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Abstract
Cluster-randomized trials (CRTs) often allocate intact clusters of participants to treatment or control conditions and are 
increasingly used to evaluate healthcare delivery interventions. While previous studies have developed sample size meth-
ods for testing confirmatory hypotheses of treatment effect heterogeneity in CRTs (i.e., targeting the difference between 
subgroup-specific treatment effects), sample size methods for testing the subgroup-specific treatment effects themselves 
have not received adequate attention—despite a rising interest in health equity considerations in CRTs. In this article, we 
develop formal methods for sample size and power analyses for testing subgroup-specific treatment effects in parallel-arm 
CRTs with a continuous outcome and a binary subgroup variable. We point out that the variances of the subgroup-specific 
treatment effect estimators and their covariance are given by weighted averages of the variance of the overall average treat-
ment effect estimator and the variance of the heterogeneous treatment effect estimator. This analytical insight facilitates an 
explicit characterization of the requirements for both the omnibus test and the intersection–union test to achieve the desired 
level of power. Generalizations to allow for subgroup-specific variance structures are also discussed. We report on a simula-
tion study to validate the proposed sample size methods and demonstrate that the empirical power corresponds well with the 
predicted power for both tests. The design and setting of the Umea Dementia and Exercise (UMDEX) CRT in older adults 
are used to illustrate our sample size methods.

Keywords Gerontology · Health equity · Heterogeneity of treatment effect · Intersection–union test · Omnibus test · Power analysis

Introduction

Pragmatic cluster-randomized trials (CRTs) are commonly 
conducted in healthcare delivery systems and adopt cluster 
randomization due to logistical, administrative, or political 

considerations (Turner et al., 2017a, 2017b). While the over-
all average treatment effect has been the primary focus in 
many CRTs, there is an emerging interest in understanding 
whether the intervention is effective in pre-specified par-
ticipant subgroups, such as those defined by baseline demo-
graphics or clinical characteristics (Bowden et al., 2021; Cox 
& Kelcey, 2022; Dong et al., 2018, 2021a, b; Gabler et al., 
2009; Kravitz et al., 2004; Li & Konstantopoulos, 2023; 
Spybrook et al., 2016). Participant subgroups can respond 
to the intervention differently for various reasons, such as 
differential access to healthcare and differences in clinical 
characteristics. With an increasing number of CRTs con-
ducted under routine healthcare conditions with the inclu-
sion of broader eligible populations, there is also a greater 
need to assess how participant-level or cluster-level factors 
moderate the intervention effect, facilitating the develop-
ment of interventions to reduce known health disparities and 
improve health equity. Subgroup analyses based on health 
equity variables are not uncommon in pragmatic trials. 
For example, Nicholls et al. (2023) reviewed 62 pragmat-
ics trials of people with dementia published from 2014 to 
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2019 and identified 10 studies reporting subgroup analyses 
across health equity variables; the majority of these studies 
employed an interaction test. In addition, Starks et al. (2019) 
conducted a systematic review of CRTs published between 
1/1/2010 and 3/29/2016 that focused on cardiovascular dis-
ease, chronic lower respiratory disease, and cancer. They 
reported that 16 out of 64 CRTs examined heterogeneity of 
treatment effects among demographic participant subgroups 
but noted a lack of guidance on subgroup analyses for CRTs. 
Given this context, statistical methods that address sample 
size and power considerations with a focus on subgroup- 
specific treatment effects (also referred to as stratum- 
specific effects by epidemiologists or sometimes simple 
main effects by social scientists) in pragmatic CRTs are 
vitally important but remain relatively underdeveloped.

There have been several recent efforts to develop explicit 
sample size methods for testing confirmatory hypotheses 
about treatment effect heterogeneity in CRTs. For exam-
ple, assuming a linear mixed analysis of the covariance 
model, Yang et al. (2020) proposed an analytical sample 
size expression for the treatment-by-covariate interaction test 
and pointed out that results depend on both the intraclus-
ter correlation coefficient (ICC) of the outcome and that of 
the covariate (or sometimes referred to as the effect modi-
fier). The ICC measures the degree of similarity between 
outcomes measured within the same cluster and plays an 
important role in planning CRTs (Eldridge et al., 2009). 
Tong et al. (2022) relaxed the equal cluster size assump-
tion and investigated the impact of variable cluster sizes on 
power for an interaction test in CRTs. They found that the 
coefficient of variation of the cluster size (defined as the 
standard deviation of cluster size divided by the mean cluster 
size) has minimal impact on the variance of the interaction 
effect estimator, as long as the effect modifier is measured 
at the participant level. Li et al. (2022) generalized these 
sample size procedures for testing heterogeneity of treatment 
effect to accommodate three-level CRTs with randomization 
carried out at either the cluster or subcluster level.

While these prior efforts have primarily focused on 
sample size requirements for testing differences between 
subgroup-specific treatment effects, sample size methods 
for testing the subgroup-specific treatment effects them-
selves have not received adequate attention. In principle, 
the test of the subgroup-specific treatment effect addresses 
the question of whether the intervention is effective in one 
or more subpopulations, as defined, for example, by sex, 
race, baseline comorbidities, or other health equity varia-
bles. In addition, the power analysis for detecting an inter-
vention effect in any subgroup or all subgroups may not 
be the same as applying a standard power evaluation for 
an overall effect but with a smaller sample size, because 
the target hypotheses can be different and because a com-
mon practice for data analysis proceeds with an analysis 

of covariance model including a treatment-by-subgroup 
interaction that provides a unifying analysis framework 
for assessment of both overall average treatment effect and 
subgroup-specific treatment effects (Yang et al., 2020). To 
fill this important methodological gap, we propose formal 
sample size procedures for testing subgroup-specific treat-
ment effects in CRTs based on the linear mixed analysis 
of the covariance model. We focus on a continuous out-
come and a binary subgroup variable (measured either at 
the participant level or cluster level). We outline explicit 
expressions for power and its key determinants when the 
focus is on subgroup-specific treatment effects. Finally, 
we carry out a simulation study to validate our analyti-
cal expressions under different target null and alternative 
hypotheses relevant to subgroup analyses in CRTs.

