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Abstract This paper investigates whether technology

spills over across national borders and technology regimes.

We advocate a modeling strategy where improvements in

technical efficiency capture technology spillovers as

industries absorb and implement the best-practice tech-

nology. Dynamic panel-based techniques are used to

determine whether efficiency series move together in the

long run (cointegrate) and/or move closer together over

time (converge). We control for technological hetero-

geneity and for cross-sectional dependence in the data. For

a panel of manufacturing industries in six EU countries, we

find evidence of technology spillovers and convergence

among industries’ efficiency levels across countries and

mainly across adjacent technology regimes.

Keywords Technology spillovers � Efficiency � Panel
cointegration � Convergence � Manufacturing industries

JEL Classification C23 � L60 � O14

1 Introduction

Technology is a major driving force of economic growth

(Romer 1990; Rivera-Batiz and Romer 1991; Grossman

and Helpman 1991). The non-rival characteristics of

technology imply investments in technology do not only

benefit the investors but also contribute to the knowledge

base that is publicly available to them. These externali-

ties are called technology spillovers (Romer 1990).

Through technology spillovers, countries that operate

below the production frontier can increase output by

learning from the best practice. Countries benefit from

technology flows if they have the ‘appropriate’ technol-

ogy (Abramovitz 1986; Basu and Weil 1998) and suffi-

cient ‘absorptive capacity’ (Abramovitz 1986; Cohen and

Levinthal 1989).

A large literature has examined the significance of

purely domestic spillovers (see Mohnen 1996, for a sur-

vey), or domestic spillovers in conjunction with foreign

spillovers (Coe and Helpman 1995).1 Technology trans-

mission, both domestic and foreign, has been found to play

a significant role in promoting productivity and economic

growth.

The purpose of this paper is to investigate whether

technology flows across industries in the EU manufacturing

sector. In particular, we would like to investigate whether
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1 A number of subsequent studies has extended the seminal study of

Coe and Helpman (1995) in various ways. For instance, Lichtenberg

and Potterie (1998), Keller (1998), Kao et al. (1999), Coe et al.

(2009), Frantzen (2000), Lichtenberg and Potterie (2001), Luintel and

Khan (2004) and Falvey et al. (2004) investigate international
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Keller (2002), Frantzen (2002), Griffith et al. (2004), Park (2004) and

Cameron et al. (2005) among others, for international intra-industry

and inter-industry spillovers.
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industries located in homogenous and presumably inte-

grated countries benefit from technology spillovers from

industries in other countries or from technology spillovers

from different technology regimes. We focus on industries

in the manufacturing sector rather than countries in order to

account for aggregation bias due to heterogeneity in

existing technologies (Bernard and Jones 1996a, b).

The present paper contributes to the existing literature in

three distinct ways. A first contribution of this paper is that

we measure technology spillovers in a simple and rather

‘pure’ manner. We propose a flexible modeling approach in

exploring technology spillovers by estimating a stochastic

production frontier. The latter is the empirical analog of the

theoretical production possibility frontier and enables us to

measure the maximum frontier output. One important

advantage of focusing on maximum (frontier) output,

rather than observable output, is that deviations from

maximum output reflect sluggish absorption and imple-

mentation of the best practice (frontier) technology,

whereas improvements in efficiency represent productivity

catch-up via technology diffusion. In contrast the vast

majority of the productivity literature focuses on total

factor productivity (TFP), which, as a residual, measures

‘anything and everything’ of output growth that is not

accounted by input growth. The translog index TFP growth

measure ignores the concept of technical inefficiency (by

unrealistically assuming that all industries are technically

efficient) and inaccurately interprets technical change as

TFP growth.2 While the frontier effect indicates how far

the efficient frontier itself has shifted over time due to the

use of better technology and equipment, the catching up

effect reflects how far the industry has moved towards the

efficient frontier due to the better use of technology and

equipment.

Industries in the manufacturing sector, however, are

characterized by different technologies. Recent theoretical

and empirical contributions (Basu and Weil 1998; Ace-

moglu and Zilibotti 2001; Bos et al. 2010b, a) have stres-

sed the ‘appropriateness’ of technology as countries

(industries) choose the best technology available to them,

given their input mix. Industries are members of the same

technology regime (club) if their input/output combinations

can be described by the same production technology (Jones

2005). Not accounting for different technologies and

estimating a single stochastic frontier function can result in

biased estimates of the ‘true’ underlying technology. Fur-

thermore, omitted technological differences may be erro-

neously labeled as inefficiency (Orea and Kumbhakar

2004). Allowing for different production frontiers to

account for heterogeneity in technologies in the manufac-

turing sector has been largely ignored by the studies that

have performed frontier analyses for studying technology

spillovers and catch-up (see, for instance, Semenick Alam

and Sickles 2000; Kneller and Stevens 2006). To the best

of our knowledge, only a handful of studies allow for

heterogenous technologies and growth experiences (Koop

2001; Bos et al. 2010a).

Our second contribution, therefore, lies in the way we

account for differences in technologies. We estimate sep-

arate production frontiers for each of the four technology

regimes (high tech, medium-high tech, medium-low tech

and low tech) in the manufacturing sector as defined by the

OECD (2005) technology classification.3 As a result, we

obtain efficiency levels for industries in each of the tech-

nology regimes that reflect the distance to their appropriate

technology.

While a large strand in the literature explores technol-

ogy spillovers across industries (countries), only a few

studies pay attention to the time series properties of these

spillovers (see Coe et al. 2009, for a survey). A number of

studies derive their spillover estimates from (OLS)

regressions, which, with non-stationary data, result in

super-consistent (Stock 1987) but imprecise coefficient

estimates with standard errors ill-suited for statistical

inference (Kao and Chiang 2000). Ignoring integration and

cointegration properties of the data it is not clear whether

one estimates a structural long-run relationship or a spu-

rious one.4 In this paper, we rely on cointegration and

convergence to determine whether efficiency levels move

together in the long-term (cointegrate), or, in fact, move

2 Empirical studies on technology spillovers usually test for conver-

gence in total factor productivity (TFP) as a proxy of the technology

level. TFP is evaluated as a growth accounting (Solow-) residual,

usually under rather limiting assumptions about the behavior of

economic units (optimizing behavior with no room for inefficiency).

As a result, the observed output is assumed to be the maximum

(frontier) output, in all TFP analyses. In reality, however, economic

units may well differ in the efficiency with which they use the best

practice (frontier) technology.

3 Manufacturing industries are classified into different technology

regimes according to their technology intensity. The OECD method-

ology uses two indicators of technology intensity reflecting, to

different degrees, ‘technology-produce’ and ‘technology-user’

aspects: (1) R&D expenditures divided by value added; (2) R&D

expenditures divided by production. The division of manufacturing

industries into high-technology, medium-high technology, medium-

low technology and low technology groups is based on a ranking of

the industries according to their average R&D intensity over

1991–1999 against aggregate OECD R&D intensities. Industries

classified to higher categories have a higher average intensity for both

indicators than industries in lower categories.
4 Few studies (see, for instance, Coe and Helpman 1995; Keller

2002) acknowledge that inference tests of their results could be are

unreliable and suggest that compelling evidence of panel cointegra-

tion is needed to support their estimation strategy. An exemption are

the studies of Frantzen (2000, (2002) that account for the stationary

properties of the data when studying the international intra-industry

and inter-industry spillovers.
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closer together over time (converge). For instance,

increased integration and competition in the EU can lead

to more efficient use of resources among industries. Thus

efficiency levels may track one another over time as

industries attempt to follow each other’s efficiency

advances in order to remain competitive. Therefore,

accepting the cointegration null for a set of industries

would indicate a long-run relationship in the technology

transfer within the cointegrated set and potential con-

vergence; in contrast, lack of cointegration of an indus-

try’s efficiency score with those of its counterparts may

reflect the industry’s inability to absorb the existing

technology.

To the best of our knowledge, there have been only two

studies that are close to our modeling (frontier) approach

and investigate the time series properties of technical

efficiency in the context of technology spillovers and

convergence. Cornwell and Wächer (1999) examine whe-

ther a long-term relationship exists between country-level

technical efficiencies in a sample of 26 OECD countries

and whether these efficiencies converge. Semenick Alam

and Sickles (2000) present a firm-level study on the role of

market structure and the developments in efficiency for the

US airline industry. Their results support fairly strong

evidence of cointegration and convergence among EU

countries (Cornwell and Wächer 1999) and existence of a

long-run relationship of efficiency levels and, over time,

convergence among US carriers (Semenick Alam and

Sickles 2000).

