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Abstract
Interventions (including behavioral, biobehavioral, biomedical, and social-structural interventions) hold tremendous potential 
not only to improve public health overall but also to reduce health disparities and promote health equity. In this study, we 
introduce one way in which interventions can be optimized for health equity in a principled fashion using the multiphase 
optimization strategy (MOST). Specifically, we define intervention equitability as the extent to which the health benefits 
provided by an intervention are distributed evenly versus concentrated among those who are already advantaged, and we 
suggest that, if intervention equitability is acknowledged to be a priority, then equitability should be a key criterion that 
is balanced with other criteria (effectiveness overall, as well as affordability, scalability, and/or efficiency) in intervention 
optimization. Using a hypothetical case study and simulated data, we show how MOST can be applied to achieve a strategic 
balance that incorporates equitability. We also show how the composition of an optimized intervention can differ when 
equitability is considered versus when it is not. We conclude with a vision for next steps to build on this initial foray into 
optimizing interventions for equitability.
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Overview

Behavioral, biobehavioral, biomedical, and social-structural 
interventions (hereafter referred to simply as interventions) 
hold tremendous promise for prevention of disease and pro-
motion of health and well-being. A few examples (out of 
many possibilities) include prevention of substance use (e.g., 
Hill et al., 2023), internalizing symptoms (e.g., Brincks et al., 
2023), and HIV (Gwadz et al., 2022). Given the important 
and ubiquitous role that interventions play in public health, 
interventions should be expected to play a correspondingly 
important role in achieving health equity and eliminating 
health disparities. At the very least, interventions should not 
exacerbate existing health disparities; ideally, they should be 
designed specifically to reduce or eliminate health disparities.

In this article, we offer initial ideas for using interven-
tion optimization via the multiphase optimization strategy 
(MOST; e.g., Collins, 2018; Collins et al., 2016, 2021) as 
a principled framework for designing interventions so as 
to reduce health disparities and promote health equity. In 
optimization, competing considerations (or “criteria”) are 
balanced strategically in deciding which intervention com-
ponents and component levels to include in an intervention. 
To date, effectiveness, affordability (defined in terms of 
any finite resource, including money, participant time, and 
so on), scalability, and efficiency have been suggested as 
criteria to be used in MOST, usually with effectiveness bal-
anced against the other criteria. For example, a reduction 
in expected intervention effectiveness might be traded to 
achieve affordability, thereby improving intervention reach 
and, ultimately, public health impact.

However, this strategic balancing has generally overlooked 
health equity. As we describe further below, alternative combi-
nations of intervention components (or component levels) may 
plausibly have different effects for different groups of people, 
depending, for example, on some level of relative advantage 
versus disadvantage. This means that the decision-makers 
who select an optimized intervention may face the challenge 
of weighing equity against other criteria. The purpose of this 
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article is to explore how equity can be explicitly included as a 
criterion to be balanced along with effectiveness, affordability, 
scalability, and efficiency in the optimization of an intervention.

We begin by briefly introducing intervention optimiza-
tion and MOST, and we discuss health equity in relation to 
MOST. We then introduce a hypothetical equity case study 
in which we demonstrate the use of MOST to optimize by 
balancing equity with other important criteria. We conclude 
by discussing additional considerations and potential future 
directions. We emphasize that we see this article as an initial 
foray and make no claims that it is a complete treatment of 
this complex topic; in fact, much remains to be done. We 
hope this article helps to generate a broader conversation 
about the use of intervention optimization as a methodologi-
cal framework for designing equitable interventions.

Brief Introduction to Intervention 
Optimization and MOST

A Critique of the Classical Treatment Package Approach

For much of the history of intervention science, interven-
tions have been developed and evaluated using what we will 
call the classical treatment package approach (CTPA; also 
referred to as the “treatment package strategy” by Kazdin 
(1979)). In this approach, a set of intervention components 
is identified and assembled a priori into a treatment package. 
The treatment package as a whole is then evaluated by con-
ducting an evaluation randomized controlled trial (ERCT) 
to compare it to a suitable control. Collins and colleagues 
(Collins et al., 2021) have critiqued the CTPA on numerous 
grounds. Three general themes emerge in these critiques. 
First, because the performance of individual intervention 
components, and whether they interact, is not directly 
assessed in the CTPA, it is usually unclear whether there are 
weak parts of interventions that would benefit from amend-
ment or replacement (and if so, which parts). This inhibits 
the kind of programmatic, iterative improvement over time 
that has occurred in nearly every other field (e.g., automo-
biles, computers and software) over the past hundred years 
or so. Second, in the CTPA, efficiency (which we define here 
as “extent to which the intervention produces preferred out-
comes without resource waste, relative to alternative inter-
ventions”) is not considered empirically. An intervention 
cannot be considered efficient if some alternative version 
of it—say, with an inert or counterproductive component 
removed—can be expected to produce better outcomes at 
the same or lower cost. Inefficient intervention packages 
squander resources that could and should be redeployed else-
where, i.e., to other efforts that will improve public health 
and health equity. Third, in the CTPA, affordability (“extent 
to which the intervention is deliverable within budget, and 

offers a good value;” Collins et al., 2021, p. 2000) and scal-
ability (“extent to which the intervention is implementable in 
the intended setting with no need for ad hoc modifications;” 
Collins et al., 2021, p. 2000) are considered only after the 
intervention package has been constituted and evaluated. At 
this point, the only route to achieving affordability and/or 
scalability is usually removal of components, without any 
empirical basis for selection of components so as to have 
the least deleterious effect on key outcomes.

