
Vol.:(0123456789)1 3

https://doi.org/10.1007/s11121-021-01280-1

Assessing the Robustness of Mediation Analysis Results Using 
Multiverse Analysis

Judith J. M. Rijnhart1   · Jos W. R. Twisk1 · Dorly J. H. Deeg1 · Martijn W. Heymans1

Accepted: 23 June 2021 
© The Author(s) 2021

Abstract
There is an increasing awareness that replication should become common practice in empirical studies. However, study results 
might fail to replicate for various reasons. The robustness of published study results can be assessed using the relatively 
new multiverse-analysis methodology, in which the robustness of the effect estimates against data analytical decisions is 
assessed. However, the uptake of multiverse analysis in empirical studies remains low, which might be due to the scarcity of 
guidance available on performing multiverse analysis. Researchers might experience difficulties in identifying data analytical 
decisions and in summarizing the large number of effect estimates yielded by a multiverse analysis. These difficulties are 
amplified when applying multiverse analysis to assess the robustness of the effect estimates from a mediation analysis, as a 
mediation analysis involves more data analytical decisions than a bivariate analysis. The aim of this paper is to provide an 
overview and worked example of the use of multiverse analysis to assess the robustness of the effect estimates from a media-
tion analysis. We showed that the number of data analytical decisions in a mediation analysis is larger than in a bivariate 
analysis. By using a real-life data example from the Longitudinal Aging Study Amsterdam, we demonstrated the application 
of multiverse analysis to a mediation analysis. This included the use of specification curves to determine the impact of data 
analytical decisions on the magnitude and statistical significance of the direct, indirect, and total effect estimates. Although 
the multiverse analysis methodology is still relatively new and future research is needed to further advance this methodology, 
this paper shows that multiverse analysis is a useful method for the assessment of the robustness of the direct, indirect, and 
total effect estimates in a mediation analysis and thereby to inform replication studies.

Keywords  Multiverse analysis · Reproducibility · Robustness · Specification curve · Selective reporting · Transparency · 
Mediation analysis · Indirect effect

Introduction

In the last two decades, various reports have been published 
that stated that a substantial number of published study 
results cannot be replicated (Ioannidis, 2005; Open Science 
Collaboration, 2015). These reports caused an increased 
awareness of the importance of replication studies among 
researchers from various research fields, including psychol-
ogy and epidemiology (Anderson & Maxwell, 2016; Lash 
et al., 2018; Valentine et al., 2011). Replication studies 

aim to replicate the original study results in a new sam-
ple using the same research methodology as in the original 
study (Goodman et al., 2016). However, published study 
results might fail to replicate for various reasons, includ-
ing questionable research practices (QRPs) and researcher 
degrees of freedom (RDFs) (Anderson & Maxwell, 2016; 
Wicherts et al., 2016). QRPs are practices that increase the 
chances of finding results that are in line with the research 
hypotheses, such as selective reporting, and RDFs are the 
arbitrary choices that researchers make when analyzing the 
data (Fiedler & Schwarz, 2016; Wicherts et al., 2016). When 
published study results are robust against these RDFs, then 
replication studies are more likely to reproduce the pub-
lished study results (Nuijten et al., 2018).

To avoid wasting resources, Nuijten et al. (2018) sug-
gested to first reproduce the published results using the 
original data and then verify the robustness of published 
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results against data analytical decisions before conducting 
a replication study. When preparing and analyzing data, 
researchers are faced with various data analytical decisions. 
These decisions may be study-centric (e.g., exclusion criteria 
and missing data handling), variable-centric (e.g., variable 
transformations), or model-centric (e.g., the inclusion of 
interactions, random effects, and covariates in the statisti-
cal model). Because these decisions are often arbitrary and 
multiple reasonable decisions can be made, the decisions 
are referred to as the “garden of forking paths” (Gelman & 
Loken, 2013). The reported model is only one of the many 
reasonable models that could have been estimated based on 
the raw data.

Data analytical decisions are made based on various rea-
sons, such as the theoretical and statistical validity of the 
model, methodology used in prior studies, data constraints, 
limited statistical expertise, ease of communicating the 
effect estimates, and the belief that alternative analyses 
would have little impact on the results (Kale et al., 2019; 
Liu et al., 2020). The subjectivity in data analytical deci-
sions was demonstrated by Silberzahn et al. (2018), who 
asked 29 research teams to answer the same research ques-
tion using the same dataset. This resulted in 29 different 
statistical analyses, with variations in the set of covariates 
and in the statistical modeling approach, which ranged from 
simple linear regression to Bayesian analyses. Therefore, 
the analyses resulted in 29 different effect estimates. The 
variation in the effect estimates could not be explained by 
differences in statistical expertise or by peer-ratings of the 
quality of the analyses (Silberzahn et al., 2018).

