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Abstract
The Antarctic environment is extremely cold, windy and dry. Ozone depletion has resulted in increasing ultraviolet-B 
radiation, and increasing greenhouse gases and decreasing stratospheric ozone have altered Antarctica’s climate. How do 
mosses thrive photosynthetically in this harsh environment? Antarctic mosses take advantage of microclimates where the 
combination of protection from wind, sufficient melt water, nutrients from seabirds and optimal sunlight provides both pho-
tosynthetic energy and sufficient warmth for efficient metabolism. The amount of sunlight presents a challenge: more light 
creates warmer canopies which are optimal for photosynthetic enzymes but can contain excess light energy that could dam-
age the photochemical apparatus. Antarctic mosses thus exhibit strong photoprotective potential in the form of xanthophyll 
cycle pigments. Conversion to zeaxanthin is high when conditions are most extreme, especially when water content is low. 
Antarctic mosses also produce UV screening compounds which are maintained in cell walls in some species and appear to 
protect from DNA damage under elevated UV-B radiation. These plants thus survive in one of the harshest places on Earth 
by taking advantage of the best real estate to optimise their metabolism. But survival is precarious and it remains to be seen 
if these strategies will still work as the Antarctic climate changes.

Keywords  Antarctica · β-carotene · Climate change · Photosynthesis · Microclimate · Moss · Nutrients · Ozone depletion · 
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Introduction

Antarctica is cold, dry and very windy. Its terrestrial flora 
is dominated by bryophytes (mosses and liverworts) and 
lichens. These are found all around the continent on coastal 
ice-free regions and even inland on nunataks (Fig. 1). In the 
maritime/peninsula region there are also two angiosperms: 
a cushion plant Colobanthus quitensis and the Antarctic hair 
grass Deschampsia antarctica (Cannone et al. 2016, 2022; 
Loisel et al. 2017; Torres-Mellado et al. 2011). 

Some of the most extensive moss beds in East Antarctica 
are found in the Windmill Islands region near the Australian 
Antarctic Casey Station (66.2821° S, 110.5285° E; Fig. 1a, 
k–o). The proximity of these extensive moss beds to the sta-
tion has enabled physiological studies to be performed over 
many decades with more than 35 papers published since the 
1980s (including Lewis Smith 1999; Melick et al. 1994;; 
Melick and Seppelt 1994; Roser et al. 1992; Turnbull and 
Robinson 2009; Ashcroft et al. 2017; Nydahl et al. 2015; 
Bramley-Alves et al. 2014a, b; Lucieer et al. 2014; Bramley‐
Alves et al. 2015; Hennion et al. 2006; Wasley et al. 2012; 
Robinson et al. 2000, see extra papers cited below) allowing 
us to better understand how these plants survive and thrive 
in this extreme environment.

Like any vegetation, mosses need water, sunlight and 
nutrients in order to photosynthesise and grow. Here we 
outline how these Antarctic mosses interact with their envi-
ronment and our understanding of how they are able to pho-
tosynthesise under such harsh conditions. Light is vital for 
Antarctic mosses in multiple ways—not just as energy for 
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Fig. 1   Antarctic map (a) and photographs of some of its mosses 
growing along streams in the South Shetland Islands (b–j, p) and 
Windmill Islands region (k–o): Syntrichia magellanica (b) Chori-
sodontium aciphyllum (c) Sanionia georgicouncinata (d) Syntrichia 
filaris (e) Warnstorfia sarmentosa (f) and Bryum pseudotriquetrum 
(g) turf of mosses on the shore of Livingston Island (h) and detail (i). 
Schistidium rivulare growing as a small button on rock (j) Predomi-
nantly Schistidium antarctici in an extensive moss turf in Antarctic 

Specially Protected Area (ASPA) 135 (k) beside a frozen stream (l) 
covered by snow (m) or floating in liquid water after being displaced 
from turf by flooding (n) B. pseudotriquetrum with photosyntheti-
cally-derived bubbles trapped in the surrounding ice (o) Cross sec-
tion of decades old B. pseudotriquetrum cushion with distinguishable 
fresh growth (p) Original source of map: the Scientific Committee 
on Antarctic Research modified with permission. Photographs Alicia 
Perera, Sharon Robinson, Jessica Bramley-Alves and Krystal Randall)
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photosynthesis. Infrared (IR) wavelengths provide the heat 
required to melt ice and the liquid water required for pho-
tochemical reactions (see Water from snow and ice). Pho-
tosynthetically active radiation (PAR) provides the energy 
for photosynthesis but IR energy also heats the moss beds to 
temperatures where photosynthetic processes are most effec-
tive (see Optimum temperature and Microclimate sections). 
When PAR energy exceeds the amount needed for photo-
synthesis it must be dissipated safely to avoid damage (see 
Protection section), and accompanying ultraviolet radiation 
can either signal a range of cellular processes (protective) 
or be damaging (Ultraviolet Radiation section). To produce 
the proteins that drive photosynthesis and the chlorophyll 
to fix sunlight, mosses need nutrients which are mainly pro-
vided from marine sources in Antarctica (Fertiliser section). 
Finally, we also discuss how the Antarctic environment is 
responding to climate change and ozone depletion and what 
this might mean in the future for its unique bryophyte flora 
(Future section).

Water from snow and ice

In this cold desert, water is a key limiting factor (Davey 
and Rothery 1997; Convey et al. 2018; Robinson et al 2003; 
Colesie et al 2022). In East Antarctica water can come from 
snow (precipitated or blown) and melt water flows. In order 
to cope with the extreme environment, the bryophytes and 
lichens, along with the invertebrates that live within them, 
must be able to withstand frequent cycles of desiccation and 
rehydration, and freezing and thawing. Due to their poikilo-
hydric nature, mosses tolerate up to nine months a year dried 
and frozen under snow and then manage to grow during 
the short summer season when ice melts and freshwater is 

available. In winter the snow cover acts to buffer them from 
the worst of the extreme winter temperatures, below − 40 °C 
on the coast and even colder inland. Whilst they are under 
snow mosses are also protected from wind damage. Mosses 
are found wherever they can obtain water. Some mosses 
grow in or around the edges of meltlakes but most are fed 
by ephemeral streams with lush turfs occurring where melt-
water flows throughout the summer (Fig. 1h, k).

Temperature is an especially strong driver of plant growth 
in Antarctica as it determines availability of free water as 
well as directly affecting metabolism (Fig. 2a). Although 
maximum temperatures can exceed 0 °C at coastal locations 
like Casey throughout the year, they are most common in 
December and January; the only months when mean maxi-
mum temperatures above 0 °C occur (Fig. 2a).