Here, we extend this critique to note that in the CTPA, 
equitability, like affordability and scalability, is usually not 
considered until after the intervention package has been con-
stituted and evaluated. Based on the Robert Wood Johnson 
Foundation’s definition of health equity (Braveman et al., 
2017), we define equitability of an intervention as the extent 
to which the health benefits provided by an intervention are 
distributed evenly, such that all participants have a fair and 
just opportunity to achieve the desired outcome of the inter-
vention. In our view, progress toward achieving health equity 
cannot be made by developing and evaluating interventions 
using the CTPA. Instead, we suggest that investigators opti-
mize interventions prior to evaluation, including equitability 
as one of the considerations that is balanced in the process.

The Concept of Intervention Optimization

It is foundational to our thinking that although interven-
tion effectiveness is a critically important consideration in 
achieving public health impact, ultimately net public health 
impact is even more important. An intervention that is 
effective but not affordable or scalable will never be widely 
implemented, and therefore, its net public health impact 
will be nearly zero. Opportunity costs diminish the net pub-
lic health impact of inefficient interventions. Intervention 
optimization has been defined as a process of identifying 
interventions that strategically balance effectiveness with 
affordability, scalability, and/or efficiency (Collins et al., 
2021). An intervention optimization perspective on health 
equity extends this thinking to emphasize that an interven-
tion that is effective overall but not equitable—for exam-
ple, because benefits are concentrated among those who 
are already advantaged—will also have diminished public 
health impact, and possibly, even worsen health disparities. 
We propose that intervention optimization can be defined as 
the process of identifying the intervention that strategically 
balances intervention effectiveness overall with intervention 
equitability, affordability, scalability, and/or efficiency.

Brief Introduction to Intervention Optimization 
Using MOST

MOST consists of three phases: preparation, optimization, and 
evaluation. In the preparation phase, the investigator begins by 
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deriving a detailed conceptual model of the health outcome(s) 
to be intervened on and identifies a set of intervention com-
ponents that are candidates for inclusion in the intervention. 
The decision about whether or not to include these compo-
nents will be made based on empirical results obtained in 
the next phase. Decision-making will depend on the optimi-
zation objective, which defines the desired strategic balance 
of effectiveness and additional criteria (e.g., Is affordability 
relevant? If so, what is the available budget?). In the next 
phase of MOST, the investigator optimizes the intervention. 
A necessary part of this process is conducting one or more 
optimization randomized controlled trials (ORCTs). There are 
many experimental designs to choose from for the ORCT, all 
of which provide information on the individual and combined 
performance of intervention components. The results of the 
ORCT(s) are used to inform careful decision-making about 
the candidate intervention components, with the ultimate goal 
of identifying the combination of components that best meets 
the optimization objective. In other words, the results of the 
ORCT(s) are used to confront tradeoffs among the competing 
considerations laid out in the optimization objective. Below, 
we illustrate such tradeoffs in more detail, and with explicit 
consideration of intervention equitability as one competing 
criterion, using a hypothetical case study. In the final phase of 
MOST, the optimized intervention is evaluated as a package 
in a classical ERCT. A comprehensive introduction to MOST 
can be found in Collins (2018).

A Hypothetical Case Study

Introduction to the Case Study

The Motivating Scenario Suppose an investigator is applying 
MOST to develop and optimize an intervention to improve 
medication adherence among people living with HIV. This 
investigator has identified some candidate intervention com-
ponents that they hypothesize will contribute to more suc-
cessful medication adherence. However, because of glaring 
health disparities in HIV treatment (Gwadz et al., 2017), 
the investigator wishes to identify an intervention that is 
effective overall but also with as much equitability as pos-
sible—and certainly with no disparity-widening effects. 
Furthermore, since the investigator also recognizes that the 
monetary resources for intervention delivery are scarce, 
they wish to identify an intervention that is efficient in its 
use of the available resources. This means that three criteria 
emerge as priorities in this scenario: overall intervention 
effectiveness, equitability, and efficiency.

Acknowledging Some Simplifying Assumptions The 
case study we select as the logical starting point for this 

illustration of our proposed methods is simplified in certain 
key ways. First, we assume the decisions about which com-
ponents to include in the optimized intervention are to be 
based on a single continuous outcome variable representing 
medication adherence. Second, we assume that the inves-
tigator is optimizing a fixed (versus adaptive) intervention 
and that they use a prototypical  2k factorial design for their 
ORCT. Third, we assume that the hypothetical intervention 
is single-level versus multilevel, with all candidate compo-
nents delivered at the individual level. In the “Discussion,” 
we return to these assumptions as we lay out a vision for the 
extension of the methods proposed here.

The Case Study ORCT 

Suppose our case study investigator has identified four can-
didate intervention components (based loosely on compo-
nents from Gwadz et al., 2017): Motivational Interviewing, 
Peer Support, a Navigator, and Skill-Building Sessions. 
Though all components are hypothesized to contribute to 
adherence generally, the investigator also hypothesizes Moti-
vational Interviewing may not be as effective for individuals 
with more social disadvantage. With this in mind, the team 
designs the Navigator component to help individuals from 
all levels of relative advantage versus disadvantage access 
and engage in care, hypothesizing further that the pres-
ence versus absence of the Navigator could help overcome 
important systemic barriers to healthcare access that would 
otherwise make certain alternative interventions (e.g., those 
that contain Motivational Interviewing) less effective for 
individuals with less advantage. The investigator’s optimi-
zation objective is to choose an optimized intervention that 
strategically balances intervention effectiveness (in terms of 
better medication adherence) with equitability (in terms of 
the distribution of intervention benefits across participants) 
and efficiency (in terms of the use of available monetary 
resources for intervention delivery).