Notwithstanding, both aforementioned studies as well as

studies that investigate R&D trade-related technology

spillovers using cointegration analysis (Frantzen

2000, 2002) rely on cointegration techniques that do not

allow for potential cross-sectional dependence. Cross-sec-

tional dependence, which only very recently has gained

some attention in the literature, appears to be, however, the

case in many macroeconomic applications (e.g. conver-

gence hypothesis tests) where time series are contempo-

raneously correlated due to (spatial) spillover effects,

common unobserved shocks, or a combination of these

factors (Pesaran 2004). If there is cross-sectional depen-

dence, the traditional assumption of orthogonality of the

individual series’ error terms is violated, and cointegration

test statistics are biased. Furthermore, none of the afore-

mentioned related studies proceeds with estimating long-

run cointegrating relationships, discussing the nature of

potential long-term linkages. Therefore, the third contri-

bution of this paper lies in the use of recently developed

dynamic panel-based cointegration techniques to determine

whether efficiency series have moved together in the long-

run (cointegrate) and to estimate these long-run linkages

using appropriate estimators, which take into consideration

cross-sectional dependencies.

We apply the proposed methodology to a sample of 21

manufacturing industries for six European countries, over

the period 1980–1997. Each industry is allocated to one of

the four technology regimes, as classified by the OECD

(2005): high, medium-high, medium-low and low tech-

nology. Taking annual averages for each technology

regime in each country, we explore the properties of a total

of 24 (4 9 6) series, with three sets of questions in mind:

(1) are there technology spillovers across countries? (2) are

there technology spillovers across technology regimes? and

lastly (3) is there any evidence of convergence?

Overall, our results reveal that there is fairly strong

evidence that industries’ efficiency levels have moved

together in the long-run (cointegrate) mainly across tech-

nology regimes and across borders. It appears that com-

petitive forces in the EU have led, to a certain extent, to

more efficient use of resources among industries as their

efficiency levels have tracked one another over time in an

attempt to follow each other’s efficiency advances in order

to remain competitive. The estimation of the long-run

relationships between efficiency levels indicates that

technological proximity is of the upmost importance.

Finally, industries’ efficiency levels have also moved clo-

ser together over time (converge) both in cross-country and

cross-regime analysis. However, the extent to which con-

vergence takes place across countries and across technol-

ogy regimes differs significantly.

The remainder of the paper proceeds as follows. Sec-

tion 2 considers a model of production that allows for

technical inefficiency and presents the econometric

methodology and specifications for estimation. Section 2.4

introduces the data. Empirical results are presented in

Sect. 3. Section 4 summarizes the findings and concludes.

2 Methodology and data

In this section, we first discuss the concept of technical

efficiency and introduce a model of production that enables

us to allow for inefficiency. Next, we discuss recent

developments in panel-based integration and cointegration

analysis to examine whether there is a long-run structural

relationship among the efficiency series across countries or

across technology regimes. Lastly, we describe the con-

vergence tests we shall use to examine whether there is

convergence across across countries or technology

regimes.

2.1 Technical efficiency in a stochastic Frontier

model of production

An industry is technically efficient if an increase in its

output requires an increase in at least one input. A
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technically inefficient industry can produce the same out-

put with less of at least one input. Alternatively, it can use

the same inputs to produce more of at least one output

(Koopmans 1951).5

We demonstrate the concepts of technical efficiency and

production frontiers with a simple one output, one input

example in Fig. 1. In the graph, we consider three cases.

An industry operating under the frontier of Regime 1 in

(a) cannot increase output without increasing its input,

whereas an industry operating under the frontier of Regime

1 in (b) can try to absorb the (superior) production skills of

(a) and increase its technical efficiency. Similarly, an

industry operating under the frontier of Regime 2 in (d) can

increase its efficiency by absorbing the production skills of

an industry operating under the frontier of Regime 2 in (c).

The latter industry, however, can not increase its output

without either increasing its input, or through positive

technical change, i.e. an outward shift of the regime’s

frontier over time.

To measure efficiency, we estimate the following

translog stochastic frontier production specification:6

ln Yijt ¼ bij þ b1 lnKijt þ b2 ln Lijt þ
1

2
b3 lnK

2
ijt þ

1

2
b4 ln L

2
ijt

þ b5 lnKijt ln Lijt þ ctDt þ dkt lnKijtDt

þ dlt ln LijtDt þ mijt � uijt

ð1Þ

where Yijt is the level of output in country i, in industry j, at

time t; uijt � 0 is normally distribution, truncated at

l; jNðl; r2uÞj, and independent from the noise term, mijt; bij
are country-industry specific fixed effects.

An industry is inefficient (TE ¼ expf�uijtg\1) if it

fails to absorb the best-practice technology. In this respect,

our approach is comparable to non-frontier studies (Ber-

nard and Jones 1996a, b; Scarpetta and Tressel 2002;

Griffith et al. 2004; Cameron et al. 2005) that measure

impediments to this absorptive capacity using total factor

productivity (TFP) changes. However, in their framework

the latter can be seen as a combination of technical change

(frontier shift) and efficiency change (catching up effect).

As Baltagi and Griffin (1988) have shown, Solow’s

general index of technical change relies on three restrictive

assumptions: ‘‘constant returns to scale, neutral technical

change, and perfect competition in both output and factor

input markets’’ (p. 23).7 We follow Baltagi and Griffin

(1988) and include a set of time dummies Dt, which—

interacted with K and L—allow us to measure a more

general Tornqvist index of technical change as proposed by

Diewert (1976).

Manufacturing industries can be grouped into four

technology regimes: high, medium-high, medium-low and

low regime. The division of the industries into technology

regimes is based on the OECD (2005) classification.8

Accordingly, we estimate four production frontier func-

tions, based on the specification defined in Eq. (1), one for

each regime. Industries in each one of the four technology

regimes are benchmarked against each group’s production

frontier and technical efficiencies are calculated. In our

second stage analysis, we rely on cointegration and con-

vergence tests to determine whether these efficiency levels

have moved together in the long-term (cointegrate), or, in

fact, move closer together over time (converge).

For our first stage frontier estimation, we want to impose

as little additional constraints as possible on the distribu-

tion and behavior (over time) of efficiency. Therefore, we

follow Greene (2005) and estimate a ‘true’ fixed effects

model, in which the fixed effects are allowed to be corre-

lated with the other parameters, but they are truly inde-

pendent of the error term and inefficiency. To see why this

is important, consider the case in which an industry is

inefficient, but its inefficiency is constant over time. In that

case, if we estimate a fixed effect model in which our fixed

effects behave like standard dummy variables, this

Regime 1

Regime 2

(a)

(b)

(c)

(d)

O
ut

pu
t

Input

Fig. 1 Technical efficiency

5 Industries may also be inefficient because they are unable to

combine inputs and outputs in optimal proportions for given prices. In

the current paper, we do not consider this ‘allocative efficiency’, not

only because price information is scarce, but also because the positive

(negative) technology spillovers that we want to measure should

result in reductions (increases) of technical slack. Therefore, in this

paper the term ‘efficiency’ refers to technical efficiency only.
6 We have tested whether a translog specification is indeed preferred

to a Cobb-Douglas specification. Our tests (not reported here) favor a

translog specification.

7 See Biesebroeck (2007) for an excellent review on methodological

issues on measuring total factor productivity, TFP.
8 The OECD classification of industries is based on the analysis of

R&D expenditure and output of 12 OECD countries according to

ISICRev.3 and covers the period 1991–1999. On the criteria and

procedure followed see OECD (2005, pp. 181–184).
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industry’s fixed effect will absorb the inefficiency, and the

industry will appear to be efficient. A second problem, in

light of our analysis, that is solved by Greene’s model is

fact that in previous fixed effects panel formulations,

inefficiency was assumed to be time invariant.9

Nevertheless, given that we shall use the efficiency

scores generated by the true fixed effects model in a second

stage cointegration analysis, we have to face a second set

of problems. Simar and Wilson (2007) list a total of four

issues we need to consider.10 First, they emphasize that

since the sample used for estimating the efficient frontier

does not include all possible efficient production possibil-

ities, the estimated efficiency scores are upwardly biased

(see for example Barros and Dieke 2008). Since we are

interested in the dynamics of efficiency scores, rather than

their level, and estimate a stochastic frontier model—as

opposed to the deterministic models (Simar and Wilson

2007) refer to—we do not think this issue carries a lot of

weight in light of our analysis. The same holds for the

second problem Simar and Wilson (2007) address: the fact

that a second-stage analysis typically includes additional

covariates, that may be correlated with the covariates used

in the first stage. The only covariates we shall use in our

second stage are efficiency scores generated by other

frontier estimations, and in so doing we include appropriate

(country- and/or technology-specific) fixed effects in our

second stage. Third, Simar and Wilson (2007) emphasize

that a second stage estimation should take into account the

fact that the efficiency scores generated in the first stage are

restricted to a [0,1] interval. Therefore, after estimating our

stochastic frontier model outlined in Eq. (1), we shall use

the untransformed scores ui;t � jNðl; r2uÞj, rather than the

transformed expf�uijtg, which are indeed defined on the

interval [0,1]. In doing so, we conveniently benefit from the

fact that we bootstrap in this second stage, and can there-

fore accommodate the non-normality of the untransformed

scores with some confidence.