Our proposed sample size methods are illustrated in the 
context of the Umea Dementia and Exercise (UMDEX) 
study (Toots et al., 2016), a CRT evaluating a high-intensity 
functional exercise program versus a seated control activity 
to reduce decline in independence in activities of daily liv-
ing (ADLs) among older people with dementia in residential 
care facilities. To reduce the risk of contamination, naturally 
occurring clusters consisting of residents with cognitive 
impairment who were inhabitants of the same wing, unit, 
or floor were randomized to receive the intervention or the 
control (both delivered at the cluster level). Specifically, 
the study involved 36 clusters of 3 to 8 participants each 
and considered a continuous primary outcome. To detect 
potential differences in exercise effects among subpopu-
lations defined by dementia type, prespecified subgroup 
analyses by dementia type were performed. Dementia type 
was dichotomized as Alzheimer’s versus non-Alzheimer’s 
dementia (including vascular, mixed Alzheimer’s and vas-
cular, frontotemporal, Lewy body, and Parkinson’s demen-
tia), as the majority of previous trials only included indi-
viduals with Alzheimer’s disease (Toots et al., 2016). We 
will formally quantify the sample size required to achieve 
sufficient power for subgroup analyses. Although demen-
tia type is not a traditional health-equity effect modifier, 
it defines important subgroups in gerontological research. 
Additionally, we would like to emphasize that the proposed 
methods can be applied to any binary effect modifier includ-
ing typical health equity variables such as race/ethnicity and 
socioeconomic status.

Methods

Linear Mixed Analysis of the Covariance Model

We consider a CRT with n clusters, where n1 clusters are rand-
omized to the intervention condition, and the remaining n − n1 
clusters to the control condition. The randomization proportion 
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is defined as � = n1∕n . We write Yij as the quantitative out-
come of participant j in cluster i and denote the total number 
of participants in cluster i as mi(i = 1,… , n) . Furthermore, 
Zi ∈ {0, 1} denotes the treatment status for cluster i . Suppose 
Sij is a binary subgroup variable taking values in {0, 1} . For 
example, Sij = 1 indicates a resident with Alzheimer’s disease, 
and Sij = 0 indicates a resident with non-Alzheimer’s dementia 
in the UMDEX study (or Sij could be referred to as a binary 
demographic variable such as sex in other contexts). A common 
analytical model for examining the subgroup-specific treatment 
effect in CRTs is the analysis of the covariance model:

where bi ∼ N
(

0, �2

b

)

 and �ij ∼ N
(

0, �2
�

)

 are the random clus-
ter-level intercept and error, respectively. In addition, �1 is 
the intercept, �2 = E

[

Yij|Zi = 1, Sij = 0
]

− E
[

Yij|Zi = 0, Sij = 0
]

= Δ0 , which is the treatment effect among the subgroup 
defined by the collection of indices �0 =

{

(i, j);Sij = 0
}

 (in 
the UMDEX study, �0 refers to the subgroup of participants 
with Alzheimer’s disease), �3 is the main effect of the sub-
group variable, and �4 is the treatment-by-subgroup interac-
tion. The model also implies the treatment effect among the 
subgroup �1 =

{

(i, j), Sij = 1
}

 as �2 + �4 = E
[

Yij|Zi = 1,

Sij = 1
]

− E
[

Yij|Zi = 0, Sij = 1
]

= Δ1 . Specifically, previous 
research focused on testing for �4 , whereas this paper focuses 
on testing for 

(

Δ0,Δ1

)

 . In Model (1), the total variance of 
the outcome is defined as �2

y|s,z
= �2

b
+ �2

�
 and the ICC of the 

outcome is given by the ratio of the between-cluster variance 
and the total variance, or �y|s,z =

�2

b

�2

b
+�2

�

 (Eldridge et al, 2009). 

Estimating the subgroup-specific treatment effects 
(

Δ0,Δ1

)

 
requires estimating the regression parameters, which typi-
cally proceeds via maximum likelihood techniques. In the 
design stage, sample size calculations often assume that the 
variance components (and hence the ICC) are known and 
require an explicit characterization of the variance expres-
sions. Specifically, if we represent the collection of design 
points for each participant as Xij =

(

1, Zi, Sij, ZiSij
)T and the 

design matrix for each cluster as Xi =
(

Xi1,…Ximi

)T , then 
the best unbiased linear estimator for regression coefficients 
� =

(

�1, �2, �3, �4
)T  is given by �̂ =

�
∑n

i=1
X
T

i
V
−1
i
X
i

�−1

(

X
T

i
V
−1
i
Y
i

)

 , where Vi = �2

y|s,z

{(

1 − �y|s,z
)

Imi
+ �y|s,zJmi

}

 is the 
compound symmetric variance matrix ( Imi

 is the mi × mi 
identity matrix and Jmi

 is the mi × mi matrix of ones), and 
Yi =

(

Yi1,… , Yimi

)T is the collection of all outcomes in clus-
ter i . The estimators for the subgroup-specific treatment 
effects are then given by Δ̂0 = �̂2 and Δ̂1 = �̂2 + �̂4 , whose 
variance expressions are of interest for study design calcula-
tions. To obtain these variances, it is useful to study the variance– 
covariance matrix for �̂  , given by Σ

n
=
�
∑n

i=1
X
T

i
V
−1
i
X
i

�−1 . For 
simplicity, we make the conventional assumption of equal 
cluster sizes such that mi = m for all i.

(1)Yij = �1 + �2Zi + �3Sij + �4ZiSij + bi + �ij,

Variance for Subgroup‑Specific Treatment 
Effect Estimators

We first review key existing results to set the stage for intro-
ducing our new results. Assuming Model (1), Yang et al. 
(2020) developed an explicit expression for Var

(

�̂4

)

 , which 
was referred to as the variance of the heterogeneous treatment 
effect estimator. The variance for this treatment-by-subgroup 
interaction effect estimator takes the following explicit form.

where p1 = P[Sij = 1] is the marginal probability of the sub-
group population �1 , and p0 = 1 − p1 is the marginal prob-
ability of the subgroup population �0 . Three key observa-
tions follow. First, �2

HTE
 depends on both the ICC of the 

outcome adjusting for the subgroup variable ( �y|s,z ), as well 
as the ICC of the subgroup variable itself ( �s ). In CRTs, both 
the outcome of interest and baseline covariates can have 
non-zero ICCs (Raudenbush, 1997), and when interest lies 
in detecting heterogeneity of treatment effects, these two 
ICC parameters play an equally important role in determin-
ing study power. Second, while �2

HTE
 is monotonically 

increasing in �s , it has a parabolic relationship with �y|s,z ; 
therefore, a larger value of the outcome ICC does not always 
inflate �2

