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Abstract
Traditional “Green Revolution” cereal breeding strategies to improve yield are now reaching a plateau in our principal global 
food crop rice. Photosynthesis has now become a major target of international consortia to increase yield potential. Synthetic 
biology is being used across multiple large projects to improve photosynthetic efficiency. This review follows the genesis 
and progress of one of the first of these consortia projects, now in its 13th year; the Bill and Melinda Gates funded C4 Rice 
Project. This project seeks to install the biochemical and anatomical attributes necessary to support C4 photosynthesis in 
the C3 crop rice. Here we address the advances made thus far in installing the biochemical pathway and some of the key 
targets yet to be reached.
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Photosynthesis and food security

The global population has now passed 8 billion and is pre-
dicted to reach more than 9 billion by the year 2040. Much 
has been written about our lack of capacity to feed this bur-
geoning population, with declining arable land areas, climate 
change, extreme weather events and stagnating progress in 
yields of our major cereal crops (UNICEF 2022; Furbank 
et al. 2020). While statistics such as the need for a 70% 
increase in food production by 2050 are sobering, the focus 
on the future can result in the lack of political will to address 
the issue with immediacy (WorldBank 2022). It has been 
suggested that the global food crisis, unlike COVID 19, is 
a silent pandemic, not causing the level of global response 
required to resolve the problem. Recent events comprising 

extreme and cataclysmic weather, rapidly rising fuel costs, 
supply chain issues, war and socioeconomic unrest have 
reminded us that the equation where food demand outstrips 
supply is near at hand. Indeed, we now appear to be revisit-
ing the food crisis of 2008 which saw rapidly escalating food 
prices following the exhaustion of dwindling global grain 
reserves, resulting in famine and social unrest (FAO 2009).

While the causes of declining global food security are 
manifest, it is now widely accepted that the strategies used 
to achieve the huge “Green Revolution” gains in cereal 
grain productivity and land use gains (40–60% in wheat; 
Vietmeyer 2011; Stevenson et al. 2013) have largely been 
exhausted. Yield gains from reducing investment of fixed 
carbon into unproductive biomass such as stems via intro-
duction of dwarfing genes, breeding for grain number and 
harvest index (the proportion of crop biomass comprising 
harvestable grain) appear to have plateaued (Furbank et al. 
2020). As grain yield is a product of this “harvest index” and 
final crop biomass, increasing biomass through increases in 
photosynthetic efficiency have been identified as the next 
critical breeding target. Rice breeding has led the way for 
the global push to improve crop photosynthesis by utilizing 
an engineering approach based on basic scientific research, 
physiological knowledge and modelling.
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Rice is limited by photosynthate supply

As early as the 1990’s, while debate as to the relation-
ship between photosynthetic performance and yield was 
ongoing in other crops, in rice it was becoming clear that 
rice yields were limited by the supply of photosynthate 
(Sheehy et  al. 2001). In the decade leading up to this 
realization, intensive breeding for a “new plant type” had 
been ongoing at the International Rice Research Institute 
(IRRI) in the Philippines, in China and elsewhere with less 
than encouraging results in some cases. Rice bred for high 
spikelet number actually produced less than 50% of the 
predicted yield, with less than half the juvenile spikelet’s 
reaching maturity as filled grain (Fig. 1A and Sheehy et al. 
2001). Highly successful breeding for improvements in 
panicle spikelet number could in some cases even reduced 
the number of final filled grain, presumably by diluting 
the available photosynthate to the point that fertility was 
reduced and abortion increased. This was taken as clear 
evidence that high yield potential rice is “source limited” 
i.e. limited by the provision of photoassimilates to support 
grain filling. Similar source limitation is not seen in other 
crops such as wheat, where there is significant genetic 
variation in photosynthetic capacity across historic col-
lections and elite material (Silva-Pérez et al. 2019), and 
photosynthetic supply has increased in concert with more 
gradual gains in sink demand (Fischer et al. 1998). We 
now know that in a number of rice breeding programs, 
that the step change in spikelet number was achieved due 
to a mutation of an enzyme of the cytokinin catabolism, 
cytokinin oxidase (Ashikari et al. 2005; Fig. 1B), resulting 

in sink demand outstripping carbon supply from leaves. 
Thus, in rice the demand and potential for large yield gains 
is present, and efforts to fill these additional spikelets 
has become a priority activity in rice breeding programs 
around the world.