With this optimization objective in mind, the investigator 
chooses a  24 factorial design for their ORCT and operation-
alizes the candidate components as factors with the levels 
“On” versus “Off,” such that components are absent or pre-
sent in the  24 = 16 alternative interventions (composed of 
the 16 alternative combinations of factor levels). One of the 
great advantages of the factorial ORCT (e.g., Collins et al., 
2009, 2014) is the wealth of empirical information that can 
be obtained. In this example, this includes four main effects 
and up to 11 interaction effects. A main effect for any given 
factor indicates that the factor demonstrates an effect on 
average across all combinations of levels of the remaining 
three factors. A two-way interaction effect indicates that the 
effect of one factor differs depending on the level to which 
a second factor is set. The outcome variable is a hypotheti-
cal continuous measure of medication adherence, and the 
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costs associated with delivering the alternative interventions 
are measured in US dollars. Everything we present assumes 
the ORCT involves a sample sufficiently representative to 
enable valid conclusions to be drawn about equity across 
various levels of relative advantage versus disadvantage; we 
return to this in the “Discussion.”

The latest recommended practice for decision-making 
about the composition of optimized interventions in MOST 
involves using a posterior expected value approach (Strayhorn 
et al., 2023a). In this approach, which incorporates methods 
from Bayesian decision science (e.g., Claxton, 1999), empiri-
cal information from all of the main and interaction effects 
is used to estimate an expected outcome for each alternative 
intervention (i.e., each combination of factor levels). We 
assume in this case study that a large expected outcome is bet-
ter; if the investigators were choosing an optimized interven-
tion based on overall effectiveness only, they would choose 
the alternative intervention that is associated with the largest 
expected outcome in their ORCT. However, since the investi-
gator’s objective is to strategically balance overall effective-
ness with equitability and efficiency, the choice of optimized 
intervention may or may not be the intervention associated 
with the largest expected outcome in the ORCT. We have 
elsewhere proposed a decision-making framework, decision 
analysis for intervention value efficiency (DAIVE), to facili-
tate multi-criteria decision-making using a posterior expected 
value approach in MOST (Strayhorn et al., 2023b). Next, we 
introduce our simulated case study data and then demonstrate 
the use of DAIVE for decision-making about the composition 
of the optimized intervention—first without consideration of 
equitability and then with.

Methods for Simulating Case Study ORCT Data

We generated a simulated 24 factorial ORCT based on the 
hypothetical scenario just described with 16 alternative inter-
ventions t comprising up to four candidate intervention com-
ponents. We coded the four candidate components as two-
level factors {A,B,C,D} with the levels “On” vs “Off” and 
defined a single outcome variable (medication adherence). In 
our notation, we identify alternative interventions by the fac-
tors set to “On” in a given intervention; for example, inter-
vention AB indicates that factors A and B are set to “On,” 
meaning that the components associated with A and B are 
included in that intervention, but components associated with 
C and D are not. We then defined groups g ∈ {1, 2, 3, 4, 5} 
based on quintiles of a randomly-generated systemic 
advantage measure for each individual i , Si ∼ U(0, 1), and 
assigned N = 10 individuals in each group to each of the 
24 = 16 alternative interventions, for a total N = 800. (We 
acknowledge that our illustration is done with a sample size 
that may seem unrealistically large; we return to this in the 
“Discussion.”) For our purposes, we let S quantify continuous 

disadvantage-to-advantage generally, meaning that more or 
less relative advantage could be for any number of reasons.

Starting with the “minimal intervention” Min , in which 
all factors are set to “Off,” we defined average treatment 
effects (assumed to be changes in the outcome relative to 
baseline) to produce decision-making tradeoffs, consistent 
with the hypothetical scenario. For simplicity, we assigned 
Min an effect (relative to baseline) of zero. We then let fac-
tor A represent Motivational Interviewing, and we gave A 
an expected effect that was linearly increasing in advantage 
measure Si , �A = 0.5 + 0.5Si , such that individuals at the 
lowest level of relative advantage ( Si = 0) had an expected 
effect on the outcome of 0.5, while individuals at the highest 
level of relative advantage ( Si = 1) had an expected effect 
of 1.0. Next, we let factor B represent Peer Support, and we 
gave B an expected effect that was also linearly increasing 
in advantage, �B = Si . We let factor C represent the Naviga-
tor, and we let C have no effect on its own ( �C = 0 ) but be 
involved in an interaction with factor B, offsetting B’s lower 
performance for individuals with lower advantage, such that 
μBC = �B + �C + (1 − Si) = 1. Finally, we let factor D rep-
resent Skill-Building Sessions, and we gave D an expected 
effect that was decreasing in relative advantage �D = 1 − Si , 
such that D had an expected effect of 0 for the most advan-
taged individual and 1 for the least advantaged individual. In 
other words, Motivational Interviewing (A) and Peer Support 
(B) work less well for those with relatively less advantage; 
Navigator (C) has no effect on average but offsets the poorer 
performance of Peer Support (B) for those with relatively 
less advantage; and Skill-building Sessions (D) work better 
for individuals with relatively less advantage. For simplicity, 
we generated data such that no interactions were expected 
other than the one involving factors B (Peer Support) and C 
(Navigator); therefore the expected effects for interventions 
that did not include both Peer Support and Navigator are 
simply the sums of the expected effects for any involved 
factors set to “On.”