HTE
 when holding all other parameters constant 

(Yang et al., 2020). Thirdly, as a special case of Eq. (2), 
when the subgroup variable is measured at the cluster level 
(cluster subgroups are formed such that Sij = Si for all j ), we 
have �s = 1 , and expression (2) reduces to a much simpler 
expression ̃�2

HTE
= Var(�̂4) =

�2
y
{1+(m−1)�y|s,z}

�(1−�)p1p0nm
. More generally, 

Tong et al. (2022) have shown that under Model (1) with the 
subgroup variable measured either at the participant level or 
cluster level, the variance for the overall average treatment 
effect estimator (overall average treatment effect parameter 
defined as p1Δ1 + p0Δ0 = �

2
+ p1�4 ) is

which also has the identical form to the variance of an aver-
age treatment effect estimator without the subgroup variable 
(Murray, 1998), with the caveat that the outcome ICC is now 
defined adjusting for the subgroup indicator. While these 
variance expressions have been characterized in prior litera-
ture, we provide new insights pertaining to the variances of 
the subgroup-specific treatment effect estimators in Result 
1. Brief derivation details are found in Web Appendix A.

Result 1. Under Model (1) with the subgroup variable 
measured either at the participant level or cluster level, the 
variances of the subgroup-specific treatment effect estimators 
and their covariance are given by weighted averages of the 

(2)�2

HTE
= Var

(

�̂4

)

=
�2
y (1−�y|s,z){1+(m−1)�y|s,z}

�(1−�)p1p0nm{1+(m−2)�y|s,z−(m−1)�s�y|s,z}
,

(3)�2

ATE
= Var

(

�̂2 + p1�̂4

)

=
�2
y{1+(m−1)�y|s,z}

�(1−�)nm
= p1p0�̃

2

HTE
,
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variance of the overall average treatment effect estimator and 
the variance of the heterogeneous treatment effect estimator; 
that is,

where �2

ATE
 and �2

HTE
 are defined above in Eqs. (2) and (3) 

respectively.
Several observations follow from Result 1. Firstly, the vari-

ance of each subgroup-specific treatment effect estimator does 
not depend on the true effect size and is only a function of �2

ATE
 , 

�2

HTE
 as well as the marginal prevalence of the subgroup indica-

tor, p1 . As expected, a larger subgroup (e.g., �1 increases in size 
when p1 moves closer to 1) corresponds to a smaller variance 
of the associated subgroup-specific treatment effect estimator. 
When p1 = 0.5 , the two subgroup sizes are balanced in  
expectation such that Var

(

Δ̂0

)

= Var
(

Δ̂1

)

= �2

ATE
+

1

4
�
2

HTE
 . 

Secondly, the covariance between the subgroup-specific treat-
ment effect estimators is the difference between the variance of 
the overall average effect estimator and that of the heterogene-
ous effect estimator scaled by p1p0 . In the extreme case where 
the subgroup variable is defined at the cluster level (in which 
case the covariate ICC �s = 1 , then Cov

(

Δ̂0, Δ̂1

)

= �2

ATE
−

p1p0�̃
2

HTE
= 0 and the two subgroup effect estimators are 

uncorrelated (just like conducting two separate studies),  
regardless of the subgroup proportions. In this case, 
Var

(

Δ̂0

)

= �2

ATE
∕p0 and Var

(

Δ̂1

)

= �2

ATE
∕p1 and the vari-

ance of the subgroup treatment effect estimator is inversely 
proportional to the size of the subgroup; in addition, 
Var

(

Δ̂0

)

+ Var
(

Δ̂1

)

= �̃2

HTE
 . Finally, if we set �s = �y|s,z = 0 , 

the result is applicable for subgroup analyses in individually 
randomized trials where data are often assumed to be 
independent.

Sample Size Estimation Based on Omnibus Test

The explicit characterization of the covariance matrix for 
(

Δ̂0, Δ̂1

)

 provides an analytically tractable approach for 
quantifying the power for testing the subgroup-specific treat-
ment effects. We first consider the null hypothesis that the 
intervention has no effect in both subgroups, corresponding 
to testing H0 ∶ Δ0 = Δ1 = 0 versus H1 ∶ Δ0 ≠ 0 and/or 
Δ1 ≠ 0 . In this case, an investigator may declare the treat-
ment a success if an effect is observed in at least one sub-
group. A possible test statistic for H0 is the F-statistic, given 
by the quadratic form F∗ =

(

Δ̂0, Δ̂1

)

Ω̂−1
Δ

(

Δ̂0, Δ̂1

)T

∕2 , 
where Ω̂Δ is the estimated covariance matrix of the 

Var
(

Δ̂0

)

= �2

ATE
+ p2

1
�2

HTE
,Var

(

Δ̂1

)

= �2

ATE
+ p2

0
�2

HTE
,

Cov
(

Δ̂0, Δ̂1

)

= �2

ATE
− p1p0�

2

HTE
,

subgroup-specific treatment effect estimators ( ̂Δ0, Δ̂1 ) with 
elements defined in Result 1 (an explicit expression is before 
Eq. (4)). Under H0 , F∗ approximately follows a central F
-distribution with the numerator and denominator degrees 
of freedom (2, n − 2) , where n − 2 was chosen as the 
between-within degrees of freedom (# of clusters − # of 
cluster-level covariates) to reflect a penalty due to at least 
two cluster-level parameters in Model (1); an alternative 
choice of degrees of freedom, such as n − 4 , can be made 
with a cluster-level subgroup variable. We consider the F-
test rather than the �2-test because the former usually has a 
more robust small-sample performance (Roy et al., 2007; 
Tian et al., 2022). Under the alternative, F∗ approximately 
follows a non-central F-distribution with noncentrality 
parameter � =

(

Δ0,Δ1

)

Ω−1
Δ

(

Δ0,Δ1

)T  , where we have 
obtained from Result 1 that

Therefore, for a nominal type I error rate � , the power 
under a given effect size 

(

Δ0,Δ1

)

 is

where F1−�(2, n − 2) is the critical value of the central 
F(2, n − 2) distribution, and f (x;�, 2, n − 2) refers to the 
probability density function of the noncentral F(�, 2, n − 2) 
distribution. Finally, to determine the required sample size, 
one could fix the type I error rate ( � ), randomization propor-
tion ( � ), subgroup proportions ( p1, p0 ), outcome variance 
( �2

y|s,z
 ), outcome ICC ( �y|s,z ), subgroup variable ICC ( �s ), 

cluster size ( m ), and effect sizes ( Δ0,Δ1 ) and specify a series 
of integers n . Then the required sample size can be obtained 
as the smallest integer that provides the pre-specified power 
( 1 − � ) using Eq. (4). The role of n and m can be switched in 
this procedure to solve for the required cluster size given the 
number of clusters.