In some situations, researchers acknowledge the subjec-
tivity in the data analytical decisions by performing multiple 
analyses, but opt to report only one of the acquired results 
(Kale et al., 2019; Liu et al., 2020). Some researchers deem 
the reporting of only one result sufficient when all research 
results point in the same direction (Liu et al., 2020). When 
the research results point in various directions, research-
ers sometimes choose to only report statistically significant 
results that are in line with their hypotheses, which is also 
known as p-hacking (Gelman & Loken, 2013). Other rea-
sons for selective reporting are feeling the need to tell a 
clear story, the anticipation that reviewers or colleagues in 
the field will disapprove of certain data analytical decisions, 
and journal constraints on the length of a paper (Kale et al., 
2019; Liu et al., 2020).

To increase the transparency in the impact of data analyti-
cal decisions on the effect estimates and to avoid selective 
reporting, it has been suggested to report effect estimates 
based on all reasonable data analytical decisions (Nuijten 
et al., 2018; Silberzahn et al., 2018; Steegen et al., 2016). 
This has been referred to as a multiverse analysis (Steegen 
et al., 2016), specification curve analysis (Simonsohn et al., 
2020), vibration of effects (Patel et al., 2015), or multi-model 

analysis (Young & Holsteen, 2017). In contrast with con-
ventional sensitivity analyses, which often include a limited 
set of alternative data analytical decisions selected by the 
researcher, a multiverse analysis aims to identify all deci-
sion points and perform the analyses across all reasonable 
alternative decisions (Simonsohn et al., 2020; Steegen et al., 
2016). Therefore, a multiverse analysis provides insight 
into all combinations of data analytical decisions leading to 
effect estimates that either support or contradict the research 
hypothesis. For example, the multiverse analysis performed 
by McBee et al. (2019) showed that the statistical signifi-
cance of an earlier reported association between TV watching 
in early childhood and attention problems in later childhood 
was highly dependent on the cut-off point chosen for the 
binary attention problems variable.

Although multiverse analysis has the potential to con-
tribute to the acquisition of reliable knowledge, the little 
available guidance might prevent researchers from applying 
multiverse analysis (Dragicevic et al., 2019). Researchers 
may experience difficulties in defining the multiverse (Liu 
et al., 2020), and in summarizing and interpreting the large 
number of effect estimates yielded by the multiverse analysis 
(Dragicevic et al., 2019). These difficulties are amplified 
when performing a multiverse analysis of more complex 
models, such as mediation models. Mediation analysis is 
often applied in prevention research to decompose the total 
determinant-outcome effect estimate into an indirect effect 
estimate through a mediator variable, and a direct effect esti-
mate (Judd & Kenny, 1981; MacKinnon, 2008). For exam-
ple, Jackson et al. (2016) used mediation analysis to assess 
the intermediate effects of an intervention consisting of a 
parenting program on the susceptibility of schoolchildren 
to alcohol use, and Kwok and Gu (2019) used mediation 
analysis to assess whether adolescents’ depressive symp-
toms mediated the relation between childhood neglect and 
adolescent suicidal ideation.

Due to the addition of a mediator variable and the esti-
mation of multiple effects, researchers face more variable-
centric and model-centric data analytical decisions that 
could impact the study results than in a bivariate analysis, 
i.e., a simple determinant-outcome analysis. As a result, the 
potential multiverse of a mediation analysis is larger than the  
potential multiverse of a bivariate analysis. For example, 
there might be reasonable alternative operationalizations 
of the mediator variable, and confounders and moderators 
need to be considered for each of the effect estimates in the 
mediation model (MacKinnon, 2008). These data analytical 
decisions may not only impact the magnitude and statistical 
significance of the total determinant-outcome effect esti-
mate, but also the magnitude and statistical significance of 
the direct and indirect effect estimates.

The aim of this paper is to provide an overview and 
worked example of the use of multiverse analysis to assess 
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the robustness of the effect estimates from a mediation 
analysis. We first provide a brief introduction into media-
tion analysis. We then summarize the multiverse analysis 
literature and describe how multiverse analysis can be used 
to assess the robustness of the effect estimates yielded by 
mediation analysis. Subsequently, we demonstrate the mul-
tiverse analysis of a published mediation analysis using a 
real-life data example from the Longitudinal Aging Study 
Amsterdam. Finally, we discuss the strengths and limita-
tions of multiverse analysis and provide recommendations 
for future methodological research on multiverse analysis.

Mediation Analysis

Figure 1 represents a path diagram of a simple mediator 
model, in which the c path represents the total determinant-
outcome effect, the a path represents the determinant-mediator 
effect, the b path represents the mediator-outcome effect, and 
the c′ path represents the direct determinant-outcome effect 
(MacKinnon, 2008).

Traditionally, three linear regression equations are used  
to perform a mediation analysis (Baron & Kenny, 1986; Judd 
& Kenny, 1981):

where in Eq. 1, the c coefficient is the total determinant-
outcome effect. In Eq. 2, the a coefficient is the determinant-
mediator effect. In Eq. 3, the b coefficient is the mediator-
outcome effect adjusted for the determinant, and the c′ 
coefficient is the direct determinant-outcome effect adjusted 

(1)Y = i
1
+ cX + �

1

(2)M = i
2
+ aX + �

2

(3)Y = i
3
+ c

’
X + bM + �

3

for the mediator. In all equations, i1, i2, and i3 are intercept 
terms, and ε1, ε2, and ε3 are residual terms.