We labeled the 16 alternative interventions using letters, 
based on which factors were set to “On” in a given interven-
tion. For example, intervention t = AB had factors A and 
B (representing the hypothetical Motivational Interview-
ing and Peer Support components) set to “On” and factors 
C and D (representing the hypothetical Navigator and Skill-
Building Sessions components) set to “Off.” Outcomes Yi 
for all individuals i were generated from a normal distribu-
tion centered on the intervention effect, Yi ∼ N(�t(Si), 1) . 
Finally, we gave the “On” versus “Off” levels of our four fac-
tors delivery costs, which we selected arbitrarily as follows: 
CA = 100,CB = 125,CC = 200,CD = 250 . We assumed that 
the cost for a given alternative intervention was the sum of the 
costs for any factors set to “On” in that particular intervention.

Consistent with a posterior expected value approach to 
optimization decision-making (Strayhorn et al., 2023a, b), 
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we used CmdStan (version 2.30.0) via cmdstanr (version 
0.5.2) for rstan (Stan Development Team, 2020) and brms 
(2.18.0) (Bürkner, 2021) packages in the R (version 4.2.1) 
statistical environment (R Core Team, 2021) to obtain esti-
mates of posterior expected outcomes under each alterna-
tive intervention using Markov Chain Monte Carlo. We 
specified relatively parsimonious linear regression models 
that included main effects and two-way interactions, with 
default priors. We fit separate models for each relative 
advantage quintile group g ( N = 160) and also fit a model 
for the full sample ( N = 800).

Results, Part I: Balancing Effectiveness 
and Efficiency Using DAIVE

To introduce the use of DAIVE (Strayhorn et al., 2023b) in 
intervention optimization decision-making, we begin without 
considering equitability as a criterion, instead balancing only 
effectiveness and efficiency. DAIVE provides investigators 
who are interested in balancing effectiveness and efficiency 

with an x–y scatterplot of cost (Ct) versus expected outcome 
( ̂Yt ), with expected outcomes estimated using data from a 
given ORCT. One such scatterplot based on the simulated 
case study data is shown in Fig. 1. In this plot, there are 16 
points, one for each of the alternative interventions under 
consideration in the case study (i.e., from Min to intervention 
ABCD). Examining the relative positions of the points on 
the plot can give a general sense of which are more effective 
(i.e., larger in their expected outcome) and which are less 
costly. Efficiency, meanwhile, is achieved by the alternative 
interventions that are expected to produce more value (in 
this case, in terms of a larger expected outcome Ŷt ) for less 
cost; these “value efficient” alternatives fall on the lower-
right convex hull (connected with a solid line in Fig. 1 and 
henceforth referred to as a “value efficiency frontier”). All 
other alternative interventions (not on this value efficiency 
frontier) are “dominated” in the sense that they cost more to 
achieve less-preferred expected outcomes. By default, the 
value efficiency frontier begins with the least costly alterna-
tive (in the case study, the minimal intervention Min).

Fig. 1  Cost-expected outcome 
scatterplot and value efficiency 
frontier for the simulated facto-
rial ORCT 

Note. Expected outcomes ̂ for the 16 alternative versions of the 

intervention are estimated using the simulated case study data. Min is the 

minimal intervention in which all factors are set to their lower level. 

Other intervention names indicate the factors that are set to “On” in those 

interventions. The value efficiency frontier, connected with a solid line, 

excludes interventions that are dominated – i.e., produce less-preferred 

expected outcomes at the same or higher cost than interventions on the 

frontier.
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The investigator who wants to strategically balance effec-
tiveness and efficiency would select an optimized interven-
tion from among the set of value efficient alternatives. In 
other words, the dominated alternatives are removed from 
consideration, whereas interventions on the value efficiency 
frontier are contenders for selection as the optimized inter-
vention, depending on the anticipated willingness-to-pay to 
achieve more-preferred outcomes. In most (if not all) appli-
cations of MOST, the investigator is not the payer, so they 
anticipate the eventual payer(s) who, for example, will be 
responsible for funding the implementation of an eventual 
intervention. The willingness-to-pay represents the resources 
(e.g., US dollars for intervention delivery) an eventual payer 
is willing to spend (or reallocate from other useful programs) 
in order to accomplish a unit improvement in the outcome 
(e.g., medication adherence).

In the case study, there are four interventions on the value 
efficiency frontier (other than Min, which is the default 
starting point): intervention A, intervention AB, interven-
tion ABC, and intervention ABCD. To choose an optimized 
intervention, the investigator considers pairs of value effi-
cient alternatives systematically to determine whether the 
added value of the more expensive in the pair would be 
worth its added cost. For example, an investigator who does 
not perceive the difference in expected outcomes between 
ABCD and ABC to be worth the added cost for ABCD ver-
sus ABC might choose ABC as the optimized intervention. 
Usually, this reflects the acknowledgment of opportunity 
costs, or the idea that the resources a payer saves by choos-
ing, say, ABC over ABCD could potentially be allocated 
elsewhere, e.g., to other useful programs. By contrast, an 
investigator who anticipates a larger willingness-to-pay 
might choose the intervention that maximizes the expected 
outcome, intervention ABCD, as the optimized interven-
tion. The balancing of effectiveness and efficiency, again, is 
strategic; it is intended to reflect context, including specific 
priorities and resource-availability.

Results, Part II: Balancing Effectiveness, Efficiency, 
and Equitability Using DAIVE

We now return to the original objective of strategically balanc-
ing effectiveness, efficiency, and equitability, illustrating one 
possible way of going about this using DAIVE. We present this 
in three steps: first, converting two distinct criteria, effective-
ness and efficiency, into a single criterion, “net health value”; 
second, quantifying intervention equitability; and third, strategi-
cally balancing net health value and equitability.