Free water becomes available as snow starts to melt in 
spring. Once air temperature is above 0 °C (Fig. 2a, b), snow 
is likely to have melted and mosses will be fully exposed. 
When air temperatures are between 0 and –5  °C some 
metabolism may occur on sunny days, either under snow or 
if snow has already melted and moss is exposed (Melick and 
Seppelt 1992). This is probably more likely in late spring 
and summer and less likely in autumn once snow banks have 
melted and retreated and mosses are desiccated. Once tem-
peratures drop below –5 °C mosses are likely to be frozen, 
dry and dormant (Cannone et al 2017).

Defined by this melt water availability, the summer grow-
ing season is therefore very short, ranging between 40 and 
100 days of melt per season at Casey since 1969 (Fig. 2c). 
The number of melt days has shown a decline since 1993 
with summers averaging 87 days of potential melt in the 
1980s compared with 72 since 2000. The effects of cooler 
summer temperatures, increased wind speeds and less melt 

Fig. 2   Temperature data collected at Casey Station, Antarctica by 
the Bureau of Meteorology (BOM) from 1969 to 2022 summarised 
here for 1st November to 31st March. (a) Daily temperature range is 
shown as grey shading with mean temperature shown as blue line. 
Free water is available to sustain plants once snow starts to melt in 
spring. (b) Daily maximum air temperature where green pixels repre-
sent the number of days in the spring/summer growing season when 
the maximum daily air temperature (24 h after 9 am) is above 0 °C, 
snow is likely to melt and mosses are fully exposed. At maximum 

daily temperatures between 0 and –5 °C some moss metabolism may 
occur on sunny days (beige pixels). Grey pixels represent days when 
air temperatures remained below –5 °C and mosses were likely dor-
mant. (c) Number of days over the growing season when maximum 
temperature exceeded 0 °C. The red columns indicate the two seasons 
referred to in the text (1999–2000 and 2002–2003). The orange line 
represents mean values before and after identified changepoints in 
1979 and 1993. (N.B. BOM moved from Casey tunnel location to the 
current site in 1989, see Robinson et al. 2018)
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is also apparent from moss cores collected from the region 
which show evidence of a drying trend (Robinson et al. 
2018). Modern carbon dating and studies of changes in sta-
ble isotopes of carbon (δ13; Clarke et al. 2012) down intact 
moss shoots have revealed a drying trend in the Windmill 
Islands for the 50 years up to 2012 (Robinson et al. 2018). 
This corresponds with a period of cooler temperatures and 
drying due to increased wind speeds, factors connected to 
the climatic effects of ozone depletion described below.

Water can be deposited directly onto vegetation as pre-
cipitation (Fig. 1m) but mainly drains from nearby glaciers 
and smaller snow banks which melt in spring (Fig. 1h, n; 
Fig. 3c). Ephemeral streams deliver unreliable water with 
the best moss beds found where multiple streams ensure a 
steady supply of water for the whole summer (Fig. 1h; k, n, 
Fig. 3c).

Optimum temperatures for net CO2 assimilation

Growth rate of mosses around the world is related to the bal-
ance between two processes: carbon uptake through photo-
synthesis and carbon loss through respiration. Therefore, the 
carbon budget can be maximised  through optimal daytime  
photosynthesis and suppressed respiration during night. 
Since high temperatures can enhance both photosynthesis 
and respiration rates, especially under well-watered condi-
tions (Wilson 1990), the daytime response to temperature 
must be evaluated as the light-saturated net CO2 assimila-
tion, considering both components of carbon dynamics. 
Some Antarctic mosses present maximum values of electron 
transport rate (ETR) and diurnal net CO2 assimilation at 
canopy temperatures higher than 20 °C (Perera-Castro et al. 
2020 and references therein), with extremes of 25–30 °C 
reported for Bryum pseudotriquetrum and Ceratodon pur-
pureus. In some species, such as Schistidium antarctici, 
high discrepancies between studies have been reported with 
optimum temperatures ranging from 0 to 30 °C (Kappen 
et al. 1989; Davey and Rothery 1997; Block et al. 2009; 
Wilson 1990; Perera-Castro et al. 2020). A significant point 
concerning temperature relationships is the broadly based 
curves described for most studies to date, with low but 
positive net assimilation over a wide range of temperatures, 
including 0 °C in some cases (Longton 1988).

A revision of optimum temperatures for photosynthesis 
in mosses around the world also revealed a general high 
optimum temperature with little evidence of latitudinal 
variation (Perera-Castro et al. 2022a). These results seem to 
differ from the measurements of relative growth rate when 
non-Antarctic mosses are grown under controlled condi-
tions with an unnatural photoperiod of 12 h and no ther-
mal oscillation between day and night. In such conditions 
an average optimum temperature for growth of 19 °C had 
been reported, with long-term temperatures of 30 °C being 

lethal for all studied mosses (Furness and Grime 1982a, 
b). However, when mosses are grown under more natural 
temperature regimes, with night temperatures lower than 
day temperatures, reported relative growth rates are sig-
nificantly higher (Perera-Castro et al. 2022a). This suggests 
that the inhibition of night respiration by shortening night 
length or by exposure to low night temperatures is crucial 
for positive carbon balance of mosses. This is particularly 
relevant in Antarctica, where mosses currently experience 
temperatures higher than 15 °C for only 3% of their grow-
ing summer season (Perera-Castro et al. 2020). Therefore, 
the frequent characterisation of mosses as being inherently 
better adapted to cold conditions than angiosperms (Glime 
2007) may be more related to an ability to inhibit respiration 
at low temperatures, rather than having lower optimum tem-
peratures for photosynthesis. A question arises as to whether 
bryophytes present generally high Q10 values for respiration 
(change in rate of reaction per 10 °C change in temperature) 
or if Q10 could be acclimated to Antarctic environments, as 
has been shown in alpine vascular plants (Larigauderie and 
Körner 1995).

This means that a better understanding of how respira-
tion responds to rising temperatures is required in order to 
model the effect of different climate change scenarios on 
the long-term net CO2 assimilation of Antarctic mosses 
and their survival. Light-saturated net CO2 assimilation of 
Antarctic cosmopolitan Bryum argenteum increases under a 
short, simulated heat wave (Gemal et al. 2022), although the 
long-term effect on carbon budget of an increase of respira-
tion rates during warmer nights must also be considered.

Microclimates

Antarctic mosses display characteristics that dramatically 
alter the Antarctic climate at micro scales to benefit their 
survival and productivity. In addition, the photosynthetic 
optimum temperatures closely resemble the microclimate 
conditions generated within the moss turfs (Longton 1988; 
Lewis Smith 1999; Perera-Castro et al. 2020; Randall 2022). 
This suggests that microclimate conditions within the moss 
turf provide a buffer from the extreme Antarctic climate, and 
as such, are extremely biologically and ecologically relevant 
(Melick and Seppelt 1997, Convey et al. 2014; King 2017; 
Robinson et al. 2018).