The mediation analysis methodology underwent many 
advancements in recent years. In the 1980s, Judd and Kenny 
(1981) and Baron and Kenny (1986) described the causal 
steps method for mediation analysis, in which the presence 
of a mediated effect was determined based on the statistical 
significance of the coefficients estimated based on Eqs. 1–3. 
Later, the product-of-coefficients (ab) method and difference- 
in-coefficients (c–c′) method for estimating the indirect 
effect were described (MacKinnon & Dwyer, 1993). In this 
paper, we refer to these methods as “traditional mediation 
analysis.”

The most recent advancement in the mediation analysis 
methodology is the development of causal mediation analy-
sis (Imai et al., 2010; Pearl, 2012; VanderWeele, 2015). This 
method stresses the importance of the no (unobserved) con-
founder assumptions and defines and estimates effects as the 
difference between two potential outcomes, providing con-
trolled direct effect estimates and natural direct and indirect 
effect estimates that take into account determinant-mediator 
interaction. These causal estimators provide similar effect 
estimates as in traditional mediation analysis for media-
tion models with a continuous mediator and a continuous 
outcome, but not necessarily for other types of mediation 
models (MacKinnon et al., 2020; Pearl, 2012; Rijnhart et al., 
2017, 2020; VanderWeele, 2015).

Multiverse Analysis of a Mediation Analysis

The general goal of a multiverse analysis is to assess the 
robustness of the effect estimates against data analytical 
decisions (Simonsohn et al., 2020; Steegen et al., 2016). It 
helps to identify the most impactful decisions and thereby 
provides important information for the development of a 
more complete and precise research theory (Del Giudice & 
Gangestad, 2021; Steegen et al., 2016). Multiverse analyses 
may be applied in original studies or to assess the robustness 
of previously published results. A multiverse analysis gener-
ally consists of three steps (Simonsohn et al., 2020; Steegen 
et al., 2016). In the first step, the multiverse is determined 
by identifying all decision points and reasonable alternative 
decisions. In the second step, the data is analyzed across this 
multiverse. In the third step, the effect estimates are sum-
marized and interpreted.

Step 1: Identification of the Multiverse

In the first step, the decision points are identified, and all 
reasonable alternative decisions are determined before ana-
lyzing the data (Simonsohn et al., 2020). Decision points 
vary across studies and may be study-centric (e.g., exclusion 

A.

B.

cDeterminant Outcome

ba

c’Determinant Outcome

Mediator

Fig. 1   Path diagram of a single mediator model. A represents the 
total exposure-outcome effect (c path). B represents the indirect effect 
of the exposure on the outcome through the mediator (a and b paths) 
and the direct exposure-outcome effect (c′ path)
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criteria and missing data handling), variable-centric (e.g., 
variable transformations), or model-centric (e.g., the inclu-
sion of interactions, random effects, and covariates in the 
statistical model) (Steegen et al., 2016). After the decision 
points are identified, a set of reasonable alternative decisions 
is determined for each decision point. These alternative deci-
sions should be consistent with the underlying theoretical 
framework, statistically valid, and not redundant with other 
decisions in the multiverse (Simonsohn et al., 2020). In other 
words, the alternative decisions should reflect the arbitrary 
RDFs, but not include QRPs (Del Giudice & Gangestad, 
2021; Wicherts et al., 2016). In contrast with conventional 
sensitivity analyses based on alternative decisions selected 
by the researcher, the goal of a multiverse analysis is to 
identify all decision points and all reasonable alternative 
decisions.

The decision points and alternative decisions may be 
summarized using a table (Steegen et al., 2016; Simonsohn 
et al., 2020) or an analytic decisions graph (Liu et al., 2020; 
Stern et al., 2019). It is important to provide rationales for 
the alternative decisions, as this increases transparency 
and helps readers understand why the alternative decisions 
reflect RDFs rather than QRPs (Simonsohn et al., 2020). 
Table 1 provides an overview of potential decision points 
and alternative considerations relevant for a mediation 

analysis. Some of the decision points in Table 1 are relevant 
for any type of analysis, while the italicized decision points 
and alternative considerations specifically apply to media-
tion analyses.