Step 1: Converting Effectiveness and Efficiency into Net 
Health Value In this step, we make use of a relationship 
well-known to cost-effectiveness researchers (Stinnett & 

Mullahy, 1998) converting the two dimensions of costs and 
outcome gains for an intervention t ∈ {1,… , T} to a unidi-
mensional comparative measure of net health value:

where � is the willingness-to-pay, Ŷt is the estimated expected 
outcome for intervention t , and Ct is the cost for intervention t . 
Above, when the investigator was balancing only effectiveness 
and efficiency, we acknowledged the concept of willingness-
to-pay somewhat vaguely, as a systematic determination of 
whether a certain outcome gain was “worth” a certain added 
cost. Now, for the calculation of predicted net health values, 
willingness-to-pay has to be quantified more explicitly, since 
net health value reflects efficiency determinations that depend 
on willingness-to-pay (such that, at higher willingness-to-pay, 
more costly interventions may be considered to be worth their 
associated costs). As such, � is a representation of the decision-
maker’s perceived economic opportunity costs based on their 
relative preferences for spending limited resources to improve 
outcome Y or using those resources for the next best alternative 
use. All else equal, the more important outcome Y is relative 
to other outcomes, and the more resources the decision-maker 
has available, the higher the willingness-to-pay. The steps we 
take to define representative willingness-to-pay thresholds of 
different sizes (using the results of our simulated ORCT and 
the arbitrarily-chosen delivery costs) are detailed in the Techni-
cal Appendix; following these steps, we chose the following 
set of willingness-to-pay thresholds 

{

$170, $330, $580, $830
}

 , 
representing the key points at which decision-making about the 
optimized intervention might differ, reflecting different “strate-
gies” for the strategic balancing of effectiveness and efficiency. 
We proceed by calculating predicted net health values for all 
of the alternative interventions (i.e., not only the value effi-
cient set M but all 16 alternatives) four times, at each identified 
willingness-to-pay.

Step 2: Quantifying Intervention Equitability For this initial 
case study, we propose to quantify, for each alternative inter-
vention in the ORCT, the distribution of health gains among 
individuals with different levels of advantage, approached in 
terms of a concentration so as to standardize across differ-
ent discrete groups. We will accomplish this by modifying 
existing concentration metrics such as the health concentra-
tion curve and concentration index (Wagstaff et al., 1991) 
As noted above, we let S be a continuous measure of sys-
temic advantage, assumed to be increasing in advantage, and 
we let individuals be sorted by S , from least advantaged to 
most advantaged, and then stratified into a finite number of 
groups g ∈ {1,… ,G}(increasing in S ) in order to calculate 
the health concentration curve and concentration index. We 
let Rg ∈ (0, 1] be the highest individual percentile rank of S 
in each group, with R0 ≡ 0 by construction. For example, 

(1)NHVt(�) = � × Ŷt − Ct
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suppose that for group g = 1 , R1 = 0.2 . Then, group 1 com-
prises all individuals from the lowest-ranked through the 20th 
percentile of S . Next, let Ŷt,g be the empirically estimated 
measure of expected health outcome gains (relative to pre-
intervention baseline) for individuals in group g assigned to 
intervention t ∈ {1,… , T} . Although we at various points 
optimistically use the term “gains,” we note here that it is 
also possible that interventions may unintentionally worsen 
outcomes of interest; in such cases, the gains may take on 
negative values. We propose ruling out interventions with 
zero or negative cumulative expected health gains over the 
entire population, 

∑G

g=1
wgŶt,g ≤ 0 (where wg is a weight cor-

responding to the proportion of the population in group g . 
Under this restriction, it is possible for gains in one or more 
groups to be negative as long as gains in other groups are large 
enough such that the total population health gain is positive.

To quantify the overall performance of the alternative 
interventions in terms of equitability, we first define con-
centrations curves using expected outcomes estimated in 
the ORCT. The height of the concentration curve of cumu-
lative expected health gains for intervention t  at systemic 
advantage rank Rg is

where ht(0) ≡ 0 by definition and ht(1) = 1 by construction 
for all t . If health outcome gains are independent of systemic 
advantage, then ht

(

Rg

)

= Rg , and the concentration curve lies 
on the 45° line. If an alternative intervention offers more benefit 
to those with lower relative advantage, then the concentration 

(2)ht
�

Rg

�

=

∑g

j=1
Ŷt,j

∑G

j=1
Ŷt,j

curve will primarily be above the 45° line; if an intervention 
offers more benefit to those with more relative advantage, the 
concentration curve will primarily be below the 45° line.

We then use these concentration curves to define a 
health gain concentration index for each alternative inter-
vention. For intervention t  , the health gain concentration 
index Ht is two times the area between the concentration 
curve and the 45° line:

The health gain concentration index Ht is positive when 
health gains for intervention t are concentrated among indi-
viduals with high advantage, negative when gains are con-
centrated among those with low advantage, and zero when 
health gains are uncorrelated with advantage. For readers 
familiar with the standard health concentration curve and 
index (Wagstaff et al., 1991), we note that in our modifica-
tion the health gain concentration index is not necessarily 
bounded between [−1, 1 ]; this is due to the possibility of 
more negative health gains from iatrogenic interventions. 
Because we prefer to have our measure of concentration 
reversed, such that higher values indicate interventions that 
are equity-enhancing, we finally let our measure of interven-
tion value equitability Qt be defined as:

Figure  2a and b depicts select concentration curves 
ht
(

Rg

)

 , evaluated at Rg , g ∈ {1,… ,G} (the lower bound of 
each quintile defined by systemic advantage measure S) , and 

(3)

Ht =

G
∑

g=1

(

Rg − Rg−1

)((

Rg−1 − ht
(

Rg−1

))

+
(

Rg − ht
(

Rg

)))

(4)Qt = −Ht

Fig. 2  Concentration curves for 
selected interventions (a, left) 
and equitability values for all 
interventions (b, right)

a. b.