Redesigning rice photosynthesis to increase 
yield: the genesis of the C4 rice program

John Sheehy, a crop modeler working with physiological 
breeders at IRRI, recognized that photosynthetic improve-
ment was key to boosting rice yields and brought together 
an international group of plant biologists to IRRI at the end 
of 1999 to brainstorm the problem. While a multitude of 
ideas were discussed (Sheehy et al. 2000), Sheehy’s favour-
ite option was a bold and ambitious plan to use genetic tech-
nologies to introduce into rice the entire C4 photosynthetic 
pathway, including anatomical specialization. He had cal-
culated from modelling that this alone, among the options 
discussed, could improve radiation use efficiency to the level 
required to produce a 50% yield boost; the improvement 
required to meet projected demand in 2050 (Sheehy et al. 
2000). In most species the C4 pathway is a complex combi-
nation of both biochemical and morphological specialisa-
tion, which provides an elevation of the CO2 concentration 
at the site of Rubisco in the bundle sheath. The C4 cycle, 
often called a biochemical CO2 pump, fixes CO2 into C4 
acids in the mesophyll via phosphoenolpyruvate carboxylase 
(PEPC) which diffuse to and are decarboxylated in the bun-
dle sheaths allowing CO2 to be concentrated there (Fig. 2; 
von Caemmerer and Furbank 2003).

Fig. 1   Spikelet numbers for indica rice variety IR72 averaged 
across 1997 and 1999 growing season data at the International Rice 
Research Station Los Banos Philippines (IRRI). From Sheehy et  al 
(2001). 1000 grain weight in IR72 was 24  g in both seasons. Fig-
ure 1B shows typical panicles from Koshikari and Habataki; parents 
used to generate a QTL mapping population for grain number by 

Ashikari et al (2005) wherein a polymorphism in the cytokinin oxi-
dase gene was identified as a major causative QTL for grain number. 
Line 5150 is a high yielding variety from China shown to have a dele-
tion at the cytokinin oxidase locus resulting in a null mutation. These 
authors also phenocopied this large panicle architecture by producing 
a transgenic rice where cytokinin oxidase expression was suppressed
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At the time of this meeting, some progress had already 
been made to express several maize photosynthetic genes in 
rice leaves with the goal to produce C4 photosynthesis in a 
single cell, where carboxylation by PEPC and decarboxyla-
tion by NADP-malic enzyme (NADP-ME) both occurred 
in mesophyll cells but partitioned between the cytosol and 
chloroplast (Miyao et al. 2011; Miyao 2003). While it was 
unknown whether such a small spatial separation of the 
“CO2 pump” from Rubisco would be sufficient for the mech-
anism to function efficiently, this approach did not require 
the challenges of anatomical specialization (Miyao et al. 
2011). Initial promising reports pointed toward yield and 
growth increases with a partial pathway installed (Ku et al. 
2000) later proving difficult to replicate and no functional 
C4 photosynthetic flux was ever demonstrated (Fukayama 
et al. 2003).

In 2006, at a follow up meeting at IRRI, the C4 Rice 
Consortium was born with a group of 16 laboratories in 11 
countries resolving to take on the challenge of engineering 
C4 rice. The proceedings of this meeting (Sheehy et al. 2007) 
laid out the ground work for what was to become the most 
challenging crop engineering project ever attempted; what 
we would now call a major challenge in synthetic biology. 
Over the following 2 years, project plans were painstakingly 

prepared, timelines of ≥ 15 years for a prototype proposed 
and in 2008 a group of scientists representing the consortium 
presented the project to the Bill and Melinda Gates Founda-
tion in Seattle. The backdrop to this presentation was what 
is now known as the global food crisis of 2008; a major 
deficit in global food supplies, the doubling of rice grain 
prices in less than a year, and severe shortages of wheat 
grain resulting in starvation and food riots in Cairo (FAO 
2009). A perfect storm to support the funding of what many 
researchers called an “Apollo project”; as difficult as putting 
a man on the moon.