The mediation-analysis–specific decisions include the oper-
ationalization of the mediator variable and the consideration  
of potential confounders and moderators of the determinant-
mediator and mediator-outcome effects. The mediation  
analysis methodology underwent many advancements in 
recent years. Previously published mediation analyses might 
therefore be based on suboptimal methodology, which could 
be addressed in the multiverse analysis. For example, if the 
published study assessed the statistical significance of the 
indirect effect estimate using normal-theory–based confi-
dence intervals, confidence intervals that take into account 
the skewed distribution of the indirect effect estimate (e.g., 
distribution of the product confidence intervals, Monte Carlo  
confidence intervals, and bootstrap confidence intervals) 
could be considered as an alternative, as these have higher 
power to detect a statistically significant indirect effect  
estimate (Mackinnon et al., 2004). If the published study 
applied traditional mediation analysis methods, causal media-
tion analysis may be used to inform alternative decisions.  
The causal effect estimation may differ from the traditional 
effect estimation for mediation models with non-continuous 

Table 1   Overview of potential decision points and alternative decisions for the multiverse analysis of a mediation analysis

Note: The decision points and alternative considerations specific to mediation analysis are italicized

Decision points Alternative considerations

Determinant variable Alternative operationalizations of the determinant, e.g., defining the variable differently based on the same measure 
or using an alternative measure of the same construct

Outcome variable Alternative operationalizations of the outcome variable, e.g., defining the variable differently based on the same 
measure or using an alternative measure of the same construct

Mediator variable Alternative operationalizations of the mediator variable, e.g., defining the variable differently based on the same 
measure or using an alternative measure of the same construct

Confounder variables Alternative operationalizations of the confounder variables, e.g., using different cut-off points for a binary or cat-
egorical confounder variable

Varying sets of confounders of the determinant-outcome effect, the determinant-mediator effect, and the mediator-
outcome effect

Use of an alternative confounder adjustment method, e.g., inverse probability weighting
Moderator variables Alternative or additional moderators of the determinant-outcome effect, the determinant-mediator effect, and the mediator-

outcome effect
Assessment of determinant-mediator interaction

Exclusion criteria Varying sets of exclusion criteria, potentially varying from not excluding any participant to strict exclusion criteria
Missing data handling Use of multiple imputation or full-information maximum likelihood
Mediation analysis method Use of causal mediation analysis if the original study used traditional analysis
Type of regression models Use of varying analysis techniques to estimate the outcome model and mediator model, e.g., log-linear regression 

instead of logistic regression
Functional form Alternative functional form of the determinant-outcome effect, the determinant-mediator effect, and the mediator-

outcome effect, e.g., using quadratic or cubic terms
Determining the presence 

of a mediated effect
Based on the estimation of confidence intervals that take into account the skewed distribution of the indirect effect, 

e.g., distribution of the product, Monte Carlo, or bootstrap confidence intervals
Unmeasured confounding Assessment of the impact of various sets of unmeasured confounders of the determinant-outcome effect, the 

determinant-mediator effect, and the mediator-outcome effect using sensitivity analyses
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mediator variables and non-continuous outcome variables 
(Pearl, 2012; Rijnhart et al., 2020; VanderWeele, 2015).  
Furthermore, causal mediation analysis takes into account 
determinant-mediator interaction and provides sensitivity  
analyses for unmeasured confounders (Imai et al., 2010; 
MacKinnon et al., 2020; Pearl, 2012; VanderWeele, 2015). 
Detailed information on (the application of) causal media-
tion analysis can be found elsewhere (e.g., Imai et al. (2010), 
Pearl (2012), VanderWeele (2015), and Valente et al. (2020)).

Step 2: Data Analysis

In the second step, the data is analyzed across the multiverse 
identified at the first step (Simonsohn et al., 2020; Steegen 
et al., 2016). This step also involves checking for redun-
dancy among alternative decisions. Redundancy means that 
alternative decisions lead to the same data situation. For 
example, when multiple criteria for determining the con-
founder set lead to the same confounder set, then it will not 
be necessary to include all criteria.

Since a multiverse analysis involves multiple testing, type 
1 error rates may be elevated. The significance level may be 
adjusted to account for this, but this may come at the cost 
of elevated type 2 error rates (Ranganathan et al., 2016). 
Instead, we advise to focus primarily on the patterns of the 
results and the absolute or relative effect sizes when inter-
preting the effect estimates.

Step 3: Summarizing and Interpreting the Results

In the third step, the effect estimates yielded by the multi-
verse analysis are summarized and interpreted (Simonsohn  
et al., 2020; Steegen et al., 2016). Effect estimates and 
p-values can be summarized using kernel density plots, 
histograms, grids, or volcano plots (Patel et  al., 2015; 
Steegen et al., 2016; Young & Holsteen, 2017). A down-
side of these reporting methods is that they do not provide 
insight into the impact of specific data analytical decisions 
on the magnitude and statistical significance of the effect  
estimates. Alternatively, Simonsohn et al. (2020) proposed 
the use of specification curves to plot the effect estimates 
against the data analytical decisions. A specification curve 
consists of two panels, the top panel displays the effect 
estimates, and the lower panel displays the combination 
of data analytical decisions that led to each effect estimate 
in the top panel. Based on mediation analysis, specifica-
tion curves can be constructed for the direct, indirect, and 
total effect estimates. Finally, it is important to note that 
the interpretations of the effect estimates may differ across 
decisions (Del Giudice & Gangestad, 2021; Simonsohn 
et al., 2020). For example, when analyses are based on 
various scales for the determinant, mediator, or outcome 
variable or different sets of covariates.