Temperature, light and water are all limiting factors 
at both high and low levels for Antarctic mosses (Adam-
son et al. 1988; Kappen et al. 1998; Robinson et al. 2000; 
Schlensog et al. 2004; Wasley et al. 2012; Robinson and 
Waterman 2014; Cruz de Carvalho et al. 2017; Perera-Castro 
et al. 2020, 2021). As such, periods when these factors are 
at intermediate levels are likely the times when Antarctic 
mosses experience the highest net photosynthesis and the 
least abiotic stress (Lewis Smith 1999; Perera-Castro et al. 
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Fig. 3   Sites with rich nutrient supply from ancient penguin colonies 
support extensive moss beds. Windmill Islands satellite image show-
ing locations of extensive moss beds (green ovals) (a). Photograph of 
ASPA135, Bailey Peninsula showing a ridge (foreground) covered 
in Adélie beak sized pebbles deposited by nesting penguins 3000–
8000  years ago (b). In depressions below these ancient nest sites, 

mosses thrive fed by melt water from nearby snowbanks, as shown 
in (c) with moss below snowbank, green and healthy, but above the 
snowline, only lichens and dry moss are found (grey or red coloured 
moss indicating moribund and very stressed moss, respectively). 
(Photographs Sharon Robinson, AAD map 95/056 https://​data.​aad.​
gov.​au/​aadc/​mapcat/​displ​ay_​map.​cfm?​map_​id=​10)

https://data.aad.gov.au/aadc/mapcat/display_map.cfm?map_id=10
https://data.aad.gov.au/aadc/mapcat/display_map.cfm?map_id=10
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2020, 2021). The freezing point of mosses has been shown 
to range between approximately −3 and −8 °C, differing 
between species or at different states of moss health (related 
to soluble carbohydrate content; Melick and Seppelt 1992). 
However, once frozen, they enter a state of physiological 
dormancy (Kappen and Schroeter 2002), such that they are 
typically unaffected by ambient temperature, light or water 
conditions. Outside of these dormancy periods when mosses 
are thawed (above their respective freezing points), photo-
synthesis can resume at canopy temperatures as low as 5 °C 
(Lewis Smith 1999; Perera-Castro et al. 2020) which can 
occur whilst air temperatures are as low as −2 °C (Randall 
2022). This difference occurs through strategies that alter the 
microclimate in the moss canopy. Such strategies function 
as avoidance mechanisms of cold extremes and desiccation, 
and provide the moss with improved conditions for growth 
and productivity.

The development of favourable microclimates is achieved 
by individual and community level strategies aimed at max-
imising heat accumulation and minimising heat losses. At 
the individual gametophyte level, hydrated moss leaves are 
structured in such a way to increase the surface area avail-
able to absorb sunlight. On top of this, dark pigmentation 
of moss leaves reduces the albedo of the individual leaves 
and the moss canopy as a whole, therefore increasing the 
absorption of sunlight and subsequent heat gain (Maleno-
vský et al. 2015). At the community level, densely packed 
gametophytes create a turf structure that reduces heat losses 
by slowing the turbulent transfer of air and heat in the air 
spaces immediately surrounding leaves in the moss canopy. 
This structure also reduces heat and water loss through evap-
oration. As a result, these strategies create a microclimate 
of warmer, humid air surrounding the moss leaves. Through 
these mechanisms, Antarctic mosses can achieve canopy 
temperatures of 20–30 °C in full sunlight when ambient air 
temperatures are close to 0 °C (Fig. 4 & 5; Longton and 
Holdgate 1967; Lewis Smith 1999; Perera-Castro et al. 
2020; Gemal et al. 2022), especially on north and east facing 
topographic or micro-topographic aspects (Randall 2022).

By modifying the microclimate within the moss can-
opy, mosses create a climate that differs from the broader 
Antarctic climate (Fig. 6; Longton and Holdgate 1967; 
Lewis Smith 1999). Over the summer growing season 
air temperatures display a relatively narrow range with 
temperatures typically at-or-below zero (Fig. 6). How-
ever, temperatures measured in the moss canopy show 
considerably higher maximum temperatures, up to 20 °C 
(Fig. 6), closely resembling optimum photosynthetic tem-
peratures (Perera-Castro et al. 2020). Importantly, these 
warm microclimate conditions constitute new thermal cli-
mate conditions outside of the conditions provided by the 
broader climate (Fig. 6), extending the thermal range of 
the environment and providing opportunities for optimum 

photosynthesis that otherwise would not occur (Panne-
witz et al. 2005; Gemal et al. 2022; Randall 2022). How-
ever, these maximum temperatures only occur for short 
windows of time when the mosses are in direct sunlight 
(Longton 1974; Pannewitz et al. 2003), whereas most of 

Fig. 4   Diel hourly time series of Antarctic moss canopy temperature 
and weather station air temperature on a sunny day followed by a 
cloudy day. Moss canopy temperatures (n = 36) were measured using 
a thermocouple wire inserted 2  mm into the photosynthetic canopy 
of Schistidium antarctici near Casey Station in East Antarctica on 
two consecutive days, 7th–8th February 2022, with 3.5 h of darkness 
overnight separating the civil twilight of dusk and dawn. Air temper-
ature observations were obtained for the same time period from the 
Casey Station automated weather station (AWS). All data were meas-
ured in Australian Eastern Daylight Time (AEDT, UTC+11) at Casey 
Station which is approximately 4 h ahead of solar time. Plotted data 
were adjusted for this time shift to align with solar time (UTC+7). 
Details of methodology for data collection are provided in Supple-
mentary Information

Fig. 5   Difference between moss surface temperature and air tempera-
ture (ΔT) as a function of photosynthetic photon flux density (PPFD). 
Symbol shading denotes bins of air temperatures (< −5  °C, 0  °C, 
−5–0 °C, 0–5 °C and > 5 °C). The difference in temperature is lowest 
for the highest air temperatures. Data for Casey and JCI Station com-
bined from Perera-Castro et al. (2020, 2021)
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the time photosynthesis is likely to be greatly depressed by 
cold temperatures (Kappen and Schroeter 2002; Pannewitz 
et al. 2003; Perera-Castro et al. 2020; Gemal et al. 2022).