Sample Size Estimation Based on Intersection–
union Test

Alternatively, a more stringent testing framework can be 
considered such that the null hypothesis would only be 
rejected when there is a treatment effect in both subgroups. 
That is, an investigator would declare the intervention a suc-
cess only if a treatment effect is observed in both subgroups. 
In this case, one may be interested in testing H0 ∶ Δ0 = 0 
and/or Δ1 = 0 versus H1 ∶ Δ0 ≠ 0 and Δ1 ≠ 0 and employ 
the intersection–union test based on the linear mixed analy-
sis of the covariance model. Of note, the null space is com-
posite as it includes the following three cases: treatment has 
no effect on both subgroups, treatment has no effect on 

ΩΔ = Var

[

(

Δ̂0, Δ̂1

)T
]

= �2

ATE
J2 + �2

HTE

[

p2
1

−p1p0
−p1p0 p2

0

]

(4)power = 1 − � = ∫ ∞

F1−� (2,n−2)
f (x;�, 2, n − 2)dx,
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subgroup �0 , and treatment has no effect on subgroup �1 . 
For testing this composite null, we consider the bivariate 
Wald test statistic, � =

(

�0, �1
)T , where �0 =

√

nΔ̂0∕ŜE
�

Δ̂0

�

 

and �1 =
√

nΔ̂1∕ŜE
�

Δ̂1

�

 represent the standard error– 
adjusted treatment effect estimators. Therefore, one can  
show that � follows a multivariate normal distribution  
with mean � =

�

√

n

�

Var

�

Δ̂0

��−1∕2

Δ
0
,
√

n

�

Var

�

Δ̂1

��−1∕2

Δ
1

�T

 

and correlation matrix Φ , whose diagonal elements are  
given by 1 and off-diagonal elements by 

{

Var

(

Δ̂0

)}−1∕2

Cov

(

Δ̂0, Δ̂1

){

Var

(

Δ̂1

)}−1∕2

 (Tian et al., 2022). Given the 
total number of clusters n and cluster size m , the power func-
tion to simultaneously detect the treatment effect in both 
subgroups is given by

where 
{

c0, c1
}

 are two subgroup-specific critical values for 
rejecting the null, and g(a, b) is the density function of the 
Wald test statistics under the alternative. While a typical 
choice of g is the multivariate normal distribution, we fol-
low Yang et al. (2022) and consider a bivariate t-distribution  
with location vector � , shape matrix Φ , and degrees of  
freedom n − 2 as this has been shown to have better con- 
trol of type I error rates in small samples (by partially 
accounting for the variability in estimating the covariance 
parameters). The specification of critical values can lead to  
intersection–union tests with different operating charac-
teristics (Kordzakhia et al., 2010), and we adopt a simple 
approach such that c0 = c1 = t�(n − 2) , which is the (1 − �) 
quantile of the univariate t-distribution. That is, we reject 
H0 when 𝜁0 > t𝛼(n − 2) and 𝜁1 > t𝛼(n − 2) . This specification 
of critical values is at most conservative such that the type I 
error rate is controlled to be strictly below � within the com-
posite null space (Li et al., 2020). Of note, the performance 
of this approach can critically depend on the number of clus-
ters. For example, when the number of clusters is small, the 
estimated degrees of freedom n − 2 may be very small, and 
therefore, the test may be conservative (Davis‐Plourde et al., 
2023). Finally, for sample size determination, one can use 
the power Eq. (5) and solve for n or m given pre-specified 
values of all other design parameters using the procedure 
described for the omnibus test.

The Role of ICC Parameters

To provide some intuition on how the ICC parameters affect 
study power, we numerically explore the relationship 
between power and the two relevant ICC parameters ( �y|s,z 
and �s ) for the omnibus test and intersection–union test in 

(5)
power = 1 − 𝜆 = P

{

𝜁0 > c0, 𝜁1 > c1|H1

}

= ∫ ∞

co
∫ ∞

c1
g(a, b)dadb,

Figs. 1 and 2. We consider a CRT with equal allocation to 
both arms with � = 1∕2 and assume n = 30 clusters, cluster 
size m = 100 , total variance of the outcome �2

y|s,z
= 1 , the 

treatment effect among the subgroup �0 is Δ0 = 0.3 , and the 
treatment effect among the subgroup �1 is Δ1 = 0.4 and vary 
the prevalence of the subgroup indicator by choosing 
p1 ∈ {0.3, 0.5, 0.7} . In Fig. 1, we observe that the power of 
the omnibus test monotonically decreases in �s but has a 
parabolic relationship with �y|s,z . In general, power is not too 
sensitive to �s , especially when �y|s,z is small. But power 
often increases as the prevalence of the subgroup with a 
larger treatment effect increases. In Fig. 2, we observe that 
the power of the intersection–union test monotonically 
decreases in both �s and �y|s,z , is more sensitive to changes 
in �y|s,z than in �s , and appears to be more sensitive to 
changes in �s than the omnibus text, particularly for larger 
values of �s . In practice, we recommend exploring the sen-
sitivity of sample size and power under varying a priori esti-
mates for the two ICC parameters, as our numerical results 
illustrate that power may change according to different ICC 
assumptions.

Simulation Study

Simulation Design

We follow the ADEMP framework proposed by Morris et al. 
(2019), which breaks down the simulation study into five 
key elements: aims, data-generating mechanisms, estimands, 
methods, and performance measures.

Aims

This simulation study aims to assess the performance of our 
sample size formulas with equal randomization ( � = 1∕2 ) 
and equal subgroup proportions ( p1 = p0 = 1∕2 ), for both 
the omnibus test and the intersection–union test. The pri-
mary objectives are to verify that the empirical type I error 
rate is controlled at or under the nominal level and empirical 
power is close to that predicted by the formula.