The final problem discussed by Simar and Wilson

(2007), is the most important in light of our second stage

cointegration analysis: as emphasized in their paper, since

the true efficiency scores are not directly observed in the

first stage, the usual assumption of independently dis-

tributed error terms is (likely to be) violated. To address

this problem, we make use of recent developments in panel

cointegration tests, allowing for cross-sectional depen-

dence (Bai and Ng 2004; Palm et al. 2008). This is also the

main reason why we opt for a two-stage approach, rather

than follow Battese and Coelli (1995), and impose a

common linear trend on mijt. Not only could we then not test
for the significance of the time trend in a pannel setting in

the same manner we do now, but more importantly we risk

biasing our results further by not allowing for cross-sec-

tional dependence. Given that without the latter, it is hard

to argue that there can be spillovers at all, we pursue our

two stage procedure here.

We next turn to our approach regarding the panel unit

root and panel cointegration analysis.

2.2 Panel unit root and cointegration analysis

The main goal of the paper is to identify and explain the

long-run dynamics between efficiency levels of different

technology regimes of the EU manufacturing industries in

our sample. Increased trade and competition in the EU

could lead to more efficient use of the resources among

industries. In that case, efficiency levels should track one

another over time as industries within each regime attempt

to follow each other’s efficiency advances in order to

remain competitive; otherwise lack of efficiency co-

movement could indicate inability to capitalize on tech-

nology other industries are employing.

To examine the long-run properties of technology spil-

lovers, captured by the efficiency series, we employ coin-

tegration techniques.11 Cointegration examines the

existence of stationary relationships between non-station-

ary variables and indicates that variables possess a long run

common feature. A series possesses a unit root, i.e. it has a

stochastic trend or is non-stationary if its statistical prop-

erties depend on time, and it is said to be integrated of

order d, I(d) if its d-difference does not posses a stochastic

trend. If two or more series are themselves non-stationary,

but a linear combination of them is stationary, then the

series are said to be cointegrated. Cointegrated variables

share similar stochastic patterns in the long-run and cannot

move too far away from another. In contrast, lack of

cointegration suggests that there is no long-term link

between each other.

Panel-based cointegration techniques are particularly

well-suited for the study of technology spillovers for a

number of reasons. First, the focus is on the long-run

relationships, which would be obscured if the equations are

estimated in first differences instead of in levels of the

variables. Second, the increased power of the tests comes
9 A third problem solved by Greene’s model is the fact that it can

accommodate time invariant covariates.
10 The paper by Simar and Wilson (2007) proposes a bootstrap

approach for a second stage analysis in a non-parametric Data

Envelopment Analysis. However, as explained in their section 5, the

problems highlighted in their paper—and reiterated here—easily

translate to the case of fully parametric models as applied here.

11 Whether the use of technical efficiency (TE) in a second stage

analysis is appropriate, is an issue of debate, given the fact that it is a

generated regressor, which is assumed to be i.i.d. (see Tsionas and

Christopoulos 2001). In this paper, we approach this debate from a

purely empirical perspective, by testing for non-stationarity of

efficiency using a broad range of panel unit root tests.
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from exploiting commonalities across industries (coun-

tries), given the limited time span.12 Third, parameter

estimates are super-consistent and therefore robust to

omitted variables, simultaneity and endogeneity problems.

Thus, one can avoid the difficult task of finding valid

instruments for some variables that would be necessary in

the case of estimating a short-run relationship (Coe et al.

2009).

The implementation of the cointegration procedure

entails first confirmation that the data are indeed non-sta-

tionary. Combining time-series information with cross-

sectional information, panel unit root tests can be more

precise and powerful by reducing the error-in-rejection

probability (size distortion), especially when the time-ser-

ies is not very long. Consider the following AR(1) process

for panel data:

yit ¼ qiyit�1 þ eit ð2Þ

where y represents the dependent variable, x is a vector of

independent variables, q is a coefficient and e is the dis-

turbance term.

Depending on assumptions regarding the homogeneity

(heterogeneity) of correlations in the data, several tests

have been developed to identify unit roots in panel data

The seminal study of Levin et al. (2002) (LLC hereafter)

considers a homogenous autoregressive root under the

alternative hypothesis.13 More specifically, the tests pro-

posed by LLC assume that there is a common unit-root

process between cross-sections so that qi ¼ q for all i. Im

et al. (1997, (2003) relax the homogeneity assumption and

propose panel unit root tests that permit heterogeneity of

the autoregressive root under the alternative so that qi may

vary freely between cross-sections. They present two

group-mean panel unit root tests designed against the

heterogenous alternatives. The two tests are executed with

a t-test based on ADF regressions (IPS hereafter) and a

Lagrange multiplier (LM) test. Nevertheless, these tests,

labeled as ‘‘first generation’’ tests, do not take into account

the cross-sectional dependence. To overcome this short-

coming, a ‘‘second generation’’ of panel unit root tests have

been proposed.14 Among them, the tests developed by

Palm et al. (2008) and Bai and Ng (2004) are particularly

designed for finite samples. Palm et al. (2008) propose a

bootstrap version of the LLC and IPS tests while Bai and

Ng (2004) suggest a modified version of the panel unit root

test of Maddala and Wu (1999) but on the idiosyncratic

component, i.e. once common component has been

removed. We examine the stationarity of our efficiency

series based on these two tests.

Having established the presence of a unit root in all

series of interest, the next step consists of testing for

cointegration among efficiency levels. Like panel unit root

tests, panel cointegration tests have been motivated by the

search for more powerful tests than those obtained by

applying individual time series cointegration tests, which

have lower power, especially when the time dimension is

rather small.

Most panel cointegration tests are built from the resid-

uals previously obtained by the panel regression model:

yit ¼ x0itbþ eit ð3Þ

where yit and xit are I(1). Several tests have been proposed,

such as Dickey-Fuller (DF) and Augmented Dickey Fuller

(ADF)-type unit root tests for eit as a test for the null of

cointegration (or no cointegration).

The statistical properties of such tests are derived under

the assumption of cross-sectional independence, which

greatly simplifies the derivation of limiting distributions of

the panel test statistics. Cross-sectional independence is not

however a tenable assumption when countries (industries)

are hit by the same shocks such as oil price shocks, tech-

nological revolutions, exchange rate shocks, monetary

shocks and so forth.15 For our six EU countries it is very

difficult to assume that technology developments are

entirely independent. Violation of the independence

assumption leads to test statistics that are biased favoring

the existence of cointegration and to coefficient estimates

that are not super consistent.

For this purpose, a number of (‘second generation’) tests

have been proposed (Phillips and Sul 2003; Groen and

Kleinbergen 2003) to allow for cross-sectional dependence.

We test for the null hypothesis of no cointegration fol-

lowing a methodology proposed in the recent work of

Fachin (2007). This study introduces block-bootstrapped

versions of the well known panel cointegration test of

12 The advantage of the panel data approach is that it enables us to

determine the long-run relation among variables avoiding well-known

problems that occur in using traditional time series cointegration

testing (i.e., lower power of statistics due to small sample sizes). By

allowing data to be pooled in the cross-sectional dimension, panel-

based integration and cointegration techniques reduce small sample

limitations. The use of the time-series dimension captures the long-

run information contained in the data, and at the same time captures

the heterogeneity in the short-run dynamics among different

industries.
13 This study is based on the earlier works of Levin and Lin

(1992, 1993).
14 See Gengenbach et al. (2010) for a survey.

15 The plausibility of cross-sectional independence has been ques-

tioned in the literature as time series are found to be contempora-

neously correlated (Pesaran 2004). Cross-sectional dependence can

arise, in general, due to omitted observed common factors, (spatial)

spillover effects, unobserved common factors, or general residual

interdependence that could remain even when all the observed and

unobserved common factors are taken into account. In the presence of

cross-sectional dependence as well as when the cross sectional

dimension is small with respect to the time dimension, conventional

(first generation) cointegration tests are shown to be biased.
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Pedroni (1999). Fachin proposes two bootstrapped tests

(FDB1, FDB2) that both rely on the fast distribution

bootstrapping procedures suggested by Davidson and

MacKinnon (2000).16 Both procedures incorporate the

standard assumptions for efficient maximum likelihood

estimators, but generate statistics that have limit properties

that are less affected by sample size than standard boot-

strapping procedures. FDB1 differs from FDB2 in that the

former has, in theory, slightly better limit properties,

whereas the latter is somewhat less computationally

demanding. As Davidson and MacKinnon (2000, p. 7)

point out, ‘‘it is almost costless to compute FDB2 if FDB1

is already being computed, it may be useful to do so as a

check on the accuracy of the latter.’’ In the original paper,

Fachin (2007) shows the validity of the bootstrapped ver-

sions of the cointegration tests via Monte-Carlo simula-

tions, but recently Palm et al. (2008) have demonstrated

theoretically that the bootstrap approach behaves ade-

quately in such a framework. The bootstrapped versions of

the group-t and median-t statistics for the null hypothesis of

no cointegration are robust to cross-sectional dependence

and small sample bias.17

Lastly, one can proceed with estimating the long-run

cointegrated relationship. Chen et al. (1999) have proven

that the ordinary-least-squares (OLS) estimator is biased in

a cointegrated panel framework and thus may lead to

spurious regression. Fully-Modified OLS (FMOLS)

addresses potential endogeneity of the regressors and serial

correlation in order to obtain asymptotically unbiased

estimates of the long run parameters. More specifically,

FMOLS is a non-parametric approach that controls for

possible correlation between the error term and the first

differences of the regressors and removes nuisance

parameters (Dreger and Reimers 2005; Pedroni 2001).18

Nevertheless, Bai et al. (2009) (BKN hereafter) prove that

in presence of cross-sectional dependence generated by

unobserved global stochastic trends traditional FMOLS

estimator is biased.19 They thus propose an iterative pro-

cedure to extract the common factor and to estimate the

model simultaneously. These common factors, whatever

they may be, allow us to have an estimation robust to cross-

sectional dependence, which is not the case when imple-

menting DOLS or FMOLS methods.