Note: Interventions above the 45-degree line 

concentrate expected gains among relatively 

disadvantaged individuals. Intervention names 

indicate the factors that are set to “On” in those 

interventions.

Note: Positive values indicate concentration 

of expected gains among relatively 

disadvantaged individuals. Intervention 

names indicate the factors that are set to 

“On” in those interventions.
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equitability indices Qt for our simulated ORCT. In Fig. 2a, 
concentration curves for a subset of interventions (chosen 
based on their potential optimality, described further below) 
illustrate that some interventions’ concentration curves lie 
predominantly below the 45° line, indicating that a higher 
proportion of health gains are expected to go to individuals 
with high relative advantage ( A and AB ); some lie predomi-
nantly above the 45° line, indicating that a higher propor-
tion of health gains are expected to go to individuals with 
low relative advantage ( D , BC , and BCD ); and some reflect 
approximate neutrality of the distribution of gains with 
respect to relative advantage ( ABC and ABCD).

Figure 2b shows the equitability indices Qt for each inter-
vention, aggregating the area between each intervention’s con-
centration curve and the 45° line, ordered from interventions 
with gains most concentrated among the relatively advantaged 
on the left to those with gains most concentrated among the 
relatively disadvantaged on the right (interventions Min and C 
are excluded as their estimated expected outcome gains were 
approximately zero). As expected, interventions including com-
ponents A and B tend to most favor the relatively advantaged, 
while interventions including components C and D tend to most 
favor the relatively disadvantaged.

Step 3: Strategically Balancing Net Health Value and Equi-
tability We now return to the full set of interventions 
t = {1,… , T} ; importantly, we do not restrict decision-
making at this point to the alternative interventions that 
fall on the original value efficiency frontier, because it is 
possible that an intervention that is dominated in terms of 
value efficiency may be favorable enough in terms of equity 
to be considered optimal when equitability is a key crite-
rion. From the estimated group-specific expected outcomes 
Ŷk,t,g, k ∈ {1,…K}, g ∈ {1,… ,G} , we obtain the health 
value gain concentration index Ht for each intervention 
t = {1,… , T} by applying Eqs. (2) and (3).

Figure 3 includes scatterplots of estimated intervention 
equitability and predicted net health value for each representa-
tive level of willingness-to-pay (Fig. 3a–d). In each panel, 
the upper-right convex hull of points (towards increasing net 
health value and equitability), depicted by a curve connecting 
the alternative interventions that lie along the hull, identifies 
a net health equity frontier representing the subset of alterna-
tive interventions that achieve the highest predicted net health 
value (assuming a willingness-to-pay �) for a given level of 
intervention equitability. Interventions not on the upper-right 
convex hull are dominated in the sense that other interventions 
are expected both to achieve higher net health value overall 
and to avoid concentrating valued health outcome gains among 
individuals who are relatively advantaged.

At the lowest willingness-to-pay (λ = $170), the net health 
equity frontier (Fig. 3a) identifies just two contenders for 

the optimized intervention: intervention A and interven-
tion D. Intervention A is associated with positive pre-
dicted net health value but negative equitability, whereas 
intervention D is associated with positive equitability but 
negative predicted net health value. The intuition here is 
that the decision-maker’s willingness-to-pay is related to 
the opportunity cost incurred when reallocating resources 
from other uses to pay for intervention D. In this case, the 
lowest willingness-to-pay implies the highest opportunity 
costs. While implementing intervention D would benefit 
individuals receiving the intervention, other individuals in 
the population who lose access to reallocated resources will 
suffer greater health loses than the gains experienced among 
those who use intervention D, thereby causing net popula-
tion health to fall. There may be no easy answer for what 
is optimal in this case, since at this low willingness-to-pay 
there is a clear tradeoff between net health value and equita-
bility. Notably, intervention A was a member of the original 
value efficiency frontier from the earlier decision-making 
that balanced effectiveness and efficiency only (and it was a 
frontier member that was relatively less costly, which is why 
it emerges as a contender at this low willingness-to-pay). 
This makes sense, since that decision-making reflected net 
health value but not equitability.

At the next level of willingness-to-pay (λ = $330), the 
net health equity frontier (3b) contains four contenders: 
AB, ABC, BC, and D. Again, we recognize members of 
the original value efficiency frontier (AB and ABC), and 
we find that these are similarly situated in the upper left 
quadrant of the scatterplot, indicating positive predicted 
net health value but negative equitability. Now the origi-
nal frontier members that emerge as contenders are more 
costly (AB and ABC versus intervention A), reflecting the 
somewhat higher willingness-to-pay. Here too, Interven-
tion D has a desirable positive equitability, but an undesir-
able negative predicted net health value. Intervention BC, 
meanwhile, is situated in the upper right quadrant, indicat-
ing positive predicted net health value and positive equi-
tability. There is still a tradeoff associated with choosing 
intervention BC; intervention BC has less predicted net 
health value than interventions AB and ABC, but better 
equitability. If intervention BC is chosen as the optimized 
intervention, some net health value has been traded for 
better equitability in the strategic balancing.