Data Example

We demonstrate the multiverse analysis of a mediation 
analysis using data from the Longitudinal Aging Study 
Amsterdam (LASA). This is a prospective cohort study 
aiming to assess the determinants, trajectories, and con-
sequences of changes in physical, cognitive, emotional, 
and social functioning with aging. The cohort consists of 
a nationally representative sample of participants initially 
aged 55 to 84 years. The data collection has been ongoing 
since 1992/1993, with measurements every 3 years. Meas-
urements consist of a main interview, a self-administered 
questionnaire, and a medical interview. Detailed informa-
tion on the LASA study can be found in Hoogendijk et al. 
(2020).

We reanalyzed the mediation analyses originally pub-
lished by Pluijm et al. (2001), who assessed to what extent 
the effects of age, change in body weight, lifestyle, chronic 
diseases, medication use, and hormonal indices on bone 
mineral density (BMD) are mediated by body composition, 
which was measured as fat mass and appendicular muscle 
mass. For this study, data were used from the 1995/1996 
measurement wave (n = 2,545). Participants were excluded 
if no interview or dual-energy X-ray absorptiometry 
(DXA) data was available for the 1995/1996 measurement 
and if they had both hips replaced. Only people born in 
or before 1930 and living in Amsterdam and its vicinity 
were invited for a DXA scan. A total of 522 participants 
were eligible for the analyses. All analyses were carried 
out separately for females (n = 264) and males (n = 258).

The original study considered seventeen potential deter-
minants of BMD, including age, change in body weight 
since age 25, lifestyle factors, chronic diseases, medica-
tion use, and hormonal indices. The original study results 
supported the hypothesis that fat mass is a mediator of 
the relation between weight change, walking activities, 
and sex hormone–binding globulin and BMD in women 
only. In our reanalysis, we assessed the robustness of the 
finding that fat mass mediates the relation between weight 
change and BMD in women against various data analytical 
decisions (a path diagram of the mediation model can be 
found in Supplementary Fig. S1). In the next section, we 
describe the decisions made in the original study and the 
alternative decisions included in the multiverse analysis.

Decision Points and Alternative Decisions

First, we identified the decision points based on the  
information in the original paper by Pluijm et al. (2001). 
Then, we determined all reasonable alternative decisions. 
The identified multiverse consisted of 108 direct and indi-
rect effect estimates (i.e., 3 × 2 × 2 × 3 × 3 = 108), each for 
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which we determined the presence of a mediated effect in 
two ways: based on the indirect effect with a confidence 
interval and based on the criteria in the original paper. 
Table 2 summarizes all data analytical decisions and alter-
native decisions for the data example. The decision points 
and alternative decisions are described in greater detail 
below.

Determinant

Change in body weight was computed as the percentage 
change in body weight between the self-reported lowest 
body weight since age 25 and the body weight measured in 
1995/1996. Percentage change in body weight was treated 
as a continuous variable in the original study.

In the reanalysis of the data, we additionally treated 
change in body weight as a categorical variable, with the 
categories representing decreased weight (n = 22), stable 
weight (n = 43), and increased weight (n = 199). This cat-
egorical weight change variable was computed based on the 
Edwards-Nunnally index, which provides a categorization of 
change that is less sensitive to natural fluctuations and meas-
urement error than the continuous percentage weight change 
variable, as it determines individual significant change based 
on the reliability (Cronbach’s alpha), mean, and standard 
error of the first weight measurement (Speer & Greenbaum, 
1995). Informed by previous research (Stevens et al., 1990), 

we computed the Edwards-Nunally index based on a Cron-
bach’s alpha of 0.822. Participants for whom the Edwards-
Nunally index did not indicate a significant increase or 
decrease in weight were classified as stable weight. We 
estimated two direct effects and two indirect effects based 
on the categorical determinant; one for increased weight 
versus stable weight and one for decreased weight versus 
stable weight.

Mediator and Outcome Variables

Fat mass (kg) was computed based on total body DXA meas-
urements and was treated as a continuous variable in the 
original study. The DXA measurement of the hip was used 
to determine the BMD (mg/cm2) of the hip, which was also 
treated as a continuous variable in the original study. We did 
not make alternative decisions on the mediator and outcome 
variables for the reanalysis of the data.