More formally, whereas FMOLS considers the follow-

ing, general model:

yit ¼ ai þ bixit þ uit ð4Þ

where xit ¼ xit�1 þ eit, and xit ¼ ðuit; eitÞ0.
BKN model the cross-section dependence by imposing a

factor structure on uit. Therefore, the general version of

their model becomes:

yit ¼ ai þ bixit þ kiFit þ eit ð5Þ

where Fit is a qx1 vector of latent common factors, eit is a

qx1 vector of factor loadings.20

We employ the BKN estimator for dynamic heteroge-

nous panels to estimate long-run equations for cross-border

and cross-regime spillovers. As normalization is performed

with respect on a certain country, we estimate the follow-

ing equation:21

TEcrt ¼ ar þ
X5

i 6¼c
i¼1

TE
0

irtbi þ eirt; ð6Þ

where i is the country subscript (i ¼ 1; . . .; 5), c is the

country on which the equation is normalized, t is the time

subscript (t ¼; 1. . .; 18), r is the regime subscript

(r ¼ H;MH;ML; L), and regime-specific fixed effects ar
are included.

Equation (6) is estimated normalizing on each of the six

countries, respectively. Similarly, for cross-regime spil-

lovers normalizing on the low technology regime, we

estimate the following equation:

TEigt ¼ ai þ
X3

r 6¼g
r¼1

TE
0

irtbr þ eirt; ð7Þ

where g is the technology regime on which the equation is

normalized, i is the country subscript (i ¼ 1; . . .; 6), coun-

try-specific fixed effects ai are included and other sub-

scripts are the same as for Eq. (6). Equation (7) is also

estimated normalizing on each of the technology regimes,

respectively.

16 FDB1 and FDB2 stand for fast distribution bootstrapped tests 1

and 2.
17 The tests based on the bootstrap method are robust to non i.i.d.-

ness and in particular to cross-sectional dependence, since the

bootstrap procedure consists of draws from (the residual of) the

empirical distribution, and not the theoretical distribution as with

Monte-Carlo methods.
18 An alternative estimator suggested by Kao and Chiang (2000) is

the Dynamic OLS (DOLS) estimator, which also corrects for potential

endogeneity of the regressors and serial correlation. Banerjee et al.

(2000) have shown that both estimators are asymptotically equivalent.
19 For related applications of FMOLS, see Fachin (2007) and Tsionas

and Christopoulos (2001).

20 The number of common factors Fit is determined individually for

each panel unit root. With respect to the cointegration part, we

include for a test of cross-country spillovers, a set of 5x1 common

factors (6 minus the reference/normalizing country), and for a test of

cross-regime spillovers, a set of 3x1 common factors (4 minus the

reference/normalizing regime).
21 The common factor is not reported in the coming equation for sake

of clarity.
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2.3 Convergence

The presence of cointegration indicates a long-run rela-

tionship between the efficiency series. However, this does

not necessarily imply convergence of efficiency levels.

Tests of convergence in the economic growth literature

(Baumol 1986) determine whether there is a closing of the

gap between inefficient and efficient industries over time.

To investigate the convergence hypothesis, we run

simple regressions of time-averaged efficiency growth rates

on the initial level of efficiency:

DTEij ¼ b0 þ b1TEij;1980 þ eij ð8Þ

where DTEij denotes the average growth rate of the effi-

ciency level of industry j in country i between 1980 and

1997, TEij;1980 is the initial level of efficiency in year 1980

and eij an error term.

We test for convergence across technology regimes, by

estimating equation (8) for all industries in a country,

controlling for technology regime-specific fixed effects.

Convergence across technology regimes in all countries is

tested in the same manner, but with country-technology

regime-specific fixed effects. We also test for convergence

within technology regimes, by estimating equation (8) for

all industries in a technology regime. Again, we perform

this test both for each country and for all countries jointly,

and include country-specific fixed effects in the latter case.

In the tradition of Baumol (1986) and Barro (1991,

(1997), a negative and statistically significant coefficient on

the initial level of efficiency can be interpreted as indica-

tion of convergence of efficiency levels. The higher the

initial level of efficiency is, the slower that level should

grow. This phenomenon is the result of the public nature of

technology that spills over from leaders to followers, as the

latter group learns from the former and tries to catch-up.

2.4 Data

Our aim is to include as many industries as possible, since

we are primarily interested in comparing industries that—

potentially—produce using different technologies. Our

analysis covers 21 two-, three- and four-digit industries in

manufacturing for six countries (Finland, France, Ger-

many, Italy, Netherlands and Spain) over the period

1980–1997, where the time span is determined by the data

availability for the highest level of disaggregation.

The current selection of EU countries is the largest

number of countries in the Euro area—the area which is

characterized by common economic policies, high com-

petition and volume of trade—for which the data are

available for a wide selection of industries and for a large

time span. For instance, gross fixed capital formation (for

constructing physical capital) data on the industry level are

largely missing for a number of industries for Greece,

Luxembourg, Portugal and Belgium.22 Overall, choosing to

investigate more countries would significantly decrease the

number of industries in our sample, as well as result in a

higher aggregation of industries.23 Our fairly homogenous

sample reduces the possibility of additional unobserved

factors driving our result of economically and statistically

significantly different technology regimes and potential

technology spillovers.

We start our data collection at the two-digit level, using

the International System of Industries Classification Code

(ISIC, revision 3) classification. If data on output, capital

stock and labor are available at a higher disaggregation

level (three- or four-digit), we disaggregate further.

Clearly, we avoid double counting by only including the

latter at the highest disaggregation level. The manufactur-

ing industries considered in our analysis and their ISIC

codes are presented in the ‘‘Appendix’’ Table 6.

Annual raw data are retrieved from various sources.

Data on industry output (value added) and investment (for

constructing capital stocks) are retrieved from the OECD

(2002) Structural Analysis Database (STAN). Data on

labor (annual total hours worked) are extracted from the

Groningen Growth and Development Centre (GGDC)

(2006) 60-Industry Database.24 The same ISIC code is

used for all data sources. Definitions of the variables are

provided in the ‘‘Appendix’’.

22 Our sample could also expanded to include few more countries for

which the data are available namely, Denmark, Norway, Sweden, and

U.K. In contrast to the Euro area countries, where all the price data for

all industries were given in euros, price data for the rest of the

European countries were expressed in local currency units. Trade-

weighted exchange rates constructed for the aggregate economy

cannot always capture the changes in industry competitive conditions

associated with movements in specific bilateral exchange rates.

Exchange rates constructed using information on industry-specific

trade partners are better suited for this task. Unfortunately, there is no

such database available for the European industries, therefore, we

restrain from including these countries in the present analysis.
23 Papers close to our line of research investigate fewer industries; for

instance six industries (Koop 2001) over 1970–1988 or nine industries

(Kneller and Stevens 2006) over 1973–1991 for a panel of OECD

countries, eleven and twelve, respectively.
24 The Groningen Growth and Development Centre (GGDC) (2006)

60-Industry Database provides output (value added) and labour

(hours worked) data for 27 manufacturing industries. Unfortunately,

there are no data for gross fixed capital formation to construct capital

stock. The OECD (2002) Structural Analysis Database (STAN)

contains all information needed, i.e., value added, investment and

labor (number of employes) for 21 industries. Therefore, we could

have relied entirely on the STAN but since we care about the

productivity (efficiency and technology) of every industry, we use

annual hours worked in the industry and not number of employees.

Eventually, both databases, STAN and GGDC, contain similar

information and are subject to the same methodologies as the later

builds on the former.
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3 Results

3.1 Frontier results

We estimate equation (1) for each technology regime.