At willingness-to-pay λ = $580 the net health equity fron-
tier (Fig. 3c) contains three contenders: ABC, BCD, and D. 
The original frontier member, ABC, is once again situated 
in the upper left quadrant but just barely; intervention ABC 
has positive predicted net health value and an equitability 
that is less than zero but not by much. Intervention BCD is 
situated in the upper right quadrant, with positive predicted 
net health value and positive equitability. This makes BCD 
a particularly good option for the optimized intervention, 
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though as usual the degree to which BCD is preferred over 
ABC depends on how much the investigator cares about 
equitability versus net health value. Interestingly, at this 
willingness-to-pay, intervention D is also situated in the 

upper right quadrant, but just barely, with very positive equi-
tability and a predicted net health value that is just greater 
than zero. As before, choosing D would mean a strong pref-
erence for equitability over net health value—though, at this 

a. b.

c. d.

Note. Net health equity frontiers in each scatterplot are highlighted with a solid line.  Intervention 

names indicate the factors that are set to “On” in those interventions. Interventions and are 

excluded because the empirical estimates of effectiveness were near zero for these interventions, 

making estimates of the equitability of health gains non-interpretable.

Fig. 3  Equitability-net-health-value scatterplots based on the simulated factorial ORCT at each level of willingness-to-pay (λ)
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willingness-to-pay, intervention D has some small positive 
predicted net health value. The change in quadrants for inter-
vention D serves as a reminder that net health value is a 
function of not only effectiveness but also efficiency, and 
efficiency depends on willingness-to-pay. At lower willing-
ness-to-pay, the opportunity costs associated with choos-
ing intervention D, or the other health outcomes foregone 
by reallocating resources from other programs to pay for 
intervention D, mean that the net health value is negative 
overall, despite the benefits for those who have relatively 
less advantage. When the willingness-to-pay increases, these 
opportunity costs are not perceived to be so steep, and the 
net health value for intervention D therefore increases.

Finally, at the highest willingness-to-pay (λ = $830) the 
net health equity frontier (Fig. 3d) contains three contenders: 
ABCD, BCD, and D. It is at this high willingness-to-pay that 
we see the intervention that maximizes overall effective-
ness, ABCD, emerge as a contender. This alternative inter-
vention, like the other original frontier members, has very 
positive predicted net health value but negative equitability 
(albeit slightly). Intervention BCD, meanwhile, is squarely 
situated in the upper right quadrant, with positive predicted 
net health value and positive equitability, and intervention 
D is again in the upper right quadrant, this time with pre-
dicted net health value that is more positive still (due to 
another increase in willingness-to-pay) and, as usual, very 
positive equitability. At this high willingness-to-pay, the 
choice of optimized intervention can be summarized as a 
decision among the following: ABCD, an intervention that 
is high in predicted net health value but has slightly negative 
equitability, meaning that the intervention tends to favor the 
already-advantaged; BCD, an intervention that trades some 
net health value for positive equitability, while remaining 
positive in predicted net health value; and D, an intervention 
that trades even more net health value (i.e., most of the pre-
dicted net health value offered by ABCD) for more positive 
equitability, or for benefits that tend to favor those who have 
relative less advantage.

At each willingness-to-pay, the ultimate selection of an 
optimized intervention from among the identified contend-
ers depends on the investigator’s preferences (e.g., for equi-
tability versus net health value). For a more technical dem-
onstration of this, see the Technical Appendix.

Discussion

MOST is a principled approach to optimization of inter-
ventions for prevention of health disorders, treatment of 
disease, and enhancement of well-being. Previous literature 
on MOST has defined optimization as a strategic balance 
of intervention effectiveness, affordability, scalability, and 
efficiency. In this article, we have extended the concept of 

optimization to include intervention equitability, defined in 
terms of the extent to which health benefits for an inter-
vention are distributed evenly (versus concentrated among 
those who are already relatively more advantaged), as an 
additional element in this strategic balance. We used a hypo-
thetical example to demonstrate how MOST can be used to 
illuminate the tradeoffs necessary to achieve an acceptable 
level of equitability when optimizing an intervention. We 
showed how different interventions may emerge as optimal 
(i) when equitability is included as a decision-making cri-
terion versus when it is not; (ii) depending on how strongly 
decision-makers care about equitability versus other criteria; 
and (iii) under different levels of willingness-to-pay, because 
the tradeoffs between equitability and other criteria tend to 
be more severe when there is lower willingness-to-pay.

Design of Research when Optimizing 
with Health Equity in Mind

Everything we have presented here has assumed the 
ORCT has been based on a sample sufficiently repre-
sentative to enable valid conclusions to be drawn about 
equitability across the relevant subpopulations. In other 
words, when conducting an ORCT with the intention 
of optimizing for equitability, it is critical to attend not 
only to the internal validity of the experiment but to the 
external validity as well. If individuals with relatively 
less advantage are not adequately represented, however 
“advantage” may be defined, it is unlikely that the esti-
mates of equitability will be accurate and, by extension, 
unlikely a sound decision can be made about the composi-
tion of the optimized intervention. Anwuri et al. (2013) 
outlined an approach for promoting recruitment and reten-
tion of members of minoritized groups. As they pointed 
out, it may be necessary to oversample some minoritized 
groups to have sufficient information for decision-making 
purposes. The present article also assumes that disadvan-
tage is measured with adequate reliability and validity; 
if disadvantage is not measured accurately, misleading 
conclusions may be drawn. The measurement of systemic 
advantage versus disadvantage presents a set of theoreti-
cal and methodological challenges (Galobardes et al., 
2006) that have been noted for some time and are beyond 
the scope of this paper to address.