Warming to these temperatures is primarily driven by 
direct insolation (Longton and Holdgate 1967; Longton 
1974; Kappen et al. 1998; Perera-Castro et al. 2020; Baker 
et  al. 2021; Gemal et  al. 2022; Randall 2022). There-
fore, the ability for mosses to accumulate heat is heavily 
impacted by cloud and/or snow cover, which can inhibit 
mosses from warming above air temperatures (Fig. 4; 
Longton and Holdgate 1967), and limit opportunities for 
photosynthesis. Antarctica experiences some of the steep-
est shifts in seasonal solar angles and daylight hours world-
wide (Pannewitz et al. 2005; Convey et al. 2014; Gemal 
et al. 2022). Solar elevation (zenith) angles are much lower 
to the horizon compared to lower latitudes, reducing the 
quantity of light that reaches the ground where Antarctic 
mosses grow. However, freeze–thaw cycles cause moss 
turfs to develop lumpy (West Antarctica) or ridged (East 
Antarctica) micro-topography (Fig. 1; Melick and Sep-
pelt 1992; Lewis Smith 1999; Lovelock and Robinson 
2002; Porada et al. 2016; Park et al. 2018) that can posi-
tion mosses perpendicular to incoming solar radiation, 
maximising the light that they receive (Randall 2022). 
Consequently, Antarctic mosses can receive exceptionally 
high light quantities, often exceeding 1000 µmol m−2 s−1 
and sometimes reaching 2000 µmol m−2 s−1 (Pannewitz 
et al. 2003; Convey et al. 2014; Perera-Castro et al. 2020; 
Gemal et al. 2022; Randall 2022). It is during these higher 

intensities of solar insolation that mosses reach their 
warmest canopy temperatures (Fig. 5).

Whilst warmer temperatures facilitate higher photo-
synthetic rates, the thermal regime in the moss canopy is 
strongly governed by water content (Lewis Smith 1999). 
The interactive effect of temperature and water content can 
have different outcomes for mosses connected to summer 
melt streams and those relying solely on melt after snow-
fall. In areas where moss receive a reliable flow of water, 
warming (and cooling) of the moss canopy is strongly 
inhibited by the buffering effect of water (Lewis Smith 
1999; Pannewitz et  al. 2003, 2005; Block et  al. 2009; 
Perera-Castro et al. 2022b). Under these conditions, moss 
canopy temperatures are typically either in equilibrium 
with water temperatures or closely linked to water tem-
peratures (Pannewitz et al. 2003), depending on the level 
of saturation. For these mosses, the risk of desiccation is 
minimal. However, photosynthetic rates are likely to be 
depressed by the cooling effect of the water (Pannewitz 
et al. 2003), or possibly through oversaturation (Perera-
Castro et al. 2020).

Conversely, in areas where mosses are distributed away 
from a continuous water source, they typically rely on melt 
from overlying snow after a snowfall event. The transmis-
sion of light through the overlying snow can reach the 
underlying moss and warm the moss canopy, depending 
on the snow depth. Warmth from the moss canopy can 
then melt the overlying snow from underneath, provid-
ing liquid water (Melick and Seppelt 1992). Once mosses 
are hydrated, their leaves are oriented to maximise light 
absorption, further aiding in the warming and melting of 
the snow. Remarkably, whilst the snow is being melted 
from underneath, the remaining snow cover can provide 
an “icehouse” effect (Schroeter et  al. 2021), allowing 
light to enter whilst providing protection from dry ambi-
ent air, wind and desiccation (Körner 2003). There is also 
evidence that suggests that warmer temperatures may 
facilitate the upward wicking of water from the ground 
as a source of hydration for mosses (Noakes and Long-
ton 1988). The ability to melt snow from beneath or wick 
water from the ground are especially important for mosses 
not connected to melt streams, ponds or lakes, as they 
may be the dominant mechanisms for obtaining liquid 
water over the growing season. However, just as warm 
temperatures can help to provide liquid water, warm tem-
peratures are also associated with increased rates of water 
loss through evaporation. For mosses exposed to free 
air and not connected to continuous melt water, warmer 
canopy temperatures represent greater risks of desiccation 
and reduced photosynthetic capacity (Kappen et al. 1998; 
Raggio et al. 2016; Randall 2022) and a greater need for 
photoprotection.

Fig. 6   Density plot of Antarctic moss canopy temperatures and 
weather station air temperatures. Moss canopy temperatures 
(n = 13,856) were measured at 30 min intervals using thermocouple 
wires inserted 2  mm into the photosynthetic canopy of Schistidium 
antarctici, Ceratodon purpureus and Bryum pseudotriquetrum at 
n = 20 positions across moss beds in ASPA135 near Casey Station, 
East Antarctica, between 6th and 22nd February, 2022. Air tempera-
ture observations were obtained at 30 min intervals for the same time 
period from the Casey Station automated weather station (AWS). 
Details of methodology are provided in Supplementary Information
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Protection from excess sunlight

Field studies show photosynthesis is well protected from 
excess solar radiation, partly through increases in protec-
tive pigments (Searles et al. 2001; Newsham and Robinson 
2009). Protective carotenoids, including xanthophylls and 
β-carotene, commonly increase in response to high photo-
synthetically active radiation (Esteban et al. 2015), and in 
Antarctic plants exposed to elevated UV-B radiation (UV-
BR, 280–315 nm) (Newsham 2003; Newsham et al. 2002; 
Robinson et al. 2005; Ruhland and Day 2001).

Whilst light is necessary for photosynthesis to proceed, 
both visible and UV-BR wavelengths can damage the pho-
tosynthetic apparatus, either directly or through the produc-
tion of reactive oxygen species (ROS; Takahashi and Badger 
2011; Badmus et al. 2022). Other stressors, such as cold 
and drought, exacerbate damage by slowing the enzymatic 
reactions of carbon fixation and protective processes such as 
photorespiration, thus reducing electron transport (García-
Plazaola et al. 2012; Takahashi and Murata 2008). Destruc-
tive ROS can form in photosystem II (PSII), if absorbed 
light energy is not quickly passed into electron transport 
(Takahashi and Badger 2011). These ROS potentially oxi-
dise components of the photosynthetic apparatus, such as 
chlorophyll (Takahashi and Badger 2011). Carotenoids, 
including β-carotene and xanthophyll pigments can mitigate 
such damage through ROS scavenging (Havaux et al. 2007), 
and additionally the latter pigments play an important role 
in dissipating excess light energy as heat in a process called 
non-photochemical quenching (NPQ).