Table 1 contains the most important frontier results.25 Both

r (the composite standard deviation) and k (the ratio of the

standard deviation of efficiency over the standard deviation

of the noise term) are highly significant for all technology

regimes. For high-tech industries, k is 1.954, and signifi-

cant at the 1 % level, indicating that the variance in inef-

ficiency is about twice the size of noise in this technology

regime. Much the same holds for medium-high, medium-

low and low-tech industries, where k is 1.947, 2.251 and

2.891, respectively, and also always significant at the 1 %

level.

For industries in each technology regime, we also cal-

culated the marginal rate of technical substitution (MRTS),

as the negative of the ratio of the marginal product of labor

capital. The MRTS measures the rate at which labor can be

substituted for capital, keeping output constant. As

expected, the MRTS gradually increases as we move from

the high technology regime to the low technology regime

and thereby increase capital intensity.

Compared to their own frontier, industries in the low

technology regime are on average the most efficient

(78.4 %). The least efficient, on average, are industries in

the high technology regime (48.4 %). The spread of effi-

ciency, however, is the highest for this regime. Figure 2

shows the efficiency distributions for each technology

regime. Compared to their own frontier, industries in the

medium-high and low technology regime are on average

the most efficient. Also, the spread of efficiency levels is

relatively low in these regimes. Medium-low technology

industries are, compared to their own frontier, on average

less efficient. But the spread of efficiency levels in this

regime is much higher than the spread in the medium-high

technology regime.

Apparently, both the mean level and the spread of effi-

ciency are affected by the diversity of industries in a

technology regime. The latter, is particular apparent for

industries in the high technology regime, which includes

for example the aerospace (AER) and the medical industry

(MED), and for industries in the medium-low technology

regime, which includes for example the shipbuilding

industry (SHI) and the other non-metallic mineral products

industry (ONM). As a result, the high and medium-low

regimes may have the most potential for convergence (an

issue to which we return in Sect. 3.3). Some evidence of

the latter can already be gathered by simply considering the

development of efficiency within each regime over time.

As an example, consider Fig. 3, which shows that over

time average efficiency increased and its standard deviation

decreased for industries in the high-tech regime.

Table 2 contains average efficiency levels as well as

average growth rates of efficiency over the sample period

for each industry in each technology regime in each

country. On the whole, Table 2 reveals few straightforward

patterns. The fast growing industries in the medium-high,

medium-low and low technology regimes are located in the

Netherlands (Motor vehicles (MOT), petroleum products

Table 1 Frontier results
High Medium-high Medium-low Low

LL (Obs.) -467.428 (540) 111.082 (432) -415.489 (756) 139.398 (540)

r (t value) 1.344 (23.773) 0.458 (31.299) 1.032 (33.918) 0.477 (38.410)

k (t value) 1.954 (6.658) 1.947 (5.853) 2.251 (6.572) 2.891 (8.434)

MRTS (SD) -3.820 (5.194) -2.245 (2.154) -1.585 (3.599) -1.332 (0.675)

TE (SD) 0.484 (0.061) 0.779 (0.035) 0.580 (0.051) 0.784 (0.050)

LL is log-likelihood; r ¼ ðr2u þ r2vÞ
1=2

; k ¼ ru=rv; MRTS = marginal rate of technical substitution (mar-

ginal product of labor/marginal product of capital); and TE is the technical efficiency as defined in

Sect. 2.1. Obs stands for number of observations and SD for standard deviation
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Kernel density plots for efficiency scores per technology group.

Fig. 2 Technical efficiency distribution for all technology regimes

25 Detailed results are available upon request.
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(COK) and food products (FOD), respectively). Overall,

the industries in the high technology regime are the fastest

growers.

3.2 Panel unit root and panel cointegration results

In this subsection, we examine the co-movement of tech-

nical efficiency levels across countries and across regimes,

respectively. We take annual averages of each technology

regime in each country and study the properties of the

resulting 24 series following a two-step procedure. The first

step consists of examining whether each of the series

(country- or regime-specific) are non-stationary by testing

for unit roots. Evidence of panel unit roots (i.e., technical

efficiency levels ‘move’) allows us to proceed to the sec-

ond step, and test whether the series are cointegrated (i.e.,

whether the technical efficiency levels in different groups

‘co-move’). As a further investigation, we examine the

long-run linkages between the cointegrated series. To avoid

biasing our results, we apply tests and estimators that

account for cross-sectional dependence across the series.

3.2.1 Are there spillovers across national borders?

The first question we ask is whether there are any spillovers

across countries. This is a question that a large strand of

literature have concerned about. To answer such a question

within our framework, we first need to test for panel unit

roots in the efficiency series. Table 7a reports results from

the Palm et al. (2008) test statistics and Table 8a from the

Bai and Ng (2004) tests (see the ‘‘Appendix’’). Overall, the

panel-unit root tests provide strong support of unit root

evidence, as the null hypothesis cannot be rejected at a 5 %

nominal size. In the presence of contradictory findings, for

instance, for the case of Germany in Table 8a, we retain the

results from the Palm et al. (2008) tests, as these tests

explicitly consider the finite dimension of our panel

whereas the Bai and Ng (2004) tests assume asymptotic

distribution. We can therefore conclude that the efficiency

series in each country are non-stationary and all of them

must be included in the cointegration analysis, which is our

next step.

In Table 3a, we report two cointegration tests (FDB1

and FDB2), which are based on fast distribution bootstrap

methods proposed by Fachin (2007) and control for cross-

sectional dependence. Both test statistics reject the null

hypothesis of no cointegration at 10 % and the hypothesis

of one cointegrating vector is accepted. Support of coin-

tegration of efficiency scores across borders implies that

increased integration and competition in the EU have led to

more efficient use of resources among industries in the

countries of our sample. Thus efficiency levels have

tracked one another over time as industries have attempted

to follow each other’s efficiency advances in order to

remain competitive. Therefore, there is a long-run rela-

tionship in the technology transfer within the cointegrated

set of the efficiency levels in the countries under investi-

gation—a finding consistent with past related literature

(Cornwell and Wächer 1999)—and potential convergence;

in contrast, lack of cointegration could reflect a country’s

(industry’s) inability to absorb the existing technology and

potentially inability to converge with the rest of the set.

As a further exploration, we would like to investigate

whether we can infer anything about the nature of long-run

linkages among efficiency levels across countries. These

linkages can be positive or negative, depending on the

mechanisms at work. For instance, competition can force

industries to increase their competitive capacity by

reforming management styles and updating production

technology, therefore enhancing the adoption of existing

advanced technology. But it can also hamper the absorption

of technology in case industries draw inputs from limited

resource spaces and produce output to satisfy demand that

typically is not completely inelastic. In the latter case, an

industry may absorb technology at the expense of another

industry (Aitken et al. 1997; Aitken and Harrison 1999;

Girma 2005). As a result, either market-stealing (on the

output side) or skill-stealing (on the input side) results in a

negative long-run linkage among efficiency developments.

Geographical proximity and intensity of trade also have a

dual effect on spillovers (Audretsch and Feldman 2004).

Industries in countries that trade more than others and/or

share a common border, ceteris paribus, could experience

stronger positive or negative long-run linkages in their

technology absorption, either via higher technology flows,

or via skill-stealing, assuming that labor is sufficiently

mobile.
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Kernel density plots for efficiency scores of high−technology group over time.

Fig. 3 Technical efficiency distribution in high-tech over time
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To assess the long-term linkages among efficiency

levels in these countries, we use the BKN estimator for

dynamic heterogeneous panels to estimate the long-run

equations (6) for cross-border spillovers. However, we

have to be careful in interpreting the results as they depend

on normalization. Table 3b reports the estimation results

based on all different normalizations (i.e., every row of the

table shows results based on the normalization of a certain

country).26

As Table 3b shows, we find evidence of negative long-

run linkages among most of countries, most notably

between neighboring countries such as France and Ger-

many ð�0:371;�0:831Þ and France and Italy ð�1:232;

�0:099Þ, and Germany and Italy ð�0:997;�0:068Þ. These
negative linkages are not driven by technology spillovers,

but rather by various forces such as market-stealing or

skill-stealing that this study cannot precisely identify. For a

small number of countries, for example France and the

Netherlands (0.045, 0.147) and the Netherlands and Spain

(0.381, 0.066), we find positive long-run linkages. The

latter, however, are hardly ever significant.

Lastly, for a number of pairs of countries we observe

opposite signs for the long-run linkages. For example,

whereas the coefficient for Italy in the panel estimation for

Spain is 0.449, the coefficient for Spain in the panel esti-

mation for Italy is -0.807. However, since most of the

other results with opposite signs are not statistically sig-

nificant and may depend on the normalization, we refrain

from giving further economic meaning to these results.