Building the tools to construct the prototype

C4 photosynthesis has evolved independently more than 65 
times in nature (Sage et al. 2012). This has been achieved 
using three major biochemical variants of the pathway; 
NADP-malic enzyme (NADP-ME), NAD-ME malic 
(NAD-ME) and the Pepcarboxykinase (PCK) type (Fur-
bank 2011), so named for the bundle sheath enzyme used to 
decarboxylate the C4 acid produced in the mesophyll cells 
to release CO2. Most cultivated C4 crops (such as maize, 
sorghum and sugarcane) utilize NADP-ME as their primary 

Fig. 2   Schematic of enzymes and transporters included in the con-
struction of C4 rice (in blue). These enzymes included carbonic anhy-
drase (CA), PEP carboxylase (PEPC), malate dehydrogenase (MDH), 
NADP-malic enzyme (NADP-ME), and pyruvate phosphate dikinase 
(PPDK). The transporters included are oxaloacetate/malate transloca-
tor (OMT1), pyruvate/sodium symporter (BASS2), Sodium/proton 
antiporter (NDH1), and PEP/phosphate translocator (PTT1). In bun-
dle sheath chloroplasts it is unknown what is counter exchanged for 

malate or how pyruvate is exported. Also shown is the possible triose 
phosphate shuttle of the C3 cycle between bundle sheath and meso-
phyll cells. PYR pyruvate, PEP phosphoenolpyruvate, OAA oxaloac-
etate, MAL malate, 3PGA 3-phosphoglycerate, 1,3BPG 1,3-bispho-
sphoglycerate, G3P glycerate-3-phosphate, DHAP dihydroxyacetone 
phosphate. TPT triose-phosphate/phosphate translocator, PGK phos-
phoglycerate kinase, GAPDH glyceraldehyde-3-phosphate dehydro-
genase, TPI triosephosphate isomerase
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decarboxylase, leading the consortium to choose maize as 
the model for the C4 Rice prototype. Figure 2 shows the 
basic requirements of a C4 mechanism in rice including 
the key enzymes and chloroplast transport steps. Previous 
reviews have dealt in depth with the biochemical and ana-
tomical specialization in C4 plants believed to have evolved 
to support the photosynthetic mechanism (von Caemmerer 
et al. 2012; Langdale 2011; Furbank 2011; Hibberd et al. 
2008; Wang et al. 2017). These include reduced vein spac-
ing with Kranz anatomy/photosynthetic functionalization 
of the bundle sheath (Wang et al. 2017; Langdale 2011), 
more than 100-fold increases in expression of key photosyn-
thetic enzymes, and appropriate cell preferential expression 
of proteins in the bundle sheath or mesophyll (Ermakova 
et al. 2020). Here we will address progress and challenges 
in building tools to address two key aspects of building the 
C4 rice prototype; high level expression of pathway enzymes 
and appropriate cell preferential expression in mesophyll or 
bundle sheath compartments of rice (Ermakova et al. 2020).

Boosting C4 enzyme levels in rice; how much 
is enough?

An aspirational goal in C4 rice engineering is to reach 
maize levels of expression and/or activity of C4 enzymes 
preferentially expressed in the correct cell types, in a rice 
genotype with maize leaf anatomy. Although both maize 
and sorghum bicolor have exceptional high photosynthetic 
rates and enzyme activities, other C4 NADP-ME species 
such as Setaria viridis demonstrate that functional NADP-
ME C4 photosynthesis can be achieved with a diverse range 
of enzyme activities (Sonawane et al. 2017; Osborn et al. 
2017), mirroring the phylogenetic diversity of biochemical 
solutions observed across C4 species.