Confounder Variables

In the original study, the associations between body weight, 
fat mass, and BMD were adjusted for height in centimeters, 
smoking status (never smoking, former smoker, and cur-
rent smoker), average number of alcoholic consumptions 
per week, average number of minutes of walking outside the 
house per day, presence of chronic obstructive pulmonary 

Table 2   Overview of decision points and alternative decisions included in the multiverse analysis of the data example in which fat mass is inves-
tigated as a mediator of the relation between weight change and BMD

Note: Every first decision represents the decision made in the original study

Decision points Decisions included in the multiverse analysis

Determinant variable 1. Continuous (percentage change)
2. Categorical: increased weight versus stable weight
3. Categorical: decreased weight versus stable weight

Confounder variables Set of confounders:
  1. Height, age, smoking, alcohol use, and minutes of walking in past two weeks, 

sports in last two weeks, COPD, stroke, rheumatoid arthritis, and diabetes, corticos-
teroid use, estrogen use, SHBG, PTH, IGF-1, 25(OH)D, and Albumin

  2. Height, age, smoking, alcohol use, and minutes of walking in past two weeks, 
sports in last two weeks, COPD, stroke, rheumatoid arthritis, and diabetes, corticos-
teroid use, estrogen use

Consideration of confounders:
  1. A priori adjustment based on theory
  2. Based on ≥ 10% change in any effect estimate

Moderator variables Moderation by age:
  1. Based on all ages
  2. Based on < 75 years of age
  3. Based on ≥ 75 years of age
Determinant-mediator interaction:
  1. No assessment of determinant-mediator interaction
  2. Estimation of pure natural direct effects and pure natural indirect effects
  3. Estimation of total natural direct effects and total natural indirect effects

Determining the presence of a mediated effect 1. Based on causal steps and a proportion mediated of 20% or higher
2. Based on natural indirect effect estimates with 95% Monte Carlo confidence intervals
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diseases (COPD), presence of diabetes mellitus, history of 
stroke, presence of rheumatoid arthritis, use of corticos-
teroids (current and former versus never), use of estrogens 
(among women only; current and former versus never), log-
transformed SHBG, log-transformed parathyroid hormone 
(PTH), serum 25-hydroxyvitamin D (25(OH)D), insulin-
like growth-factor 1 (IGF-1), and albumin. However, the 
hormonal factors, SHBG, PTH, 25(OH)D, IGF-1, and albu-
min, might be influenced by fat mass rather than vice versa 
(Pluijm et al., 2001). Due to the cross-sectional nature of the 
data, the causal order of fat mass and the hormonal factors 
remained unclear. Therefore, we alternatively adjusted the 
analyses for the aforementioned set of confounders exclud-
ing these hormonal factors. In the original study, all analyses 
were adjusted for the a priori specified set of confounder 
variables. To preserve power, we alternatively adjusted the 
analyses for variables that caused a minimum of 10% change 
in any of the a, b, and c′ path estimates (i.e., (adjusted beta 
– unadjusted beta)/unadjusted beta × 100).

Moderator Variables

In the reanalysis of the data, we considered age as a potential 
moderator of the paths in the mediation model. Age was 
treated as a binary variable to estimate the effects for the 
young-old (i.e., < 75 years) and the old-old (i.e., ≥ 75 years) 
separately (Orimo et al., 2006). Determinant-by-age and 
mediator-by-age interaction terms were added to the esti-
mated regression models based on Eqs. 2 and 3. Subse-
quently, the effects for the young-old and old-old were 
estimated based on the simple slopes from these equations 
(Aiken & West, 1991).

Statistical Analyses

In the original study, multiple linear regression analysis was 
used to perform the mediation analysis, and the presence of 
a mediated effect was determined based on the causal steps 
criteria and a proportion mediated of 20% or larger. No indi-
rect effect estimates were reported in the original study, and 
the statistical significance of the mediated effect was also not 
assessed. In our reanalysis, we quantified the mediated effect 
by estimating natural indirect effects based on causal media-
tion analysis with corresponding 95% Monte Carlo confi-
dence intervals. We accounted for potential determinant-
by-mediator interaction by adding determinant-by-mediator 
interaction terms to Eq. (3). Subsequently, we estimated pure 
and total natural direct and indirect effects (MacKinnon 
et al., 2020; VanderWeele, 2015). The pure natural direct 
effect was estimated as the direct effect of weight change 
on BMD when holding each woman’s fat mass constant at 
the value that would have been observed if that woman did 
not change in weight. The total natural direct effect was 

estimated as the direct effect of weight change on BMD 
when holding each woman’s fat mass constant at the value 
that would have been observed if that woman did change in 
weight. The pure natural indirect effect was estimated as the 
indirect effect of weight change on BMD through fat mass 
when the determinant was held constant at the no weight 
change value. The total natural indirect effect was estimated 
as the indirect effect of weight change on BMD through fat 
mass when the determinant was held constant at the weight 
change value. We did not apply alternative missing data han-
dling strategies, as the percentage of missing values was 
small (i.e., it ranged between 0% and 6.8%) (Bennett, 2001).

Multiverse Analysis

We first assessed whether any of the identified 108 condi-
tions were redundant. Specifically, we assessed whether any 
of the confounder sets based on ≥ 10% change in any of the 
effect estimates were redundant with the a priori specified 
confounder sets. For all non-redundant conditions, we then 
estimated the direct, indirect, and total effects. Effect esti-
mates were considered statistically significant when p < 0.05. 
All analyses were performed using Stata statistical software 
release 14.1 (StataCorp, 2016). The specification curves 
were plotted using Stata code provided by Simonsohn et al. 
(2020). The dataset with the effect estimates and Stata code 
for the specification curves are provided in the supplemen-
tary materials.