To highlight the economic significance of these results,

consider the following example: ceteris paribus, how much

is the average change in output for industries in France that

results from the sample period change in technical effi-

ciency in, say, Finland? From Table 3b, we observe that for

France, bFI is -0.869. Using the period average efficiency

scores for France and for Finland, we can calculate the

elasticity, the effect of a percentage change in the average

efficiency in Finland on the average efficiency in France,

which is -0.85. Given that Finnish industries on average

increase their efficiency by 41.76 % over the sample period,

French industries are expected to decrease their average

efficiency by -35.65 % (�0:85� 41:76), purely as a result

of the negative spillovers from Finland. From the average

value added level in 1980, we can calculate the average

reduction in 1980 value added that would result from these

negative spillovers, as the percentage drop in efficiency

multiplied by the valued added in 1980. The result turns out

Table 3 Panel cointegration and estimation across countries

FDB1 FDB2

(a) Panel cointegration across countries

Mean 7.50 7.40

Median 6.70 6.60

Country bFI bFR bDE bIT bNL bES

(b) Panel estimation across countries

Finland – �0.700 0.680 �0.150 0.828 0.659

(0.170) (0.139) (0.077) (0.079) (0.124)

France �0.869 – �0.371 �1.232 0.045 0.120

(0.118) (0.142) (0.174) (0.123) (0.186)

Germany �0.859 �0.831 – �0.997 0.091 �0.065

(0.134) (0.216) (0.141) (0.142) (0.194)

Italy �0.596 �0.099 �0.068 – �0.261 0.449

(0.095) (0.213) (0.142) (0.126) (0.181)

Netherlands �0.271 0.147 �0.075 �1.172 – 0.381

(0.108) (0.248) (0.176) (0.205) (0.219)

Spain �0.449 �0.156 �0.486 �0.807 0.066 –

(0.133) (0.269) (0.182) (0.182) (0.153)

FDB1 and FDB2 denote the two fast distribution bootstrapped tests proposed by Fachin (2007). FI, FR, DE, IT, NL and ES denote Finland,

France, Germany, Italy, Netherlands and Spain, respectively. In all estimations, technical regime-specific fixed effects are introduced but not

reported for sake of space. They are available from the authors upon request. Standard errors in (parentheses)

26 Since we use series for each of the four technology regimes in each

country, we include regime-specific fixed effects (not reported here).

Results from the other estimators are qualitatively similar and

available upon request.

74 J Prod Anal (2016) 46:63–82

123



to be a reduction in value added of 2469.08 million euros, or

23.28 % of the average 1980 output of French industries.

Although we find efficiency co-movements across

countries in our sample, a justified concern is that aggre-

gate (country-level) analysis of technology spillovers may

mask important variations in efficiency patterns due to

different technologies (or technological regimes) across

industries (Scarpetta and Tressel 2002). A more appropri-

ate way to investigate whether there are technology spil-

lovers across the EU is to examine whether the efficiency

scores of technologically neighboring or very far apart

regimes are cointegrated (co-move) or not. Our next sec-

tion proceeds with such an investigation.

3.2.2 Are there spillovers across technology regimes?

The second question we ask is, therefore, whether tech-

nology spills over across technology regimes. First, we test

for panel unit roots in the efficiency series. Panel unit root

tests for technical efficiency levels for each technology

regime in our sample are reported in Tables 7b and 8b in

the ‘‘Appendix’’. As the tests indicate, we find strong

support for unit roots for all regimes. As before, in the

presence of contradictory findings, for instance, for the

case of medium-high technology regime in Table 8, we

retain the results from the Palm et al. (2008) tests, as these

tests explicitly consider the finite dimension of our panel

whereas the Bai and Ng (2004) tests assume asymptotic

distribution. Therefore, in each technology regime the

efficiency series in the six countries are non-stationary.

Hence, we include all regimes in the panel cointegration

tests reported in Table 4a. Both test statistics, FDB1 and

FDB2, are slightly above 10 % indicating that test statistics

is close to the nominal size. We thus take the decision to

consider that the null hypothesis is rejected and thus to

conclude in favor of the hypothesis of one cointegrating

relationship.

So far, we have established that there is co-movement of

the efficiency of industries with different technologies in the

EU manufacturing sector. In order to investigate the type of

long-run linkages implied between the different technology

regimes, we proceed by estimating long-run cointegrating

equation (7), using the same set of estimators described

previously for our country analysis. Table 4b reports the

BKN estimator for dynamic heterogeous panels to estimate

the long-run equations for cross-regime spillovers.27

From Table 4b we can infer that technology spills over

to neighboring technology regimes. We observe significant

positive long-run linkages between industries in the med-

ium-low and low (0.418, 0.142) as well as between med-

ium-high and medium-low regimes (0.415, 0.082). In these

types of regimes, technology tends to be rather

stable which appears to have facilitated technology spil-

lovers. In contrast, the evidence on the long-run relation-

ship between the last pair of adjacent technology regimes,

high and medium-high, is mixed (0.391, -0.212).28

Mixed long-run linkages are also found for other regime

combinations. For instance, there is a negative association

between less technologically advanced regimes, namely the

medium-high, medium-low and low regime and the most

advanced regime, the high technology regime. A similar

finding is also reported between the low and medium-high

regimes. Since the estimator in these cases behaves dif-

ferently, depending on the normalization, we are reluctant

to provide further economic meaning to these results. We

can only say that advanced technology industries tend to

specialize in specific products/market niches, which redu-

ces the scope for technological spillovers.29 The

Table 4 Panel cointegration and estimation across regimes

FDB1 FDB2

(a) Panel cointegration across regimes

Mean 12.20 12.10

Median 13.50 13.90

Regime bH bMH bML bL

(b) Panel estimation across regimes

High – 0.376 �0.128 0.135

(0.019) (0.098) (0.160)

Medium-high �0.212 � 0.415 0.326

(0.066) (0.022) (0.145)

Medium-low �0.133 0.082 – 0.411

(0.074) (0.050) (0.011)

Low �0.001 �0.114 0.142 –

(0.118) (0.127) (0.100)

FDB1 and FDB2 indicate the two fast bootstrapped tests proposed by

Fachin (2007). In all panel estimations, country-specific fixed effect

are introduced but not reported for sake of space. They are available

from the authors upon request. Standard errors in (parentheses)

27 Since we use series for each of the counties in our sample, we

include country-specific fixed effects (not reported here). Results

from the other estimators are qualitatively similar and available upon

request.

28 We would like to note here that the OECD classification used was

based on data between 1991 and 1999 and the data used in this study

started in 1980. We also check whether our results stand when the

1991–1997 subsample is used. We also do the same for the cross-

country spillovers. Results are robust in both cases and available upon

request.
29 Scarpetta and Tressel (2002) provide evidence that the scope for

technology spillovers in technologically advanced manufacturing

industries is limited compared to less technologically advanced

industries.
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dominance of one (or few) technologies gives scope for

some positive spillovers from more advanced to less

advanced technology regimes but not the other way around.

Perhaps, in the long-run, there is some skill-stealing from

the advanced technology regimes as skillful workforce in

the less advanced technology regimes migrate to technol-

ogy advanced regimes, in case of skill compatibility.

Positive linkages between adjacent technology regimes

and weak (or even negative) linkages between technolog-

ically-distant regimes suggest that it is indeed easiest to

appropriate technology that is closely related to your own

(Scarpetta and Tressel 2002; Garcia Pascual and Wester-

mann 2002). In his overview paper on R&D spillovers,

Griliches (1992) introduces a simple model where spil-

lovers are decreasing in technological distance. He subse-

quently describes a number of studies that report the same

evidence. Maurseth and Verspagen (2002), in their patent

citation analysis for European regions also find that patent

citations are industry specific and occur more often when

the technological linkages between industries are stronger.

Moretti (2004) studies human capital spillovers, and uses

input-output flows, technological specialization, and patent

citations to measure technological and economic distance.

He finds that spillovers are decreasing in all three alter-

native measures.

Overall, we conclude that the greater the technology

distance, the smaller the spillover effects are, and the

learning effect takes places from more advanced to less

advanced technology regimes. A possible channel for the

latter is the forward and backward linkages between

industries.30

We can illustrate the economic significance of these

results in the same manner as for the cross-border spil-

lovers. For technology regime spillovers, consider the

following question: ceteris paribus, how much is the

average change in output for industries in the medium-high

technology regime that results from the period change in

technical efficiency in the high technology regime? From

Table 4b, we observe that for medium-high technology

industries, bH is -0.212. Using the period average effi-

ciency scores, we can calculate the elasticity, which is

-0.13. As high technology industries on average have

increased their efficiency by 28.83 % over the sample

period, medium-high technology industries are expected to

increase their average efficiency by �3:80%ð�0:13�

28:83Þ as a result of the positive spillovers from the high-

technology industries. From the average value added level

in 1980, we can again calculate the average reduction in

1980 value added that would result from these negative

spillovers, which turns out to be 287.45 million euros, or

2.91 % of the average 1980 output of medium-high tech-

nology industries.

3.3 Convergence results

We now turn to the analysis of convergence. We start by

examining whether there is convergence in the manufac-

turing sector as a whole within each country and across all

countries of our sample. We then go one step further, and

test the convergence hypothesis within each technology

regime.