Data‑Generating Mechanisms

From the proposed sample size formulas, the total number 
of clusters depends on the following parameters: nominal 
type I error rate ( � ), power ( 1 − � ), total variance of the 
outcome ( �2

y|s,z
 ), ICC of the outcome ( �y|s,z ), ICC of the 

subgroup variable ( �s ), cluster size ( m ), and effect sizes. 
Throughout, we fixed the total variance �2

y|s,z
 at 1, nominal 
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type I error rate � at 5%, desired power 1 − � at 80%, 
�2 = 0.2 and �4 = 0.1 for the omnibus test, and �2 = 0.3 and 
�4 = 0.1 for the intersection–union test and varied the 
remaining parameters. That is, the true subgroup-specific 
treatment effects were Δ0 = 0.2 and Δ1 = 0.3 for the  
omnibus test and Δ0 = 0.3 and Δ1 = 0.4 for the intersec-
tion–union test. Different effect sizes were chosen for dif-
ferent tests to ensure a realistic range of the predicted 
number of clusters. We considered three levels of cluster 
size m ∈ {20, 50, 100} , three levels of ICC for the  
outcome conditional on the subgroup variable �

y|s,z ∈

{0.02, 0.05, 0.1} , and three levels of ICC for the subgroup 
variable �s ∈ {0.1, 0.25, 0.5} ; �s was chosen to follow pre- 
vious simulations for the interaction tests (Tong et al., 

2022; Yang et  al., 2020) and to better illustrate its  
potential impact on power. In summary, we considered 
3 × 3 × 3 = 27 parameter combinations for each test. In 
each scenario, the total number of clusters n was deter-
mined as the smallest number that ensured the predicted 
power was at least 80%. To assess the empirical type I 
error rate, both �2 and �4 were fixed at 0 for the omnibus 
test, while only �2 was fixed at 0 for the intersection–union 
test. For each sample size obtained from the respective 
formula, we then simulated the binary subgroup variable 
Sij from the beta-binomial model with the cluster- 
specific probability of the subgroup population �1 as 
pi ∼ Beta(q1, q2) and Sij ∼ Bernoulli(pi) , where q1 and q2 
were determined by the marginal probability of the 

Fig. 1  Power of the omnibus test with n = 30,m = 100, �2
y
= 1,Δ0 = 0.3,Δ1 = 0.4 at p1 ∈ {0.3, 0.5, 0.7} as a function of (A) �

y|s,z when fixing 
�
s
= 0.2 ; (B) �

y|s,z when fixing �
s
= 0.5 ; (C) �s when fixing �

y|s,z = 0.05 ; (D) �
s
 when fixing �

y|s,z = 0.2
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subgroup population �1 as p1 = q1∕(q1 + q2) and the ICC 
of the subgroup variable as �s =

(

1 + q1 + q2
)−1 . For each 

scenario, we also simulated the outcome Yij from Model 
(1), by fixing �1 = 0 and �3 = 0.15 (in theory the power is 
not affected by these two parameters).

Estimands

Given our focus on testing, the estimand aspect of the 
ADEMP framework could be interpreted as the empirical 
power and empirical type I error rate of each test, estimated 
by the formula predictions.

Methods

In each scenario, 2000 data replications were generated and 
analyzed for the evaluation of the empirical type I error rate 
under the null and empirical power under the alternative 
hypothesis. As the nominal type I error rate was 5%, accord-
ing to the margin of error from a binomial model with 2000 
replications, we considered an empirical type I error rate 
from 4.0 to 6.0% as close to the nominal. Similarly, as the 
predicted power was at least 80% for each scenario, we con-
sidered an empirical power differing at most 2.0% from the 
predicted power as acceptable. In addition, for each scenario, 

Fig. 2  Power of the intersection–union test with n = 30,m = 100, σ2
y
= 1,Δ

0
= 0.3,Δ1 = 0.4 at p1 ∈ {0.3, 0.5, 0.7} as a function of (A) �

y|s,z 
when fixing �

s
= 0.2 ; (B) �

y|s,z when fixing �
s
= 0.5 ; (C) �

s
 when fixing �

y|s,z = 0.05 ; (D) �
s
 when fixing �

y|s,z = 0.2
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we also provide a comparison with a back-of-the-envelope 
approach. This approach estimates the required number of 
clusters nc by first using our formula ignoring any intraclus-
ter correlations with �y|s,z = �s = 0 (i.e., assuming individual 
randomization) and then multiplying the required sample 
size by the conventional design effect for CRTs: 
1 + (m − 1)�y|s,z . We also calculate the actual predicted 
power using our formula based on nc to compare the perfor-
mance of the back-of-the-envelope approach to our method, 
as well as the relative saving in the required number of clus-
ters ( = nc−n

nc
× 100%).

Performance Measures

To assess the performance of the sample size formulas 
for each test, we compute both the empirical type I error 
rate and empirical power in each simulation scenario. The 

empirical type I error rate is calculated as the percentage of 
times a null hypothesis is rejected when the null is actually 
true; the empirical power is calculated as the percentage of 
times a null hypothesis is rejected when the null is actually 
false.

Simulation Results

All statistical analyses were conducted with R, version 4.2.2, 
and the convergence rate was 100% for each scenario. Table 1 
summarizes the estimated required number of clusters ( n ) 
using the proposed formula, empirical type I error, empiri-
cal power, and predicted power, for the omnibus test. For all 
scenarios, the type I error rates were all within the acceptable 
range, and the empirical power corresponded well with the 
predicted power. In the last three columns of Table 1, we 
present the results for the back-of-the-envelope approach. We 

Table 1  Simulation  scenariosa, 
estimated required number 
of clusters n based on the 
proposed formula, empirical 
type I error rates (emp. size), 
empirical power (emp. power), 
and predicted power (pred. 
power) for the omnibus test. 
The treatment effect among the 
subgroup �0 is Δ0 = 0.2 , and 
the treatment effect among the 
subgroup �1 is Δ1 = 0.3 . In the 
last two columns, we estimate 
the required number of clusters 
n
c
 using the proposed formula 

with �
y|s,z = �

s
= 0 and the 

design effect with the true value 
of �

y|s,z and then obtain the 
actual predicted power (actual 
power) using our formula based 
on n

c
 as well as the true values 

of �
y|s,z and �

s

a All scenarios assume a CRT with equal randomization ( � = 0.5 ) and equal subgroup proportions 
( p1 = p0 = 0.5 ) and a quantitative outcome having variance �2

y
= 1

b The type I error rates were all within the acceptable range (from 4.0% to 6.0% ), and the empirical power 
corresponded well with the predicted power (differing at most 2.0% from the preficted power)

Design parameters Performance  characteristicsb Comparator

m �
y|s,z �

s
n Emp. size Emp. power Pred. power n

c
Actual power Rel. saving (%)