Results

First, to check for redundancy among the confounder sets, 
we determined the confounder sets based on ≥ 10% change in 
any of the effect estimates based on the continuous and cat-
egorical weight change variables. For the mediator models 
based on the continuous weight change variable, we iden-
tified smoking, estrogen use, IGF-1, 25(OH)D, albumin, 
height, ln-SHBG, and ln-PTH as confounders. For the medi-
ator models based on the categorical weight change variable, 
we identified age, smoking, alcohol use, walking, COPD, 
stroke, estrogen use, IGF-1, 25(OH)D, albumin, height, ln-
SHBG, and ln-PTH as confounders. The confounder sets 
determined based on ≥ 10% change in the effect estimates 
differed from the a priori determined confounder sets and 
were therefore not redundant.

The multiverse analysis resulted in 108 indirect and direct 
effect estimates and 36 total effect estimates. Based on the 
criteria from the original paper, i.e., the causal steps criteria 
and a proportion mediated of 20% or larger; fat mass medi-
ated the relation between weight change and BMD in 55.6% 
of the conditions. Based on the statistical significance of 
the indirect effect estimates, fat mass mediated the relation 
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between weight change and BMD in 64.8% of the condi-
tions. This percentage is higher than the percentage based 
on the criteria from the original paper for two reasons. First, 
the statistical significance of the indirect effect estimates 
is not affected by the non-significance of the total effect 
estimates in inconsistent mediation models (i.e., when the 
indirect effect estimates are positive and the direct effect 
estimates are negative) (MacKinnon, 2008). Second, some 
indirect effect estimates were statistically significant while 
the corresponding proportion mediated did not exceed 20%.

Figure 2 summarizes the indirect effect estimates in a 
specification curve, with the upper panel displaying the 
indirect effect estimates in ascending order, and the dots 
in the lower panel indicating the data analytical decisions 
corresponding to each indirect effect estimate in the upper 
panel. For example, the lowest indirect effect estimate cor-
responded to the condition in which the total natural indi-
rect effect was estimated for women in the old-old group 
with a decreased weight versus women in the old-old group 
with a stable weight, adjusted for the confounder set based 
on ≥ 10% change without hormonal factors.

The indirect effect estimates ranged between − 54.1 mg/
cm2 and 137.0/cm2. The indirect effect estimate based on 
the condition from the original paper, denoted by the large 
dot in Fig. 2, equaled 2.92 mg/cm2, indicating that for a 
one percentage increase in weight, women on average had a 
2.92 mg/cm2 higher BMD through an increase in fat mass. 
The corresponding 95% Monte Carlo confidence interval 
indicated that this effect estimate was statistically significant. 
Negative indirect effect estimates were only observed for 
conditions in which women with a decreased weight were 
compared to women with a stable weight, indicating that 
women with a decreased weight on average have a lower 
BMD than women with a stable weight through a decrease 

in fat mass. The positive indirect effect estimates based on 
the continuous determinant and the categorical determinant 
comparing women with increased weight to women with a 
stable weight indicate that women with an increased weight 
on average had a higher BMD than people with a stable 
weight through an increase in fat mass.

Like in the original paper, the direct effect estimates in 
most conditions were negative (86.1%), and most were not 
statistically significant (91.7%). In contrast, the total effect 
estimates in most conditions were positive (66.7%) and most 
were statistically significant (55.6%). Specification curves 
for the direct and total effect estimates can be found in Sup-
plemental Figs. S2 and S3, respectively).

To summarize, the multiverse analysis showed that the 
direct, indirect, and total effect estimates were generally 
in line with the research hypotheses and therefore robust 
against alternative data analytical choices concerning the 
determinant, confounder set, confounder specification, age 
interactions, and determinant-mediator interaction. There-
fore, the multiverse analysis results support the hypothesis 
that fat mass is a mediator of the relation between weight 
change and BMD.

Discussion

The aim of this paper was to provide an overview and 
worked example of the use of multiverse analysis to assess 
the robustness of the effect estimates from a mediation anal-
ysis. To our knowledge, this is the first description of multi-
verse analysis as a method to assess the robustness of media-
tion analysis results. In Table 1, we demonstrated that the 
multiverse of a mediation analysis consists of more decision 
points than the multiverse of a bivariate analysis. In our data 

Fig. 2   Specification curve of 
the indirect effect estimates of 
weight change on bone mineral 
density (mg/cm2) through fat 
mass (kg)
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example, we demonstrated the use of specification curves to 
visualize the impact of the original and alternative decisions 
from the multiverse on the magnitude and statistical signifi-
cance of the direct, indirect, and total effect estimates. This 
information subsequently can be used to refine the underly-
ing research theory and inform replication studies.