3.3.1 Is there convergence across national borders?

We start by estimating equation (8) for the manufacturing

sector in each country and across countries. Table 5a

reports the convergence coefficient, b1, for each country

and all countries. The results also provide evidence of

convergence within each of the countries. However, the

evidence appears to be the strongest for Finland and Ger-

many. The Netherlands and Spain follow at a modest dis-

tance, and convergence is the lowest in France and Spain.

It is interesting to relate these findings with the past

literature. Our results run counter to the lack of (or very

Table 5 Convergence across and within technology regimes in the

manufacturing sector

Area b0 b1 Elasticity R2
adj

(a) Convergence across technology regimes

All countries 0.124*** �0.190*** �0.114 0.800

Finland 0.156*** �0.248*** �0.125 0.702

France 0.076*** �0.118*** �0.077 0.801

Germany 0.112*** �0.166*** �0.111 0.942

Italy 0.076*** �0.116*** �0.070 0.885

Netherlands 0.101*** �0.155*** �0.089 0.892

Spain 0.096*** �0.146*** �0.089 0.789

(b) Convergence within each technology regime

High 0.136*** -0.284*** �0.114 0.766

Medium-high 0.078*** �0.099*** �0.076 0.854

Medium-low 0.094*** �0.158*** �0.085 0.937

Low 0.087*** �0.110*** �0.083 0.909

Regressions in panel (a)for each country with technology regime-

specific fixed effects; regressions in panel (b)for the EU area with

country-specific fixed effects regressions for the EU area with coun-

try-technology regime-specific fixed effects; all regressions with

robust standard errors; significance at the 10/5/1 % level (*/**/***),

semi-elasticities in the form of dðyÞ=dðlnxÞ

29 Scarpetta and Tressel (2002) provide evidence that the scope for

technology spillovers in technologically advanced manufacturing

industries is limited compared to less technologically advanced

industries.
30 Several studies, see for instance Javorcik (2004) and Liu (2008),

have provided empirical evidence for technology spillovers across

industries through the intermediate inputs they purchase from or sell

to one another.
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little) evidence of convergence documented in the literature

for the manufacturing sector (Hansson and Henrekson

1997; Bernard and Jones 1996a, b). This is mainly due to

the fact that the majority of the past studies test for con-

vergence in total factor productivity (TFP) as a proxy of the

technology level. TFP is measured as a growth accounting

(Solow-) residual under rather limiting assumptions about

the existing technology (represented by a Cobb-Douglas

production function and Hicks neutral technology change)

and the behavior of economic units (optimizing behavior

with no room for inefficiency).

To benefit from spillovers, industries have to incur

(costly) input changes. In contrast, we are line with

Arcelus and Arocena (2000), who also perform a frontier

analysis and focus on efficiency to measure technology

spillovers. Efficiency changes do not require input

changes and therefore they can be considered a more

‘pure’ measure of technology adoption. Indeed, Arcelus

and Arocena (2000) find a high degree of catching-up

among 14 OECD countries over 1970–1990 in the

manufacturing sector.

3.3.2 Is there convergence across technology regimes?

Although convergence in the manufacturing comes out

particularly strong in each and every country and across

countries in our sample, a justified concern is that aggre-

gate (manufacturing sector) analysis of technology spil-

lovers and productivity can mask important variations in

convergence patterns due to different technology across

industries (Garcia Pascual and Westermann 2002; Scar-

petta and Tressel 2002; Boussemart et al. 2006).

This concern, that heterogeneity in existing technologies

might be an issue in efficiency performance and in studying

the convergence hypothesis in the manufacturing, has been

validated in previous sections of our paper. In Sect. 3.1, we

described the mean and growth of efficiency in four tech-

nology regimes (groups) across countries in our sample.

From Fig. 2, we observed that the average efficiency was

relatively low for industries in high and medium-low

technology regimes. In addition, the spread of efficiency

was relatively high for these technology regimes. Table 2

then showed that almost all industries in all technology

regimes and countries exhibited positive growth of effi-

ciency. In sum, our frontier results suggest that there is

ample room for (differences in) convergence, in particular

among industries located in high and medium-low tech-

nology regimes.

Our next step, therefore, involves investigation of con-

vergence across industries with a similar technology.

Table 5b contains the results from estimating equation (8),

per technology regime and across countries. Negative and

significant values for b1 indicate that there is convergence

in all technology regimes. Indeed, the high technology

regime experiences the strongest convergence. In the

medium-low technology regime, convergence is also

strong, as in the low technology regime, while the medium-

high technology regime, on average, experiences the low-

est level of convergence.

In the lower technology regimes (low and medium-low),

the fact that the existing technology tends to be rather

stable appears to have facilitated technology spillovers and

convergence. This finding is in line with the literature

(Scarpetta and Tressel 2002). In contrast, our finding of

strong convergence in the high technology regime appears

at first to be surprising, since patent laws, product and

market differentiation can reduce the scope for technology

spillovers. Our results suggest the presence of some dom-

inant technologies in the high technology regime industries

could be responsible for the evidence of convergence.

Perhaps, persisting institutional differences, in particular

related to product and labor market regulations, affect

technology adaptation, particularly for the most techno-

logically advanced and innovative industries.31

Overall, our findings yield (1) strong evidence of con-

vergence across countries is documented when technical

efficiency is used to study the convergence hypothesis in

the manufacturing sector; and (2) even stronger evidence of

convergence across technology regimes, when we disag-

gregate the manufacturing sector into different sub-sectors

and control for differences in technology. However, the

strength of the convergence varies, depending on the

regime.

4 Conclusion

It has been long recognized that international technology

transfer is an important source of growth and that the

progress of nations may be determined in part by its extent.

This paper investigates whether technology spills over

across national borders and technology regimes. We

31 Differences in the stringency of regulatory settings across coun-

tries could have an impact on technology adaptation and convergence.

Product and labor market regulations, for instance, can reduce

incentives to invent and adopt better technology and catch up with the

technological leader. Specifically, strict (anti-competitive) product

market regulation is found to hinder the adoption of existing

technologies, possibly because it reduces competitive pressures or

technology spillovers (Nicoletti et al. 2001; Bassanini and Ernst

2002). There is also evidence that strict employment protection

legislation results in high hiring and firing costs that impede

productivity improvements, especially when wages and/or internal

training do not offset these higher costs, thereby resulting in sub-

optimal adjustments of the workforce to technology changes and less

incentives to innovate (Scarpetta and Tressel 2002).
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advocate a modeling strategy where changes in technical

efficiency capture technology spillovers as industries

absorb and implement the best-practice (frontier) technol-

ogy. By estimating a frontier model of production we are

able to measure the technical efficiency with which

industries employ their production technology.

We contribute to the literature by controlling for tech-

nological heterogeneity and for cross-sectional dependence

in the data. More specifically, we take into account the

appropriateness of the technology that industries use and

benchmark each industry against other industries within the

same technology regime. Hence, in our analysis, a (posi-

tive) technology spillover (i.e., an increase in efficiency) is

indeed an improvement in the use of the existing technol-

ogy, rather than a change in the latter. Also, we control for

the fact that countries and technology regimes are not

necessarily cross-sectionally independent and use recently

developed dynamic panel-based techniques to determine

whether efficiency series move together in the long run

(cointegrate) and/or move closer together over time

(converge).

We use a panel of 21 manufacturing industries in four

technology regimes and six EU countries over the period

1980–1997, and—after taking country- and regime-specific

annual averages—study the properties of the resulting 24

technical efficiency series. We, first, ask whether technology

spills over across borders, and find that technical efficiency

series are cointegrated with each other across all countries. A

further analysis of the long-run linkages reveals that cross-

country technology spillovers are predominantly negative,

indicating possiblemarket- and/or skill-stealing. Next, we ask

whether technology spills over across regimes, and find that

technical efficiency series are cointegrated with each other

across all technology regimes. Among technology regimes,

long-run linkages are predominantly positive, emphasizing

therefore the importance of technological rather than geo-

graphical proximity for technology spillovers.

We also find fairly strong evidence of convergence, both

across countries and technology regimes. Over time, the

technical efficiency series of industries in the manufactur-

ing sector have moved closer together. However, the extent

to which this has happened differs. In the northern coun-

tries (Finland, Germany), convergence is the strongest. In

particular, industries in the high technology regime emerge

as the drivers behind the convergence of efficiency.
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Appendix

Variables and sources

Value-Added (Y): gross value-added expressed in 1995

constant prices (euros). Gross value-added was deflated by

implicit value-added deflators to yield deflated gross value-

added expressed in 1995 constant prices (euros). We follow

the OECD (2002) practice for the construction of the im-

plicit value-added deflators. Data on gross value-added are

retrieved from the OECD (2002) STAN Structural Analysis

Database.

Physical capital (K): gross capital stock expressed in

1995 constant prices (euros). Following common practice

in the literature (e.g. Hall and Jones, 1999), we employ the

perpetual inventory method to construct a proxy for capital

stock, using data on gross fixed capital formation (GFCF).