In addition to being guided by natural diversity in C4 
pathways, we can also learn from previous work in trans-
genic C4 plants where levels of key enzymes were “titrated 
out” using gene suppression, as to the need to reach this 
aspirational goal in order to support adequate C4 photosyn-
thetic fluxes in rice (Furbank et al. 1997). It can be seen in 
Fig. 2 that five C4 cycle enzymes support a minimal pathway 
(carbonic anhydrase (CA), PEP carboxylase (PEPC), malate 
dehydrogenase (MDH), NADP-malic enzyme (NADP-ME), 
and pyruvate phosphate dikinase (PPDK)). These enzymes 
have all been expressed in rice using a single construct but 
the amount of protein and enzyme activities need to be aug-
mented (Ermakova et al. 2021). In Table 1 we have col-
lated results from previous transgenic studies that have used 
antisense or RNAi technology to reduce the protein content 
of the C4 enzymes. It summarizes the affect a 50% reduc-
tion in enzyme content would have on photosynthetic rate. 
Three studies have confirmed that there is ample carbonic 

anhydrase activity such that a 50% reduction results in a very 
small decrease in photosynthetic rate. Studies in Amaran-
thus edulis and Setaria viridis show that 45% PEPC activity 
leads to 21% reduction in rate highlighting the importance 
of this enzyme. Reduction in, (PPDK) by 45% also leads to 
a 17% reduction. Reduction in MDH activity by half does 
not reduce photosynthetic rate and similarly, reduction of 
malic enzyme activity by 50% results in only a 6% reduction 
in photosynthetic rate. This is encouraging and suggests that 
less than full maize enzyme activity levels may be able to 
produce a functional C4 rice. Rubisco located in the bundle 
sheath can exert the strongest control although it is often 
co-limited by electron capacity (Furbank et al. 1996; Siebke 
et al. 1997). Balancing the amount of Rubisco with the C4 
enzyme actives will be an essential fine tuning to ensure the 
efficiency of the pathway (von Caemmerer et al. 1997a, b).

The concentration of CO2 around Rubisco in the bundle 
sheath cells of C4 plants is dependent on unidirectional flow 
of metabolites through the C4 pathway (Fig. 2). Achieving 
this unidirectional flow is critically dependent on tight cell 
type specific regulation of enzyme and transporter activ-
ity to limit futile cycling of C4 cycle metabolites. Although 
there are multiple ways in which cell type specific activ-
ity could be achieved (e.g. through a combination of tran-
scriptional and/or post-translational processes), analysis of 
cell type specific transcriptomes revealed that regulation at 
the level of gene transcription has been the primary way in 
which cell type specificity has been achieved in different C4 
species (John et al. 2014; Emms et al. 2016; Chang et al. 
2012). The genes encoding the enzymes and transporters of 
the C4 cycle show extreme differences in transcript abun-
dance between bundle sheath and mesophyll cells (Fig. 3), 
while the orthologous genes in rice show little (Fig. 3; Hua 
et al. 2021). Thus, the aim of the C4 rice project has been 
to achieve high levels of cell-type specific enzyme activ-
ity through the use of cell type specific promoters to drive 
expression of exogenous transgenes.

Synthetic biology accelerates progress

A research project which has been working toward a sin-
gle goal for more than a decade is a rarity in plant science. 
In the course of 13 years of work, advances in synthetic 
biology have revolutionized pathway engineering in plants. 
Hierarchical Golden Gate/MoClo or Golden Braid cloning 
(Engler et al. 2014; Andreou and Nakayama 2018), coupled 
with affordable gene synthesis means that rather than cre-
ating single gene transgenic plants and crossing, the tools 
are now available to build gene constructs containing many 
genes of interest and install them in a single step (see Fig. 4 
and Ermakova et al. 2020). This means that genes of interest 
are inserted at a single genetic locus, can easily be tracked 



125Photosynthesis Research (2023) 158:121–130	

1 3

in subsequent crossing, and homozygous individuals can be 
generated without many years of successive crossing and 
screening for plants homozygous in all transgenic insertions 
(Lin et al. 2020; Fig. 4). Furthermore, the parts required for 
gene construction can be assembled in a “toolbox” for later 
use with other genes of interest or refining of the approach 
swapping promoters, introns, untranslated and coding 
regions. The transgene expression challenges outlined above 
concerning high level and cell preferential expression are 
also addressed with new synthetic biology tools.