We demonstrated the application of multiverse analysis 
using a data example from the LASA study. We assessed 
the robustness of the effect estimates from a previously 
published mediation analysis in which fat mass was inves-
tigated as a mediator of the relation between weight change 
and BMD. The effect estimates in our data example were 
generally robust against alternative data analytical decisions 
and in line with the underlying research theory. In practice, 
a multiverse analysis might alternatively reveal that effect 
estimates are not robust against alternative data analytical 
decisions. For example, suppose that a mediation analysis 
is performed to assess the effectiveness of an intervention 
aimed at preventing overweight through stimulating physical 
activity. Suppose that the multiverse analysis indicates that 
the magnitude or statistical significance of the indirect effect 
estimate is sensitive to the definition of physical activity 
(e.g., including or excluding low-intensity activities). In such 
a situation, the information from the multiverse analysis can 
be used to refine the underlying research theory (Del Giudice 
& Gangestad, 2021; Steegen et al., 2016).

In this paper, we provided an overview of decision points 
relevant for mediation analyses. However, the decision 
points and alternative considerations described in this paper 
are by no means exhaustive. Additional decision points 
might be relevant for more complex mediation models, 
such as longitudinal mediation models (MacKinnon, 2008; 
Maxwell & Cole, 2007). Furthermore, although multiverse 
analysis increases the transparency of the research process, 
the identification of the decision points and alternative deci-
sions remains a subjective process (Simonsohn et al., 2020; 
Steegen et al., 2016). This subjectivity was illustrated in the 
studies by Gangestad et al. (2019) and Stern et al. (2019), 
who identified different multiverses while addressing the 
same research question using the same data. Despite this 
subjectivity, multiverse analyses do offer more transparency 
than when only one model is reported, and with the accu-
mulation of knowledge and methodological developments 
over time, new decisions can always be added to the multi-
verse (Simonsohn et al., 2020; Steegen et al., 2016; Young 
& Holsteen, 2017).

Multiverse analysis has some important strengths. First, 
multiverse analysis is a relatively cost-effective method 
to assess the robustness of published study results against 
arbitrary RDFs, as it does not require the collection of new 
data (Nuijten et al., 2018). Second, by performing analyses 
across various combinations of data analytical decisions, 
a multiverse analysis takes full advantage of the original 

data. Furthermore, the data sharing initiatives supported 
by an increasing number of journals enable researchers to 
perform multiverse analyses of published research results 
before trying to replicate results (Gewin, 2016). In addition 
to first reproducing the effect estimates in the original study, 
multiverse analysis has the potential to become an important 
step before performing a replication study.

Despite the advantages of multiverse analysis, its uptake 
in empirical studies remains low. A first potential reason 
for this low uptake is that there is only little guidance avail-
able on how to perform and report multiverse analyses 
(Dragicevic et al., 2019; Liu et al., 2020). By describing 
and demonstrating the steps involved in a multiverse analy-
sis of a mediation analysis, this study aimed to stimulate 
the uptake of multiverse analysis as a method to assess the 
robustness of mediation analysis results. A second poten-
tial reason for the low uptake is that a multiverse analysis 
is more time-consuming than a single analysis (Liu et al., 
2020). The time investment could be reduced if parts of 
the analyses could be automated. The MROBUST module 
in Stata is an example of a module that automates multi-
verse analysis, as it allows the users to estimate models 
across various combinations of data analytical decisions 
based on only one line of code (Young & Holsteen, 2016). 
However, this package is limited to bivariate analyses and 
therefore cannot be used for mediation analyses. Future 
studies could focus on the development of software for 
the automation of multiverse analyses of more complex 
analyses. Another strategy that has been proposed to reduce 
the time investment is the analysis of a random subsample 
of the identified multiverse conditions (Simonsohn et al., 
2020). However, methodological studies still need to be 
undertaken to investigate what percentage of the identified 
multiverse conditions should be included in such a random 
sample and what random sampling technique should be 
applied to ensure valid results.

Another important topic for future research is the accuracy 
of summary measures computed based on the distribution  
of effect estimates yielded by a multiverse analysis. Exam-
ples of such summary measures are the mean effect estimate  
with a corresponding significance test based on a standard 
error for this mean effect estimate (Young & Holsteen, 2017), 
and the median effect estimate with a corresponding boot-
strap confidence interval (Simonsohn et al., 2020). These 
 two methods assume that the distribution of effect estimates 
can be summarized using either the mean or median effect  
estimate, respectively. However, various distributions of the 
effect estimates were observed in previous multiverse analyses,  
including multimodal distributions (see e.g., Young & Holsteen,  
2017), indicating that the mean and median may not always 
be accurate summary statistics. Therefore, the development  
of accurate summary statistics is an important avenue for 
future research.
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Conclusion

Multiverse analysis is a useful method to assess the robust-
ness of the direct, indirect, and total effect estimates from 
a mediation analysis against arbitrary RDFs. Specification 
curves can be used to visualize the impact of various com-
binations of data analytical decisions on the magnitude and 
statistical significance of the direct, indirect, and total effect 
estimates. The results from a multiverse analysis can inform 
future replication studies and help refine the underlying 
research theory.
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