Within the xanthophyll cycle (VAZ), violaxanthin (V) is 
enzymatically converted to zeaxanthin (Z) via antheraxan-
thin (A) (Demmig-Adams et al. 1990, 2012, 2020; Nichol 
et al. 2012). In high light Z can form within 5–15 min, but 
will only dissipate light as heat when high light creates a pH 
gradient (∆pH) across the thylakoid membrane. This system 
is rapidly responsive to fluctuating light levels; as light levels 
ease, ∆pH relaxes and photosynthetic efficiency is rapidly 
restored, even whilst Z is still present (Niyogi et al. 2005; 
Demmig-Adams et al. 2012; Gerotto et al. 2012). Conversion 
of Z back to V is a slower process, occurring overnight in 
darkness in most ecosystems (Demmig-Adams et al. 2012). 
Mosses possess two Light-Harvesting Complex superfamily 
proteins which function in NPQ; retaining the Light-Har-
vesting Complex Stress-Related (LHCSR) proteins found in 
algae and the Photosystem II Subunit S (PSBS) common in 
vascular plants (Pinnola 2019; Pedraza-González et al 2023).

The VAZ pool size, as well as Z concentrations increase 
either in high light or with other environmental stress-
ors that exacerbate light damage to PSII (Takahashi and 
Murata 2008). Certain stressors, such as cold and drought, 
can result in sustained Z accumulation. Overwintering 
conifers have sustained Z concentrations, not reversed in 

overnight darkness but by warming; and desiccation toler-
ant cryptogams (like Antarctic lichens and mosses) appear 
to accumulate Z during desiccation (Fernández-Marín et al. 
2010, 2011; Verhoeven 2014, 2013). Since mosses such as 
C. purpureus lose cellular water as they freeze, desiccation 
and freezing stress may be indistinguishable (Verhoeven 
2014; Lenné et al. 2010). Reversible photoinhibition occurs 
in Antarctic bryophytes during freeze–thaw cycles and in 
high light at both low and high temperatures (Lovelock et al. 
1995a, 1995b; Kappen et al. 1989; Adamson et al. 1988).

Antarctic mosses acclimate their pigment concentra-
tions to seasonal changes and between sites presumably 
in response to microclimate variation (see above) (Schro-
eter et al. 2012; Snell et al. 2007; Lovelock and Robinson 
2002; Robinson et al. 2005; García-Plazaola et al. 2022). 
When mosses are covered by ice and snow during the long 
winter, their pigments adjust to cope with the shaded envi-
ronment by reducing photosynthetic rates and carotenoid 
concentrations whilst increasing chlorophyll levels (Post 
1990; Post and Vesk 1992; Robinson et al. 2005). However, 
in the austral summer, mosses lose their protective cover 
and are exposed to high light stress, compounded by cold 
temperatures and desiccation events. At this point, the per-
centage of VAZ sustained as Z is usually high in Antarc-
tic mosses (Lovelock et al. 1995b; Lovelock and Robinson 
2002; Martínez-Abaigar and Núñez-Olivera 2022; García-
Plazaola et al. 2022), similar to that of sun plants (Demmig-
Adams and Adams III 1992; Lovelock and Robinson 2002; 
García-Plazaola et al. 2022). For instance, when S. antarctici 
samples were moved from the field into the laboratory, 50% 
of the VAZ pool remained as A+Z after 24 h in low light 
(Lovelock et al. 1995a). Therefore, the pigment concentra-
tions of Antarctic mosses are highly agile to changing envi-
ronmental conditions, enabling them to acclimate and thrive 
in extreme conditions.

Changes in these protective pigments within three moss 
species at Casey Station were determined over two con-
trasting summer growing seasons (Fig. 7; Dunn and Rob-
inson 2006; Turnbull et al. 2009). Here we focus on the 
xanthophyll cycle pigments because of their role in NPQ, 
and β-carotene which is the precursor of the xanthophyll 
pigments and can act as an effective antioxidant to directly 
neutralise reactive free radicals. The 1999–2000 summer 
season was characterised by high ozone depletion, high 
UV-BR and relatively low summer melt with temperatures 
exceeding 0 °C on just 41 days between November and 
March (Fig. 2c). In 2002–2003 anomalous ozone depletion 
(Varotsos 2002) was accompanied by 68 days above 0 °C 
and widespread melt (Fig. 2c).

Zeaxanthin was present throughout the season in all 
species suggesting sustained Z accumulation (Demmig-
Adams et al. 2012, 2020; García-Plazaola et al. 2012; 
Verhoeven 2014). Retention of Z is advantageous in 
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a predictably cold climate since NPQ can then be acti-
vated rapidly (Demmig-Adams et al. 2012, 2020). This 
is important since even in mid-summer temperatures can 
still plunge below zero overnight (Fig.  2a). Sustained 
higher overall levels of Z/VAZ were apparent in the more 
stressful environmental conditions in 1999–2000 (colder, 
drier and more UVR) than the more benign growth con-
ditions in 2002–2003. High rates of Z conversion were 

shown to correlate with reduced electron transport (ETR) 
in 2002–2003 (R2 = 0.1656, p < 0.001 Fig. 8a).

The seasonal Z/VAZ (Fig. 7) suggests that both B. pseu-
dotriquetrum and C. purpureus have a high capacity to 
quench excess light throughout the summer (Fig. 7a, b), with 
similar trends in both seasons. The proportion of Z/VAZ 
was highest (> 60%) early in both seasons, but also late in 
the season in 1999–2000. In mid-summer when daylength 

Fig. 7   Changes in photoprotective carotenoids in Antarctic mosses 
over two contrasting summer seasons (1999–2000 and 2002–2003) in 
the Windmill Islands Antarctica. Variation in the proportion of xan-
thophyll cycle present as a–c zeaxanthin (Z/VAZ,), d–f VAZ/total 
chlorophyll and g–i β-carotene/total chlorophyll ratio in three moss 
species Bryum pseudotriquetrum, Ceratodon purpureus and Schis-
tidium antarctici (N.B. carotenoid/chlorophyll ratios are expressed as 
mmols.mol−1). Second order polynomial regressions are displayed as 
solid lines and their 95% CI as shade whenever significant regressions 
were found. The 1999–2000 season (n = 47 for each species) exhib-
ited strong ozone depletion and relatively low ‘summer melt’ (see 
Fig. 2). The growing season started on 11th December and ended on 
27th February, with temperatures exceeding 0  °C for 41 days. Over 
the season, ozone layer thickness oscillated about a mean of 313 
Dobson Units (DU). A minimum ozone layer thickness of 187 DU 

occurred on 5th October with a maximum thickness of 427 DU on 
17th October. Conversely, the 2002–2003 summer growing season 
(n = 64 for each species) had atypical ozone depletion with anoma-
lous and widespread melt. The summer season began on 4th Novem-
ber and ended on 13th March, with temperature exceeding 0  °C for 
68  days. The seasonal mean ozone column depth above Casey was 
339 DU. The minimum and maximum ozone depth for the season 
were 260 DU and 440 DU on 30th January and 20th February, respec-
tively. The star symbols indicate the start and end of the melting 
period in the growing season, except for the 2002–2003 season where 
the endpoint is unmarked due to limited sampling time. Further 
details of climate and sample collection are provided in Dunn and 
Robinson (2006) and Turnbull et al. (2009). For extraction methodol-
ogy see Supplementary Information
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approaches 24 h and conditions are relatively warm and wet, 
the Z/VAZ declined to more moderate levels (about 40% in 
1999–2000). The more favourable conditions in 2002–2003 
resulted in greater reconversion of zeaxanthin, from 70 to 
14% of the pool in B. pseudotriquetrum and from 59 to 24% 
in C. purpureus (Fig. 7). In contrast, the endemic moss spe-
cies, S. antarctici showed a lot of mid-season variability, 

with sustained high levels early in the season and consist-
ently low levels at the end. This may reflect the differences in 
distribution and preferred microhabitat between these three 
species with B. pseudotriquetrum and C. purpureus occupy-
ing more extreme microsites than S. antarctici (Robinson 
et al. 2018; Wasley et al. 2006).