20 0.02 0.10 44 0.046 0.795 0.806 48 0.843 8.3
0.25 44 0.045 0.805 0.805 48 0.842 8.3
0.50 44 0.045 0.797 0.803 48 0.841 8.3

0.05 0.10 60 0.046 0.818 0.808 68 0.859 11.8
0.25 60 0.055 0.800 0.806 68 0.857 11.8
0.50 60 0.060 0.791 0.802 68 0.854 11.8

0.10 0.10 84 0.044 0.818 0.804 100 0.874 16.0
0.25 86 0.048 0.816 0.810 100 0.870 14.0
0.50 86 0.043 0.812 0.802 100 0.863 14.0

50 0.02 0.10 26 0.043 0.797 0.804 32 0.890 18.8
0.25 26 0.044 0.793 0.801 32 0.889 18.8
0.50 28 0.043 0.829 0.832 32 0.885 12.5

0.05 0.10 42 0.046 0.813 0.815 56 0.920 25.0
0.25 42 0.046 0.816 0.809 56 0.916 25.0
0.50 44 0.045 0.805 0.820 56 0.910 21.4

0.10 0.10 62 0.049 0.792 0.801 96 0.947 35.4
0.25 64 0.047 0.808 0.803 96 0.941 33.3
0.50 68 0.048 0.803 0.811 96 0.931 29.2

100 0.02 0.10 20 0.042 0.818 0.808 30 0.953 33.3
0.25 20 0.047 0.802 0.804 30 0.951 33.3
0.50 22 0.042 0.844 0.842 30 0.947 26.7

0.05 0.10 34 0.043 0.834 0.814 60 0.977 43.3
0.25 34 0.044 0.819 0.803 60 0.974 43.3
0.50 36 0.047 0.820 0.811 60 0.968 40.0

0.10 0.10 50 0.041 0.815 0.801 110 0.992 54.5
0.25 54 0.052 0.809 0.816 110 0.989 50.9
0.50 58 0.045 0.810 0.812 110 0.982 47.3
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observe that for the omnibus test, simply inflating the sample 
size with the conventional design effect always leads to a 
larger sample size than the proposed method, and the relative 
savings in the required number of clusters ranges from 8.3 to 
54.5% across the scenarios considered.

Table 2 summarizes the estimated required number of 
clusters ( n ) using the proposed formula, empirical type I 
error, empirical power, and predicted power, for the intersec-
tion–union test. With a small cluster size ( m = 20, 50 ), the 
intersection–union test provided conservative type I error 
rates ( < 4.0% ); for the larger cluster size ( m = 100 ), the type 
I error rates grew closer to nominal. The empirical power 
corresponded well with the predicted power across almost 
all scenarios. Finally, we also observe that for the intersec-
tion–union test, inflating the sample size under individual 
randomization via the simple design effect always results in 
a larger number of clusters than the proposed method and 

may therefore lead to unnecessary use of resources. Specifi-
cally, the relative savings in the required number of clusters 
ranges from 17.4 to 59.1% across the scenarios considered. 
Therefore, our method is especially attractive when the 
available numbers of clusters or resources are limited.

Illustrative Data Example

We illustrate our sample size methods by calculating the 
required number of clusters (i.e., groups of participants) in 
the context of the UMDEX study, which was introduced in 
the “Introduction” section. Recall that an important aim of 
the study was to investigate intervention effects in differ-
ent subpopulations defined by dementia type: Alzheimer’s 
disease versus non-Alzheimer’s dementia. Clusters were 

Table 2  Simulation  scenariosa, 
estimated required number of 
clusters n based on the proposed 
formula, empirical type I error 
rates (emp. size), empirical 
power (emp. power), and 
predicted power (pred. power) 
for the intersection–union test. 
The treatment effect among the 
subgroup �0 is Δ0 = 0.3 , and 
the treatment effect among the 
subgroup �1 is Δ1 = 0.4 . In the 
last two columns, we estimate 
the required number of clusters 
n
c
 using the proposed formula 

with �
y|s,z = �

s
= 0 and the 

design effect with the true value 
of �

y|s,z and then obtain the 
actual predicted power (actual 
power) using our formula based 
on n

c
 as well as the true values 

of �
y|s,z and �

s
  

a All scenarios assume a CRT with equal randomization ( � = 0.5 ) and equal subgroup proportions 
( p1 = p0 = 0.5 ) and a quantitative outcome having variance �2

y
= 1

b Starred text indicates the type I error rates were smaller than 4.0% , which were conservative but the tests 
were still valid; double starred text indicates the empirical power was more than 2.0% smaller than the pre-
dicted power

Design parameters Performance  characteristicsb Comparator

m �(y|s,z)  �
s

n Emp. size Emp. power Pred. power n
c

Actual power Rel. saving (%)

20 0.02 0.10 38 0.020* 0.802 0.811 46 0.883 17.4
0.25 38 0.016* 0.805 0.803 46 0.876 17.4
0.50 40 0.022* 0.794 0.810 46 0.864 13.0

0.05 0.10 46 0.024* 0.815 0.809 64 0.919 28.1
0.25 48 0.028* 0.814 0.814 64 0.911 25.0
0.50 50 0.024* 0.800 0.805 64 0.894 21.9

0.10 0.10 58 0.030* 0.799 0.802 94 0.946 38.3
0.25 60 0.035* 0.809 0.802 94 0.940 36.2
0.50 66 0.024* 0.816 0.810 94 0.924 29.8

50 0.02 0.10 20 0.026* 0.821 0.818 28 0.929 28.6
0.25 20 0.027* 0.795 0.805 28 0.922 28.6
0.50 22 0.028* 0.806 0.821 28 0.906 21.4

0.05 0.10 28 0.035* 0.824 0.812 50 0.967 44.0
0.25 30 0.032* 0.805** 0.826 50 0.962 40.0
0.50 32 0.035* 0.820 0.822 50 0.951 36.0

0.10 0.10 42 0.040 0.814 0.816 84 0.978 50.0
0.25 42 0.037* 0.813 0.806 84 0.976 50.0
0.50 46 0.038* 0.812 0.815 84 0.969 45.2

100 0.02 0.10 14 0.033* 0.822 0.825 24 0.970 41.7
0.25 14 0.030* 0.792** 0.813 24 0.966 41.7
0.50 16 0.032* 0.822 0.840 24 0.956 33.3

0.05 0.10 22 0.042 0.809 0.815 48 0.987 54.2
0.25 22 0.037* 0.789 0.805 48 0.985 54.2
0.50 24 0.036* 0.819 0.814 48 0.980 50.0

0.10 0.10 36 0.059 0.823 0.816 88 0.992 59.1
0.25 36 0.057 0.828 0.810 88 0.991 59.1
0.50 38 0.043 0.810 0.813 88 0.989 56.8
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randomized to either the exercise or control activities in a 
1:1 ratio. The intervention exercise program consisted of 
five exercise sessions lasting approximately 45 min, each 
held per 2-week period for 4 months (40 sessions in total). 
The primary outcome of ADL independence was measured 
at the patient level at 4 months using the FIM, a 13-item 
instrument with items rated on a scale from total assistance 
(1) to complete independence (7) and a total score ranging 
from 13 to 91. We treat the FIM as a continuous outcome 
with larger values indicating more independence in ADLs.