The initial value for the 1980 capital stock is specified as

K1980 ¼ GFCF1980=ðgþ dÞ, where g is the average geo-

metric growth rate of the gross fixed capital formation

(constant prices) series from 1970 to 1980 and d is the

depreciation rate. Instead of assuming a constant depreci-

ation rate, we use the average service life (ASL) of capital

per industry (OECD 1993). Each industry’s capital stock is

constructed as capital stock minus depreciated capital stock

plus gross fixed capital formation (Kt ¼ ð1� dÞ � Kt�1þ
GFCFt). Data on gross fixed capital formation are retrieved

from the OECD (2002) STAN Structural Analysis

Database.

Labor (L): annual total hours worked in an industry (in

thousands). Data are retrieved from the Groningen Growth

and Development Centre (GGDC 2006) 60-Industry

Database (Table 6).

Panel unit root tests

See Tables 7 and 8.
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Table 7 Palm et al. (2008)

bootstrap tests
Test t value Root

(a) Panel unit root tests across countries

Finland

Levin–Lin–Chu (LLC) -0.508 -2.01 I(1)

Im–Pesaran–Shin (IPS) 0.141 -13.469 I(1)

France

Levin–Lin–Chu (LLC) 0.064 -2.593 I(1)

Im–Pesaran–Shin (IPS) 2.221 -15.868 I(1)

Germany

Levin–Lin–Chu (LLC) -0.528 -0.827 I(1)

Im–Pesaran–Shin (IPS) -1.354 -15.329 I(1)

Italy

Levin–Lin–Chu (LLC) -0.208 -1.035 I(1)

Im–Pesaran–Shin (IPS) -0.378 -13.116 I(1)

Netherlands

Levin–Lin–Chu (LLC) -0.073 -1.812 I(1)

Im–Pesaran–Shin (IPS) -4.729 -13.118 I(1)

Spain

Levin–Lin–Chu (LLC) 1.028 -0.611 I(1)

Im–Pesaran–Shin (IPS) -0.870 -16.698 I(1)

(b) Panel unit root tests across regimes

High

Levin–Lin–Chu (LLC) 0.063 -1.387 I(1)

Im–Pesaran–Shin (IPS) 10.763 -11.535 I(1)

Medium-high

Levin–Lin–Chu (LLC) 0.4129 -1.517 I(1)

Table 6 Manufacturing

industries
Industry Abbreviation ISIC code (Rev. 3)

Coke, refined petroleum products and nuclear fuel COK 23

Textiles, textiles products, leather and footwear TEX 17–19

Building and repairing ships and boats SHI 351

Food products, beverages and tobacco FOD 15–16

Non-ferrous Metals NFM 272 ? 2732

Other non-metallic mineral products ONM 26

Wood, and products of wood and cork WOD 20

Iron and steel IAS 27 ? 2731

Machinery and equipment, n.e.c. MAC 36 ? 37

Chemicals (excl. pharmaceuticals) CHE 24 less 2423

Pulp, paper, paper products, printing and publishing PAP 21–22

Manufacturing n.e.c.; recycling MAN 29

Motor vehicles, trailers and semi-trailers MOT 34

Fabricated Metal products (excl. mach. and equip.) FAB 28

Aircraft ? spacecraft AIR 353

Rubber and plastics products RUB 25

Pharmaceuticals PHA 2423

Electrical machinery and apparatus ELE 31

Medical, precision and optical instruments MED 33

Radio, television and communication equipment RAD 32

Office, accounting and computing machinery OFF 30

J Prod Anal (2016) 46:63–82 79

123



References

Abramovitz M (1986) Catching up, forging ahead, and falling behind.

J Econ Hist 46(2):385–406

Acemoglu D, Zilibotti F (2001) Productivity differences. Q J Econ

116(2):563–606

Aitken BJ, Harrison AE (1999) Do domestic firms benefit from direct

foreign investment? Evidence from Venezuela. Am Econ Rev

89(3):605–618

Aitken B, Hanson GH, Harrison AE (1997) Spillovers, foreign

investment, and export behavior. J Int Econ 43(1–2):103–132

Arcelus FJ, Arocena P (2000) Convergence and productive efficiency

in fourteen OECD countries: a non-parametric frontier approach.

Int J Prod Econ 66(2):105–117

Audretsch BD, Feldman MP (2004) Knowledge spillovers and the

geography of innovation. In: Handbook of regional and urban

economics, vol 4, Ch 61. Elsevier, The Netherlands, 2713–2739

Bai J, Ng S (2004) A panic attack on unit roots and cointegration.

Econometrica 72(4):1127–1177

Bai J, Kao C, Ng S (2009) Panel cointegration with global stochastic

trends. J Econom 149(1):82–99

Baltagi BH, Griffin JM (1988) A general index of technical change.

J Polit Econ 96(1):20–41

Banerjee A, Marcellino M, Osbat C (2000) Some cautions on the use

of panel methods for integrated series of macro-economic data.

Working Papers 170, IGIER (Innocenzo Gasparini Institute for

Economic Research), Bocconi University

Barro RJ (1991) Economic growth in a cross section of countries. Q J

Econ 106(2):407–443

Barro RJ (1997) Determinants of economic growth: a cross-country

empirical study. MIT Press, Cambridge

Barros CP, Dieke PUC (2008) Measuring the economic efficiency of

airports: a Simar–Wilson methodology analysis. Transp Res Part

E 44:1039–1051

Bassanini A, Ernst E (2002) Labor market institutions, product market

regulation, and innovation: cross country evidence. OECD

Economics Department Working Papers No 316, Paris

Basu S, Weil D (1998) Appropriate technology and growth. Q J Econ

113(4):1025–1054

Battese GE, Coelli JT (1995) A model for technical inefficiency

effects in a stochastic frontier production function for panel data.

Empir Econ 20(2):325–332

Baumol W (1986) Productivity growth, convergence, and welfare:

what the long-run data show. Am Econ Rev 76(5):1072–1085

Bernard AB, Jones CI (1996a) Comparing apples to oranges:

productivity convergence and measurement across industries

and countries. Am Econ Rev 86(5):1216–1238

Bernard AB, Jones CI (1996b) Productivity across industries and

countries: time series theory and evidence. Rev Econ Stat

78(1):135–146

Bos JWB, Economidou C, Koetter M (2010a) Technology clubs,

R&D and growth patterns: evidence from EU manufacturing.

Eur Econ Rev 54(1):60–79

Bos JWB, Economidou C, Koetter M, Kolari JW (2010b) Do all

countries grow alike? J Dev Econ 91(1):113–127

Boussemart J-P, Briec W, Cadoret I, Tavera C (2006) A re-

examination of the technological catching-up hypothesis across

OECD industries. Econ Model 23(6):967–977

Cameron G, Proudman J, Redding S (2005) Technological conver-

gence, R&D, trade and productivity growth. Eur Econ Rev

49(3):775–809

Chen B, McCoskey S, Kao C (1999) Estimation and inference of a

cointegrated regression in panel data: a Monte Carlo study. Am J

Math Manag Sci 19(1–2):75–114

Table 7 continued
Test t value Root

Im–Pesaran–Shin (IPS) 1.295 -11.566 I(1)

Medium-low

Levin–Lin–Chu (LLC) -0.298 -0.898 I(1)

Im–Pesaran–Shin (IPS) -1.1602 -15.424 I(1)

Low

Levin–Lin–Chu (LLC) -0.517 -1.222 I(1)

Im–Pesaran–Shin (IPS) -6.955 -12.160 I(1)

Panel unit root tests include an intercept and a trend. The number of lags is two. For LLC, IPS, the null

hypothesis is that all time series are I(1) and the length of the kernel window is fixed to 3.000. Similar

results are obtained with other window sizes and are available from authors upon request. Tests for LLC

and IPS are left-sided tests

Table 8 Bai and Ng (2004) two common factors test

Country P Root

(a) Panel unit root tests across countries

Finland �2.000 I(1)

France �2.020 I(1)

Germany �1.361 I(0)

Italy �2.003 I(1)

Netherlands �5.516 I(1)

Spain �1.797 I(1)

(b) Panel unit root tests across regimes

Regimes

High �2.346 I(1)

Medium-high �0.510 I(0)

Medium-low �1.652 I(1)

Low �2.449 I(1)

P reports the statistics of the Bai and Ng (2004) panel unit root test.

Asymptotic critical value at a 5 % level is 1.645. Rejection of the null

hypothesis, I(0), when P is greater than the critical value

80 J Prod Anal (2016) 46:63–82

123



Coe DT, Helpman E (1995) International R&D spillovers. Eur Econ

Rev 39(5):859–887

Coe TD, Helpman E, Hoffmaister AW (2009) International R&D

spillovers and institutions. Eur Econ Rev 53(7):723–741

Cohen WM, Levinthal DA (1989) Innovation and learning: the two

faces of R&D. Econ J 99(397):569–596
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