The VAZ/chlorophyll ratio did not show strong seasonal 
trends, with variability probably reflecting differences 
between microsites. The only seasonal trend that was sig-
nificant was an increase during mid-summer in C. purpureus 
in the more stressful 1999–2000 season (P < 0.05). Simi-
larly, the β-carotene/chlorophyll showed no seasonal trend 
in B. pseudotriquetrum or C. purpureus but was much more 
variable in S. antarctici (Fig. 7). There appears to be more 
β-carotene/chlorophyll in the latter species, than in the cos-
mopolitan species and levels were highest early in the season 
and least at the end of the season.

The environmental drivers for these seasonal changes in 
pigments were also investigated. Where similar data collec-
tion allowed (namely air temperature and water content), 
data were combined for both seasons. We selectively report 
the robust, consistent trends across seasons, acknowledging 
that the R2 are low. (Fig. 8; Supplementary Fig. S1). Correla-
tions for UV index are also shown in Supplementary Fig. S2, 
but these were weaker than water content and air temperature 
and common to only one species. The proportion of the xan-
thophylls in the protective form (Z/VAZ) decreased as moss 
became wetter in all three species (Fig. 8b), consistent with 
dry moss needing most photoprotection, and also greater 
enzymatic activity under wetter conditions. In S. antarctici 
there was also a negative association between VAZ/chloro-
phyll and water content (R2 = 0.0486, P < 0.05, Supplemen-
tary Fig. S1). Contrastingly, there was a positive association 
between β-carotene/chlorophyll and water content in both B. 
pseudotriquetrum and C. purpureus (R2 = 0.1271, P < 0.001 
for B. pseudotriquetrum, R2 = 0.0697, P < 0.01 for C. pur-
pureus, Supplementary Fig. S1).

The proportion of the xanthophylls in the protective form 
(Z/VAZ) decreased under warmer conditions in B. pseu-
dotriquetrum and C. purpureus (R2 = 0.4081, P < 0.0001 
for B. pseudotriquetrum, R2 = 0.3332, P < 0.0001 for C. 
purpureus), but not S. antarctici (Fig. 8c). β-carotene/chlo-
rophyll was positively associated with air temperature for 
B. pseudotriquetrum (R2 = 0.0771, P < 0.01), but not for the 
other two species (Supplementary Fig. S1).

Often air temperature and water parameters change 
together, e.g. freezing reduces moss water content, but moss 
can also be dry when it is relatively warm. Taken together 
these data seem to indicate that water content is the stronger 
driver. These relationships likely explain the trends shown in 
Fig. 7, with drier moss (early and late in the season), having 
to dissipate more excess light than the wetter, warmer moss 
in mid-summer and thus needing more zeaxanthin (and in 

Fig. 8   Relationship between photoprotective xanthophyll pigments 
(Z/VAZ) in Antarctic mosses relative to photosynthetic electron 
transport rate measured by chlorophyll fluorescence (n = 64) (a), moss 
water content (gH2O gdw−1) (b), and air temperature (°C) (c). Asso-
ciations for three moss species, B. pseudotriquetrum (n = 111, green), 
C. purpureus (n = 110, red) and S. antarctici (n = 108, blue) b–c 
measured across two seasons are shown, however ETR data in a were 
only collected in 2002–2003 and all three species showed a similar 
response
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the case of S. antarctici also more total xanthophyll cycle 
pigments relative to chlorophyll). This is also consistent with 
the data for all species showing that Z/VAZ was lowest when 
electron transport rates were highest (Fig. 8a; 2002–2003 
season only).

The endemic species, S. antarctici, differed from the other 
two species by showing low values of Z/VAZ at the end of 
the season and no response to air temperature. This may 
be explained by it occupying the lowest sites and possibly 
maintaining hydrated status for more of the season. Schistid-
ium antarctici’s response to air temperatures might also be 
explained by a buffering effect of wet moss, since the moss 
canopy temperature range experienced may be less extreme 
for this species. Further studies of pigment responses across 
microclimates are needed to resolve this.

Ultraviolet radiation and the Antarctic ozone hole

In mid-summer high levels of photosynthetically active 
radiation, naturally brings higher levels of UV radiation. 
However, reduction of stratospheric ozone directly above 
Antarctica presents another challenge for mosses living in 
the unique Antarctic climate. The layer of ozone molecules 
in the stratosphere is one of the Earth’s defences against 
harmful solar radiation, particularly the shorter wavelengths 
such as UV-B (280–315  nm) and UV-C (100–280  nm) 
light. Since the 1970s, catalytic breakdown of ozone mol-
ecules has occurred during the austral spring (September 
to November) due to human-made chlorine-based aerosols 
reaching the stratosphere (Bernhard et al. 2023). This has 
depleted the ozone layer and reduced its effectiveness as a 
UV filter, subjecting Antarctic mosses to elevated and harm-
ful doses of UV-B radiation; levels of which can impair vital 
cellular contents and processes, such as DNA, chlorophyll 
and photosynthesis (Rozema et al. 2005; Seppelt et al. 2011; 
Newsham and Robinson 2009). Considering their lack of 
structural defences, what mechanisms do Antarctic mosses 
employ to survive under elevated UV-B radiation?

Mosses are generally well protected from UV-A and 
UV-B radiation by their production and storage of special-
ised compounds called UV-absorbing or -screening com-
pounds (Newsham and Robinson 2009; Robinson and Water-
man 2014), and by activation of antioxidative enzymes and 
DNA repair processes (Martínez-Abaigar and Núñez-Olivera 
2022; Wang et al. 2021). It is well documented that sev-
eral Antarctic species utilise UV-absorbing compounds as 
a direct protection mechanism to absorb harmful UV wave-
lengths and transmit useful visible light for photosynthesis 
to the chloroplasts (Newsham and Robinson 2009; Davies 
et al. 2020; Waterman et al. 2018, 2017; Dunn and Robinson 
2006; Newsham 2003; Newsham et al. 2002; Clarke and 
Robinson 2008). UV-absorbing compounds appear to protect 
Windmill Islands species from the DNA damage expected 

under elevated UV-B radiation, especially when such plants 
are desiccated (Clarke and Robinson 2008; Turnbull et al. 
2009).