In the present simulation, we assumed not only that our 
sample was sufficiently diverse and sampled uniformly 
across strata defined by relative advantage, but also that it 
was quite large (N = 800). We emphasize that the work to 
test robustness of these methods to variations in sample 
size has not yet been done. Our purpose in this simula-
tion was to present an initial concept—and therefore, to 
ensure signal versus noise; we erred in the direction of 
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a larger versus smaller sample size in order to provide a 
clear demonstration of tradeoffs. A critical next step will 
involve determining what sample sizes—and maybe what 
sample compositions—are necessary to consider interven-
tion equitability as a criterion in intervention optimization. 
It is possible that any methodology that seeks to address 
differences in the effectiveness of complex interventions 
as a function of relative advantage will require samples 
that are adequately-sized (i.e., large) and representative 
enough to identify differences. This may, in turn, require 
larger investments in research.

Equitability and Continual Optimization

Continual optimization is one of the fundamental princi-
ples of MOST (Collins, 2018). This principle states that 
MOST offers the opportunity to work iteratively toward 
making an intervention better and better. Unlike the classi-
cal treatment package approach, MOST enables the inves-
tigator to see clearly what the next steps are to improve an 
intervention, because the ORCT shows which components 
are working well and should be retained, and which are 
working poorly (or even are counterproductive) and should 
be revised or replaced. Thus, successive ORCTs can be 
undertaken to assess the performance of new components 
intended to make an intervention more equitable. Then, 
repeated optimization based on each successive ORCT 
can work toward a more and more equitable intervention, 
while at the same time balancing effectiveness, affordabil-
ity, scalability, and efficiency. This is potentially one way 
to make material progress toward not only health equity, 
but greater public health impact.

Limitations and Future Directions

We began this article by stating that it represents an initial 
foray into incorporating health equity into intervention opti-
mization and that much remains to be done. In presenting 
our ideas, we made three simplifying assumptions, each of 
which suggests an intriguing area for future research.

First, our hypothetical example involved a single out-
come variable, whereas many interventions target more 
than one outcome variable. DAIVE has been applied to 
situations involving multiple outcomes, based on Bayesian 
decision analysis and using a value function to combine 
several outcomes (Strayhorn et al., 2023a, b). A variety 
of value functions have been proposed that can be used to 
reflect different decision-maker preferences, for example, 

preferences about the relative importance of the outcomes. 
Because the simulation we present involved a single out-
come variable, we have not described how these more 
complex value functions will be used in applications of 
DAIVE that incorporate equitability as a criterion, but the 
extension is relatively straightforward.

Second, we presented a hypothetical fixed intervention, 
in which all participants are offered the same treatment. 
Much attention in the intervention optimization field has 
been paid to adaptive interventions (e.g., Almirall et al., 
2018a, b; Nahum-Shani et al., 2018a, b). Adaptive inter-
ventions are varied in a principled fashion in response to 
characteristics of the individual or environment, represent-
ing a more individualized and, potentially, more effec-
tive and efficient approach to prevention and treatment. 
DAIVE has not yet been extended to decision-making 
based on the results of ORTCs such as the sequential 
multiple-assignment randomized trial (SMART; Almirall 
et al., 2018a, b) and the micro-randomized trial (MRT; 
Qian et al., 2022) that are used for optimization of adap-
tive interventions. We also do not address the possibility 
that decision-makers would consider delivering different 
interventions, composed of different components, to dif-
ferent subgroups of a population, defined in terms of rela-
tive advantage. Using results like those we present here to 
inform such decision-making is an interesting idea but one 
that presents complex ethical dilemmas that would require 
further careful attention.

Third, given the important role of multi-level interven-
tions across public health and education, it is a serious 
limitation that the ideas we presented are so far limited 
to single-level interventions. Consider the hypothetical 
intervention presented in this article. One or more of the 
components could be delivered in a group setting, so that 
participants are nested within groups, and random assign-
ment at the group level would be necessary. Or suppose 
the participants in the hypothetical intervention are nested 
within medical clinics, and that in addition to the com-
ponents aimed at participants, the intervention includes 
a component to reduce HIV-related stigma, aimed at the 
clinic level. This might require a random assignment 
at both the clinic and individual level. There has been 
some work on multilevel ORTCs (e.g., Dziak et al., 2012; 
Nahum-Shani et al., 2018a, b), but this work has per-
tained primarily to situations in which although there is a 
multi-level structure, the intervention is single-level and 
inference is made solely at a single level. More work is 
needed on multilevel ORCTs for situations in which the 
intervention to be optimized is multi-level. DAIVE has 
not yet been extended to the results of multilevel ORTCs; 
this is a critical next step.
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Conclusions

In this article, we have suggested that MOST provides a 
principled framework for designing equitable interventions, 
in other words, interventions that reduce health dispari-
ties and promote health equity. In our view, if the ultimate 
goal for an intervention is high public health impact for all, 
effectiveness and equitability must be balanced strategi-
cally against each other and against key resource considera-
tions, including affordability, scalability, and/or efficiency. 
Achieving this complex strategic balance can require diffi-
cult tradeoffs. For example, as we have demonstrated, some-
times to achieve equitability it may be necessary to choose 
either sacrificing some overall effectiveness or increasing 
willingness to pay. MOST can be used to help illuminate 
the tradeoffs that arise when seeking to develop equitable 
interventions, so that these tradeoffs can be faced unspar-
ingly, considered thoughtfully, and made with transparency.

Much remains to be done to expand the utility of MOST in 
optimizing interventions with equitability in mind. Neverthe-
less, we are optimistic that MOST can play a role in increasing 
intervention equitability, and, by extension, reducing health 
disparities and enhancing health and well-being for all.
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