Cell specific expression of C4 proteins in rice has been a 
challenge due to the paucity of promoters known to express 

in the bundle sheath compartment (Ermakova et al. 2020). 
Until recently, a single plant promoter was available which 
showed bundle sheath cell preferential expression in rice; 
the Zoysia japonica PCK promoter (Nomura et al. 2005). 
It can be seen from Fig. 4 that several genes are required to 
be expressed in the bundle sheath compartment, requiring 
this single promoter to be re-used. There is considerable 
evidence in this project and elsewhere that repeating a pro-
moter sequence in transgenes commonly results in problems 
with cloning due to recombination deletion or with in planta 
methylation and inactivation (Wassenegger 2002).

Table 1   Comparison of photosynthetic rates at 100 and approximately 50% of protein content of various C4 photosynthetic enzymes

Enzyme Species CO2 assimilation 
rate at 100% (µmol 
m−2 s−1)

CO2 assimilation 
rate at 50% (µmol 
m−2 s−1)

percent 
reduction in 
rate

Gas exchange 
conditions

Publications

Carbonic anhy-
drase, CA

Flaveria bidentis 32.4 33.7 0% 25 °C, 1500 µmol 
quanta m−2 s−1 
and CO2 at 400 
µbar, 21% O2

(von Caemmerer 
et al. 2004)

Carbonic anhy-
drase, CA

Setaria viridis 22.5
30.0

21.7 (54%)
29.2 (30%)

3.6%
2.6%

25 °C, 1500 µmol 
quanta m−2 s−1 
and CO2 at 400 
µbar, 21 and 2% 
O2

(Osborn et al. 2017)

Carbonic anhy-
drase, CA

Zea mays 23.1 21.2 (50–97%) 8% 25 °C, 1000 µmol 
quanta m−2 s−1 
and CO2 at 370 
µbar, 21 O2

(Studer et al. 2014)

PEP carboxylase, 
PEPC

Amaranthus edulis 40.9 32.1 at 42% 22% 30 °C, 1500 µmol 
quanta m−2 s−1 
and CO2 at 400 
µbar, 5% O2

(Cousins et al. 2007)

PEPC Setaria viridis 31.6 32 at 45% 21% 25 °C, 2000 µmol 
quanta m−2 s−1 
and CO2 at 360 
µbar, 21% O2

Serano Romero 2020 
PhD Washington 
State University

Malate dehydroge-
nase, MDH

Flaveria bidentis 37 37 0% 25 °C, 1200 µmol 
quanta m−2 s−1 
and CO2 at 400 
µbar, 21% O2

(Furbank et al. 1997; 
Trevanion et al. 
1997)

Pyruvate phios-
phatedikinase, 
PPDK

Flaveria bidentis 37 45 17% ? (Furbank et al. 1997)

NADP-Malic 
enzyme, ME

Flaveria bidentis 35 33 6% 25 °C, 1500 µmol 
quanta m−2 s−1 
and CO2 at 400 
µbar, 21% O2

(Pengelly et al. 2012)

Rubisco Flaveria bidentis 32 28 12% 25 °C, 2000 µmol 
quanta m−2 s−1 
and CO2 at 
350 µl/l, 21% O2

(Furbank et al. 1996)

Rubisco Flaveria bidentis 37 19 48% 25 °C, 1500 µmol 
quanta m−2 s−1 
and CO2 at 
360 µl/l, 21% O2

(Siebke et al. 1997, 
Fig. 2)
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We recently demonstrated that the synthetic transcription 
activator-like effector (dTALE)/synthetic TALE-activated 
promoter (STAP) system (Brückner et al. 2015; Danila et al. 
2022) provides a potential solution to the problems outlined 
above (Fig. 5). This system, adapted from the plant immune 
response to bacterial infection (Bogdanove et al. 2010), 
allows multiplexing of several genes on a single construct 
where each gene of interest is driven by a different STAP, 
but all STAPs are activated by a single trans activating factor 
or dTALE (Schreiber and Tissier 2017). In the case of C4 
engineering, this means that a single cell preferential plant 
promoter can be used to drive a dTALE which activates a 
suite of STAPs, each driving a gene of interest in the cellular 
compartment where the dTALE is expressed (Fig. 5). An 
added advantage of this system is that it has been observed 
that the dTALE-STAP system can substantially amplify the 

strength of a weak promoter (Danila et al. 2022), potentially 
also addressing the problem of sufficient high-level expres-
sion in the correct cell type in the C4 rice prototype.