First, suppose the investigators were interested in the 
omnibus test, demonstrating a treatment effect in at least 
one of the two subgroups. They need to determine the 

required number of clusters to achieve at least 80% power 
at the 5% nominal test size. The target effect size for the 
subgroup with non-Alzheimer’s dementia was a standard-
ized difference of Δ0∕�y|s,z = 0.7 and for the subgroup with 
Alzheimer’s disease was Δ1∕�y|s,z = 0.5. Furthermore, the 
assumed ICC of the subgroup variable (dementia type) was 
�s = 0.2 , and of the outcome FIM adjusted for the subgroup 
indicator was �y|s,z = 0.04 . The anticipated prevalence of 
patients with Alzheimer’s disease was p1 = 36% , and the 
anticipated number of patients per cluster was assumed to 
be m = 10 . With these assumptions and inverting power 
Eq. (4), the required number of clusters can be calculated 
as 18 with a predicted power of 85.5%. Figure 3 shows a 

Fig. 3  Predicted power contours for the omnibus test as a function of �
s
 and �

y|s,z at m = {10, 20, 30, 40} , with n = 18 , Δ0 = 0.7 × �
y
 , 

Δ1 = 0.5 × �
y
 for the UMDEX study
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sensitivity analysis of power as a function of �s and �y|s,z and 
for m = {10, 20, 30, 40} , with n = 18 . When �y|s,z ≤ 0.09 , the 
predicted power decreases as �s or �y|s,z increases. Overall, 
even with 10 patients per cluster, the power of the study 
remains above 0.8 as long as �y|s,z ≤ 0.06 . However, using 
the back-of-the-envelope approach, the required number of 
clusters would be 20 (i.e., 2 more clusters compared to the 
proposed method) with an actual power of 89.8%.

Second, suppose the investigators were interested in the 
intersection–union test, demonstrating treatment effects in 
both subgroups. Again, they need to determine the required 
number of clusters to achieve at least 80% power at the 5% 

nominal test size. Keeping all of the other assumptions as 
in the omnibus test and using Eq. (5), the required number 
of clusters would be 34 with a power of 80.6%. With the 
same assumptions, more clusters are required for the inter-
section–union test because of a more stringent requirement 
of treatment effects in both subgroups based on the omnibus 
test. Figure 4 shows a sensitivity analysis of power as a func-
tion of �s and �y|s,z at m = {10, 20, 30, 40} , assuming n = 34 . 
When �y|s,z ≤ 0.09 , the predicted power decreases as �s or 
�y|s,z increases, and the power appears to be more sensitive 
to �s compared to the omnibus test. Overall, even with 10 
patients per cluster, the power of the study remains above 

Fig. 4  Predicted power contours for the intersection–union test as a function of �
s
 and �

y|s,z at m = {10, 20, 30, 40} , with n = 34 , Δ0 = 0.7 × �
y
 , 

Δ1 = 0.5 × �
y
 for the UMDEX study
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0.8 as long as �y|s,z ≤ 0.04 and �s ≤ 0.25 . However, using 
the back-of-the-envelope approach, the required number of 
clusters would be 42 (i.e., 8 more clusters compared to the 
proposed method) with an actual power of 87.7%.

In this example, we additionally consider the sample size 
required for the interaction test (Yang et al., 2020). Suppose 
the investigators were interested in the interaction test for  
heterogeneity of treatment effects, demonstrating a differ-
ence in treatment effects between the two subgroups. Keep-
ing all of the other assumptions as in the omnibus test and 
the intersection–union test and using the method in Yang 
et al. (2020), the required number of clusters would be 284 
with a power of 80.2%. Note that the interaction test requires 
a much larger sample size because the effect size for the 
between-subgroup difference is much smaller than the effect 
size for each subgroup. This comparison demonstrates that 
sample size requirements for subgroup-specific treatment 
effects and those for testing treatment effect heterogeneity do 
not have a clear nesting relationship, and the choice between 
them ultimately depends on the scientific study objective. 
Finally, we calculated the required sample size for testing the 
overall average treatment effect ( H0 ∶ �2 + p1�4 = 0 versus 
H1 ∶ �2 + p1�4 ≠ 0 ). Keeping all assumptions as above, using 
a t-test with the variance (3) suggested that the required num-
ber of clusters would be 12 with a power of 85.9%; thus, a 
smaller sample size is sufficient for testing the overall average 
treatment effect.

Discussion

It is increasingly important for investigators to explicitly 
formulate health equity objectives about testing subgroup-
specific treatment effects and then design the trial accord-
ingly, i.e., with adequate power to address the health equity 
objectives. Accordingly, there is an emerging need to study 
sample size requirements for such objectives, especially for 
cluster-randomized designs. Recently, the National Institute 
on Aging (NIA) IMbedded Pragmatic Alzheimer’s disease 
(AD) and AD-Related Dementias (AD/ADRD) Clinical 
Trials (IMPACT) Collaboratory considered the need to 
“clearly state health-equity-relevant aims & hypotheses” 
and “be explicit in sample size justification with regard 
to the health equity objective” in their health equity best 
practices guidance document (NIA IMPACT Collabora-
tory, 2022). It is therefore critically important to integrate 
health equity considerations in the design stage of a prag-
matic trial (Nicholls et al., 2023), for which we contribute 
analytical power and sample size formulas. We consider 
a simple yet common case with a binary subgroup vari-
able and clarify the ingredients that determine the variance 
of the subgroup-specific treatment effect under a linear 

