0.0446 –0.0114 0.0884 –0.0214 0.0886

Debt/equity 0.0062 0.0547 0.1301** 0.0560 0.0919 0.0558

Cap ex –0.0311 0.0457 –0.0111 0.0727 0.0091 0.0613

Contractor use 0.2979 0.2684 0.0835 0.4128 –0.0514 0.4727

Operator age –0.0005 0.0009 0.0001 0.0014 –0.0007 0.0012

Enterprise size 0.1567*** 0.0330 0.1225*** 0.0408 0.0709*** 0.0261

Rainfall zone (medium)

Low –0.0811*** 0.0310 –0.0427 0.0370 –0.0205 0.0376

Education (below)

University –0.0429 0.0442 –0.0089 0.0539 0.0011 0.0361

Constant 0.4316*** 0.0608 0.5798*** 0.0909 0.6179*** 0.0881

Year

2004 –0.0062 0.0156 –0.0145 0.271 –0.0068 0.0294

2005 0.0410*** 0.0135 –0.0069 0.0209 –0.0033 0.0171

2006 –0.0570*** 0.0216 –0.0676** 0.0299 –0.0128 0.0301

2007 –0.0274 0.0229 –0.0036 0.0329 0.0399 0.0262

2008 –0.0897*** 0.0241 –0.0315 0.0329 0.0082 0.0304

2009 –0.0905*** 0.0160 –0.0640 0.0329 –0.0272 0.0261

2010 –0.0630*** 0.0240 –0.1080*** 0.0390 –0.0397 0.0351

2011 –0.0887*** 0.0233 –0.1962*** 0.0415 –0.1118*** 0.0298

Number of instruments 55 55 55

Number of groups 64 64 64

Arellano–Bond z Pr>z z Pr>z z Pr>z

First-order test –3.78 0.000 –4.81 0.000 4.16 0.000

Second-order test 0.62 0.534 0.39 0.697 1.07 0.283

Over-identification test χ2 (34) Pr>χ2 χ2 (34) Pr>χ2 χ2 (34) Pr>χ2

Hansen test 47.43 0.063 39.94 0.223 40.80 0.196

RSE robust standard error

***Significant at a 1% level; **Significant at a 5% level
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8 Concluding remarks

The Debreu–Farrell measure of technical efficiency is
widely used to benchmark the performance of agricultural
enterprises in both developing and developed countries. The
TFP efficiency measure associated with O’Donnell (2008)
is an alternative metric for benchmarking performance that
measures the ratio of the total factor productivity of a
decision-making unit to that of the maximum TFP that is
possible in each production period given the available
production technology and environment. This study pre-
sents an analysis of TFP efficiency as a performance
benchmark and compares it to the widely adopted measure
of Debreu–Farrell technical efficiency, exposing that gains
in technical efficiency may not necessarily yield improve-
ments in firm productivity. We explore the construction of
these measures and their application in understanding the
relative competitiveness and viability of farm businesses
and firms more broadly.

The analysis shows that despite rising agricultural
productivity in Western Australia’s broadacre farms, as
measured by TFP, the average TFP efficiency declined
between 2005 and 2011. Our results expose a high fre-
quency with which farm businesses in the sample experi-
enced high technical efficiency yet low and declining TFP
efficiency. TFP efficiency estimates vary more than tech-
nical efficiency estimates within periods and diverged
more over the study period. The multiplicative counter-
factual distribution of TFP efficiency components
demonstrated that residual mix efficiency is the main dri-
ver of TFP efficiency relative to technical or scale effi-
ciency, a finding that is consistent with observation by
Tozer and Villano (2013) in the same region.

TFP efficiency and orientation-restricted measures of
technical efficiency are found to be largely influenced by
different sources of heterogeneity at the farm level, with
farm enterprise size shown to be the only significant com-
mon driver. Production diversification is found to be posi-
tively and significantly associated with both input and
output technical efficiency; farm business capital structure is
shown have a positive and significant impact on output-
oriented technical efficiency. By contrast, off-farm income
and location in low rainfall zones are found to be negatively
and statistically associated with TFP efficiency only.

The main insight from this study is that firms within a
given industry may be technically efficient but not TFP
efficient. The determinants of TFP efficiency may also be
different from those of technical efficiency. Therefore,
intervention policies derived from estimation of primary
drivers of technical efficiency may not necessarily be sui-
table for designing interventions to improve the overall
productivity and hence the viability of firms. This is an

important observation that researchers and policymakers
need to be aware of.
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