Derivatives of these screening compounds in Antarctic 
bryophytes are mainly phenolic or flavonoid based (Water-
man et al. 2017; Ryan et al. 2009; Snell et al. 2009; News-
ham 2003; Webby et al. 1996; Markham and Given 1988; 
Davies et al. 2020), and several have antioxidant proper-
ties with the capacity to also mop up ROS within the cell 
(Martínez-Abaigar and Núñez-Olivera 2022; Robinson and 
Waterman 2014); indirectly preventing further damage. 
Other antioxidative mechanisms, such as activation of anti-
oxidative enzymes, can also occur within Antarctic mosses, 
e.g. Pohlia nutans and Sanionia uncinata, to help quench 
ROS formed under stressful conditions like excess light and 
desiccation (Martínez-Abaigar and Núñez-Olivera 2022; 
Pizarro et al. 2019; Li et al. 2019). Some moss species, 
including C. purpureus, also place effective UV-absorbing 
compounds in their cell walls, providing a better defence 
strategy for these single celled organisms than when placed 
in the vacuole (Clarke and Robinson 2008; Waterman et al. 
2017). Antarctic bryophyte species can exhibit reddish pig-
mentation due to the accumulation of UV-absorbing com-
pounds (Fig. 3c; Newsham 2010; Snell et al. 2009; Water-
man et al. 2018). There is evidence that sunscreens like 
flavonoids may accumulate in mosses under desiccating, 
nutrient deprivation and extreme temperature conditions in 
combination with UV radiation (see review Martínez-Abai-
gar and Núñez-Olivera 2022; Davies et al. 2020), and that 
they can be used as indicators of moss health (Waterman 
et al. 2018; Malenovský et al. 2017) and as climate proxies 
in Antarctica (Markham et al. 1990; Ryan et al. 2009).

Fertiliser from ancient penguin colonies

Antarctic soils are often poorly developed and relatively 
nutrient poor, with nutrients mostly provided from seabirds 
and mammals (Erskine et al. 1998) meaning that vegeta-
tion is often located adjacent to nesting sites (Bokhorst et al. 
2019). In extant penguin colonies nutrient loads are too high 
for most plants and these sites are also subject to trampling 
(Cannone et al. 2022). Ancient penguin colonies, however, 
provide a rich source of weathered guano and the Casey 
region’s rich moss beds are found in areas where penguins 
nested 3000–8000 years ago (Fig. 3a). With glacial retreat 
since the last ice age, isostatic uplift has lifted the land up 
and the penguins have moved to sites offshore on nearby 
islands. The abandoned Adélie penguin colonies are marked 
by carefully graded rocks of nest pebbles, and guano that 
provides nutrients for the moss beds (Fig. 3b). Radiocarbon 
dates on penguin bone and eggshell confirm the age of this 
freeze-dried fertiliser (Goodwin 1993; Emslie and Woehler 
2005), and stable isotopes of nitrogen can be used to show 
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that present day mosses derive nutrients from this guano 
supplemented by smaller amounts of airborne ammonium 
from current penguin colonies (Wasley et al. 2012).

The future of Antarctic moss beds

Climate change is happening in Antarctica, driven by both 
increasing greenhouse gases and ozone depletion (Robin-
son and Erickson 2015; Chown et al. 2022; WMO 2018, 
2022; Ranasinghe et al. 2021; Fox-Kemper et al. 2021; Con-
stable et al. 2022). The peninsula and western Antarctica 
have experienced rapid warming including reductions in ice 
cover which opens up new land for colonisation (Lee et al. 
2017; Cannone et al. 2022; Colesie et al. 2023). The eastern 
side of the continent has remained cooler, in part due to 
ozone depletion (Robinson and Erickson 2015; WMO 2018) 
but future warming of continental Antarctica is predicted 
(Chown et al. 2022; Ranasinghe et al. 2021; Constable et al. 
2022). This will open up new areas for moss colonisation 
but as discussed in Lee et al. (2022b), it is still not clear if 
this will be beneficial to all species. A lot will depend on 
whether the new ice-free areas maintain a good supply of 
water and if nutrients are present. Even if conditions are 
favourable, propagules have to disperse into new areas and 
establishment can be threatened by disturbance (Lee et al. 
2022b; Cannone et al. 2022).

Climate change has resulted in net snow accumulation 
over much of Antarctica and increasing air temperatures in 
maritime Antarctica (Gutiérrez et al. 2021; Ranasinghe et al. 
2021; Constable et al. 2022). Increased wind speeds have 
occurred over the southern ocean especially in the austral 
summer (Chown et al. 2022; WMO 2018). Ozone deple-
tion has increased the levels of UV-B radiation incident over 
Antarctica, with the early summer UV index recently shown 
to exceed those measured at mid latitudes (Bernhard et al. 
2023). In recent decades increased greenhouse gas concen-
trations and ozone depletion have resulted in a poleward 
shift in the westerly jet stream associated with an increas-
ingly positive phase of the Southern Annular Mode (SAM) 
climate pattern (Abram et al. 2014; Robinson and Erickson 
2015; WMO 2018, 2022; Chown et al. 2022). Wind affects 
water supply in many ways from blowing snow, to evaporat-
ing water once it is melted.

Extreme climatic events are also becoming more com-
mon in Antarctica. In 2019/20, anomalous high tempera-
tures were recorded across Antarctica throughout the sum-
mer, bringing new maximum temperature records (18.3 °C, 
Robinson et al. 2020; Wille et al. 2019). In autumn 2022, an 
extensive heatwave across Antarctica brought unseasonably 
warm temperatures for autumn and additional precipitation 
(Barnes et al. 2023).

Ozone depletion and global heating have both contributed 
to a drying trend in the Windmill Islands over the last half 

century (Robinson et al. 2018). Observations from another 
site thousands of kilometres to the West, Mossell Lake in 
the Vestfold Hills (Fig. 9), suggest long-term drying of large 
moss beds may be more widespread. The future trajectory of 
these Antarctic moss beds is obviously linked to how future 
climate changes and especially how this affects the water 
balance in East Antarctica (Guglielmin et al. 2014; Robinson 
et al. 2018; Bergstrom et al. 2021).