mixed analysis of the covariance model. On some occa-
sions, we recognize that many CRTs include the analy-
sis of the overall treatment effect as the primary analysis 
and the subgroup analysis as secondary. In those cases, 
our methods can help provide a context to interpret the 
subgroup results and address questions of how many more 
clusters are needed if the study aims to generate evidence 
on subgroup treatment effects. Alternatively, if the sam-
ple size is driven solely by the overall average treatment 
effect, it is still helpful to know what power is available to 
detect plausible subgroup treatment effects, even if it is not 
80% . Moreover, we consider both the omnibus test and the 
intersection–union test. The choice of tests depends on the 
study context and scientific question, and our work allows 
investigators to focus on either test, as well as compare the 
sample size implications of the two tests. In addition, for 
the omnibus test, power generally decreases in the ICC of 
the subgroup variable and has a parabolic relationship with 
the ICC of the outcome conditional on the subgroup vari-
able; for the intersection–union test, power monotonically 
decreases in both ICC parameters. This information can 
help investigators specify ICC parameters that are likely 
to provide conservative sample size estimates if accurate 
information on design parameters is unavailable at the 
design stage. Finally, even though our data example does 
not include a multilevel intervention which has two or more 
levels of intervention at the same time or in close tempo-
ral proximity (Agurs-Collins et al., 2019), our approach 
remains applicable to a multilevel intervention as long as 
the study considers cluster-level randomization.

Importantly, this paper focuses on testing subgroup-
specific treatment effects and has a distinct focus from the 
previous research on the heterogeneity of treatment effects 
(i.e., an interaction test). In our perspective, these two analy-
ses provide complementary evidence by addressing differ-
ent aspects of how intervention affects subpopulations in 
CRTs. The choice between testing subgroup-specific treat-
ment effects and testing heterogeneity of treatment effects 
ultimately depends on the study objective, that is, whether 
the study aims to test the treatment effect in each subgroup 
or the difference in treatment effects between the subgroups. 
The required sample size to detect the subgroup-specific 
treatment effects is expected to be different than that for 
testing the treatment difference, even under the same effect 
size specifications, as demonstrated in the illustrative exam-
ple. The reason is that our methods depend on the size of 
effects specified for each subgroup, while the interaction 
test depends only on the difference between two subgroups. 
Furthermore, there exist practical situations with an unbal-
anced distribution of an important subgroup variable (e.g., 
gender identity) whereby the trial could only include very 
few people in one group but many more in another. This 
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might lead to challenges in powering the interaction test 
(since p1p0 is close to zero), but one may still have a chance 
to identify treatment effect signals in at least one subgroup 
with sufficient power. Given the importance of addressing 
sex-gender considerations in trial designs, our methodology 
allows investigators to ensure that there is adequate power in 
at least the larger of the two subgroups even when the study 
may not be adequately powered for detecting heterogeneity 
of treatment effects.

Although Model (1) is a commonly used analytical 
model, it assumes that the correlation among participant out-
comes within the same cluster is the same between the two 
subgroups. Ignoring the difference in correlations among 
members of the same cluster in the two subgroups, when it 
exists, may lead to an inflated type I error rate. Extending 
Model (1), we can include a random coefficient for Sij to 
allow the outcome correlation among participants from the 
same cluster to differ between subgroups. Specifically, one 
can consider the model:

where the parameters are similarly interpreted as those in 
Model (1), except for the addition of the random cluster-
level slope, ci ∼ N(0, �2

c
) . Model (6) encodes three outcome 

ICCs: the ICC between different participants in subgroup �0 , 
the ICC between different participants in different sub-
groups, and the ICC between different participants in sub-
group �1 . The closed-form formulas for Var

(

Δ̂0

)

 , Var
(

Δ̂1

)

 , 

and Cov
(

Δ̂0, Δ̂1

)

 under Model (6) are analytically less trac-
table due to the complexity of the correlation structure. 
Therefore, in Web Appendix B, we propose an efficient 
Monte-Carlo sample size procedure through simulating data 
and inverting the correlation matrix, as an extension to allow 
for different outcome ICCs in different subgroups.

Our development of sample size procedures focusing on 
testing subgroup-specific treatment effects for a binary sub-
group variable represents an endeavor to improve standards 
for confirmatory subgroup analyses in CRTs but comes with 
several limitations that we plan to address in future work. 
First, there are scenarios where more than two subgroups 
are of interest, and our method can be generalized to accom-
modate multiple subgroups following the derivations in 
Sect. 3.2 of Yang et al. (2020). However, the final covariance 
matrix for the subgroup-specific treatment estimators may 
depend on two ICC parameters of two dummy variables, and 
the sample size procedure is inevitably more complicated.  
In addition, for a total study sample size, an increasing number  
of subgroups will on average lead to smaller subgroup sample  
sizes, which could diminish power. In future work, it would be  
worth exploring the implications of the number of subgroups 

(6)Yij = �1 + �2Zi + �3Sij + �4ZiSij + bi + ciSij + eij,

on study power for both the omnibus and intersection– 
union testing frameworks. Second, we assumed equal clus-
ter sizes to simplify derivations. Such an assumption is  
routinely made in CRTs at the design stage but could be vio-
lated in practice. It would be interesting to extend our sample 
size formulas to accommodate variable cluster sizes, perhaps 
along the lines of van Breukelen et al. (2007) and Tong et al. 
(2022). Third, our work assumed the effect of the treatment 
group variable is constant across clusters. An extension of 
our work to varying effects can be made by including an 
additional random slope for Zi in Model (1) or Model (6) 
(Tong et al., 2023). A Monte-Carlo procedure similar to 
that developed in Web Appendix B can be used for sample 
size estimation but requires assumptions on additional ICC 
parameters which will be explored in future work. Fourth, 
we only considered equal subgroup proportions in the simu-
lation study. In addition, smaller numbers of clusters, such 
as 8, 10, or 12, which may occur in some CRTs, were not 
considered in the simulation study. Possible challenges and 
additional scenarios with unequal subgroup proportions and 
with a small number of clusters will be addressed in future 
work. Finally, we have assumed that the outcome is con-
tinuous, and analysis is based on linear mixed analysis of 
covariance. An extension of our work to binary and categori-
cal outcomes will be pursued in future work. However, in 
some cases, the sample size results developed for continu-
ous outcomes can still be used to provide an approximate 
calculation for binary outcomes, providing that the target 
effect size is on the risk difference scale. The accuracy of 
this approximate procedure remains to be investigated in the 
context of subgroup analyses.
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