Future challenges

The synthetic promoter system described above can poten-
tially address the high-level expression in the correct com-
partment of the C4 enzymes in the basic pathway. “Maize 
levels” of every enzyme and transporter may be unnecessary 
to achieve appropriate flux as discussed above (Table 1). 
However, estimating flux through individual steps of the 
pathway is challenging. While extractable activity may be 
high, in vivo activity could be limited by inappropriate regu-
lation or in fact substrate supply (Fukayama et al. 2003). The 

Fig. 3   Transcript abundance of genes encoding enzymes and trans-
porters of the C4 cycle. Bundle sheath and mesophyll cell transcript 
abundance for Oryza sativa, Setaria viridis, Zea mays and Sorghum 

bicolor. All abundance estimates are provided as transcripts per mil-
lion (TPM). For abbreviations of gene names see Fig. 2
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success of engineering a complete pathway can only really 
be judged by measurements of flux, such as via labelling 
into C4 acids and subsequent release and refixation of this 
carbon into the C3 cycle by Rubisco (Ermakova et al. 2021). 
If flux is low, trouble shooting of components in a complex 
prototype which includes multiple enzymes and transport-
ers is challenging since localization of labelled metabo-
lites in particular cell types or subcellular compartments is 
extremely difficult. Even if moderate fluxes are achieved, 
in the absence of the appropriate Kranz anatomy, the C4 
pathway can likely only operate in cells adjacent to the bun-
dle sheath cells (Ermakova et al. 2020). Vascular bundles 
in rice are separated by 6–9 mesophyll cells, all carrying 
out C3 photosynthesis, while only 2 mesophyll cells, devoid 
of Rubisco, are present between bundle sheath cells in the 
majority of C4 leaves (Ermakova et al. 2020; Sedelnikova 

et al. 2018). While modelling predicts measurable physi-
ological impacts on gas exchange if maize levels of flux were 
achieved around the veins in rice (Ermakova et al. 2020), 
measuring the passage of label through C4 acids and then 
into 3-phosphoglycerate will be challenging to detect against 
the large background of labelled carbon appearing in 3-C 
compounds by direct fixation via Rubisco in mesophyll cells. 
For these technical reasons alone, it is desirable to combine 
close vein spacing and/or low Rubisco in the mesophyll tis-
sues in subsequent prototypes. While some progress has 
been made on photosynthetic functionalization of the bundle 
sheath cells in rice (Wang et al. 2017; Ermakova et al. 2020), 
a major challenge remains; the discovery of a complete set 
of genetic switches required for the transition from C3 to C4 
leaf vein spacing which remain elusive (Sedelnikova et al. 
2018).

Fig. 4   Schematic of a traditional crossing strategy to stack 5 C4 
pathway related genes in rice similar to that used in Lin et al (2020) 
compared to the Golden Gate assembly method used in Ermakova 
et  al (2020) for 5 genes using a single gene construct. The former 
process requires approximately 6  years of crossing and large scale 
genotyping due to the necessity to obtain individual lines for cross-
ing expressing each enzymes at desired levels and homozygosity for 

all transgenes which will have inserted at different loci. In contrast 
single gene insertion means that once lines expressing all gens on the 
t-DNA at high levels have been obtained, they can be selfed to pro-
duce homozygous progeny in less than 1  year. Abbreviations as for 
Fig. 2. AGDC signifies transgenic lines where glycine decarboxylase 
expression has been suppressed in the mesophyll compartment
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Concluding comments

The C4 Rice project is progressing on several fronts. While 
there remain a number of unanswered questions around 
transport of metabolites and genes controlling vein spac-
ing and anatomy (Wang et al. 2016; Ermakova et al. 2020), 
modelling suggests that even without a full complement of 
anatomical specialisation, we can achieve a boost in pho-
tosynthesis and yield (Ermakova et al. 2020). The rate of 
technological progress in plant pathway engineering and 
synthetic biology since the genesis of the project provides 
hope that we can quickly deploy scientific discoveries into 
our prototype, even fine tuning with rapid advances in crop 
gene editing, to assure success.
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