Whilst water availability is probably the dominant driver 
of terrestrial biodiversity patterns in Antarctica (Convey 
et al. 2014) it is relatively poorly resolved in future mod-
els for ice-free areas of Antarctica as well as for the Arctic 
(Constable et al. 2022). A key area for research into the 
future of Antarctic terrestrial ecosystems is what happens to 
water availability as ice-free areas expand (Lee et al. 2017, 
2022b; Guglielmin et al. 2014; Cannone et al. 2016, 2022; 
Loisel et al. 2017; Torres-Mellado et al. 2011; Favero-Longo 
et al. 2012; Yu et al. 2016; Colesie et al. 2023).

Currently the major source of water is snow and ice banks 
which supply melt water over summer. Vegetation and inver-
tebrate communities are often tied to these seasonal melt 
water sources. If there is more precipitation and it gets wetter 
we would expect increased growth and associated greening, 
as has been observed in maritime Antarctica (Amesbury 
et al. 2017; Royles et al. 2013; Cannone et al. 2022; Colesie 
et al. 2023). In East Antarctica where snowbanks retreat with 
warming, existing communities will have to shift to keep up 
with retreat if precipitation does not increase. Early onset of 
spring snow melt, with higher peak flows at the expense of 
summer flows, is a threat as identified in other snow domi-
nated regions globally (IPCC 2021). In the McMurdo Dry 
Valleys intense glacial melt in the ‘2002 flood year’ pro-
duced a step-change in water availability which triggered 
distinct species-specific changes in cyanobacterial and inver-
tebrate communities in the following years (Gooseff et al. 
2017). Greening of a large, previously moribund moss bed 
in the Vestfold Hills, East Antarctica (Fig. 9) occurred dur-
ing flooding precipitated by the 2020 heatwave (Bergstrom 
et al. 2021). In the Windmill Islands, large sections of moss 
have been dislodged from our long-term monitoring sites, 
presumably by similar flood events (Fig. 1n). This type of 
disturbance can enable movement of moss to new locations 
(Skotnicki et al. 1999) but can also result in loss of veg-
etation cover if moss is deposited in a new unfavourable 
location.

In this already extremely water-limited habitat, environ-
mental factors that influence the supply of water will have a 
profound effect on moss distribution, growth and survival. 
Although we recognise that the future of Antarctic vegeta-
tion will depend on the availability of water this is probably 
the most uncertain factor in climate modelling. This is due to 
uncertainties in predictions of inputs (precipitation as snow 
and rain), poor understanding of local snow accumulation 
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and its melt characteristics as well as how much water is 
retained in the ecosystem. Better models of precipitation 
and finer scale modelling of the microclimate and hydrology 
will aid our understanding of the role that water will play 
in the future. In addition to changes in direct inputs such as 
precipitation, temperature and radiation patterns both influ-
ence snow melt. Increased temperature, especially driven 
by strong radiation (Fig. 5), results in increased snow melt 
which will be positive (Fig. 9), providing it does not result 
in destructive flooding or drain too quickly (either through 
thawing permafrost; Guglielmin et al. 2014, or from the 
catchment). Increasing temperature and wind speeds also 
increase evaporation of water from moss beds resulting in 
less water for photosynthesis and growth. Increased evapora-
tion can indirectly affect cloud cover (Mendoza et al. 2021), 
which would reduce the timing and quantity of radiation 
available to provide for photosynthesis, canopy warmth and 
water supply.

Ozone depletion reaches its maximum in spring (Octo-
ber) when the solar angle and thus radiation levels are low. 
In spring Antarctic mosses will also be protected by snow 

cover. However, in the past few years ozone depletion has 
extended into early summer and this has resulted in Ant-
arctic measurements of quite extreme summer UV radia-
tion (Bernhard et al. 2023). This is a worrying development 
because the timing coincides with the emergence of moss 
from under snow cover. It is ironic that whilst the Montreal 
Protocol (and its amendments) have been very successful 
and the ozone layer over Antarctica is starting to recover 
we are faced with a situation where Antarctica’s plants and 
animals may currently be exposed to some of the highest 
UV-B levels since ozone depletion was first observed in the 
1970s. As noted above, generally Antarctic mosses seem 
well protected from UV-B radiation, but it does contribute 
to the combined environmental stress, and results in slightly 
reduced carbon gain (Newsham and Robinson 2009). The 
cumulative UV dose experienced by Antarctic plants will 
likely increase in future, if global heating and increased 
extreme heat events lead to early snow melt.

Physiological evidence shows Antarctic plant’s low 
stature and microclimate allows them to maintain surface 
temperatures well above air temperature (> 10 °C above 

Fig. 9   Decline in moss health from healthy (1998) to moribund 
(2005, 2018 and Dec. 2019) at Mossell Lake, Vestfold Hills, Antarc-
tica presumably because of reduced water supply to a former exten-
sive moss bed surrounding a lake, which was previously filled by gla-

cial melt. Bottom panel (Jan. 2020) shows some repair occurred after 
flooding in the 2020 summer heatwave. (Images John French, Marcus 
Salton, Dana Bergstrom; modified with permission from Bergstrom 
et al. 2021)
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ambient) and consequently they have metabolic optima simi-
lar to temperate plants (> 20 °C, Perera-Castro et al. 2020). 
This is an excellent adaptation to the current climate but we 
do not know how well moss will respond to the much higher 
temperatures that occur in heatwaves such as those expe-
rienced in the 2019–2020 summer (Robinson et al. 2020; 
González-Herrero et al. 2022). Will temperatures exceed 
limits and cause detrimental damage, or will mosses be able 
to avoid or cope with additional stress by using their suite of 
photoprotective compounds? A better understanding of the 
response of both photosynthesis and respiration to warmer 
temperatures is needed to model future growth rates of Ant-
arctic mosses.

Some native organisms will be winners and some losers 
as competitive processes alter in this rapidly changing envi-
ronment (Lee et al. 2022a, b). For example, in the Windmill 
Islands native, cosmopolitan moss species are shifting into 
areas previously dominated by endemic moss species (Rob-
inson et al. 2018) and some species show enhanced ability 
to colonise newly disturbed areas around stations (e.g. B. 
pseudotriquetrum at Casey Station; Robinson pers comm). 
On the peninsula mosses and lichens are also vulnerable to 
expansion of native angiosperms, increased animal distur-
bance and increased risk of invasive species (Chown et al. 
2022; Cannone et al. 2022; Bokhorst et al. 2019; Colesie 
et al. 2023).

Antarctic mosses exhibit a range of physiological strat-
egies which have enabled them to maintain habitation in 
Antarctica despite its harsh conditions. Climate change is 
changing this environment and some of these adaptations 
may not be as favourable in future. Understanding the role 
of microclimates in ameliorating harsh conditions, the future 
characteristics of ice-free areas (Lee et al. 2022b) and the 
extent to which moss species can adapt is vital to accurately 
predict their future.
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