Skip to main content
Log in

Effect of different light intensity on physiology, antioxidant capacity and photosynthetic characteristics on wheat seedlings under high CO2 concentration in a closed artificial ecosystem

  • Original article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The growth of plants under high carbon dioxide (CO2) concentrations (≥ 1000 ppm) is explored for the climate change and the bioregenerative life support system (BLSS) environment of long-duration space missions. Wheat (Triticum aestivum L.) is a grass cultivated for cereal grain—a global staple food including astronauts. Light and CO2 are both indispensable conditions for wheat seedlings. This study provides insights on the physiology, antioxidant capacity and photosynthetic characteristics of wheat seedlings under a range of photosynthetic photon flux densities in a closed system simulating BLSS with high CO2 concentration. We found that the Fv/Fm, Fv/F0, chlorophyll content, intrinsic water use efficiencies (WUEi), membrane stability index (MSI), and malondialdehyde (MDA) of wheat seedlings grown under an intermediate light intensity of 600 μmol m−2 s−1 environment were all largest. Interestingly, the high light intensity of 1200 mol m−2 s−1 treatment group exhibits the highest net photosynthetic rate but the lowest MDA content. The stomatal conductance and F0 of high light intensity of 1000 μmol m−2 s−1 treatment group were both significantly higher than that of other groups. Our study provides basic knowledge on the wheat growth in different environments, especially in a closed ecosystem with artificial lights.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

HL:

High light

IL:

Intermediate light

LL:

Low light

PPFD:

Photosynthetic photon flux density

LED:

Light-emitting diodes

LP1:

Lunar palace 1

BLSS:

Bioregenerative life support system

MSI:

Membrane stability index

RWC:

Relative water content

POD:

Peroxidase

MDA:

Malondialdehyde

A :

Net photosynthetic rate

gs:

Stomatal conductance

WUEi :

Intrinsic water use efficiencies

Chl a:

Chlorophyll a

Chl b:

Chlorophyll b

Chl a + b:

Total chlorophyll content

PS II:

Photosystem II

F 0 :

Minimum fluorescence

F m :

Maximum fluorescence

F v :

Variable fluorescence

Fv/Fm :

Maximum quantum yield of PSII efficiency

Fv/F0 :

Potential activity of PS II

H2O2 :

Hydrogen peroxide

References

  • Abdollahi M, Ranjbar A, Shadnia S et al (2004) Pesticides and oxidative stress: a review. Medical Sci Monit 10(6):R141–R147

    Google Scholar 

  • Agüera E, De la Haba P (2018) Leaf senescence in response to elevated atmospheric CO2 concentration and low nitrogen supply. Biol Plant 62(3):401–408

    Article  CAS  Google Scholar 

  • Ali MB, Hahn EJ, Paek KY (2005) Effects of light intensities on antioxidant enzymes and malondialdehyde content during short-term acclimatization on micropropagated Phalaenopsis plantlet. Environ Exp Bot 54(2):109–120

    Article  CAS  Google Scholar 

  • Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166(1):3–16

    Article  CAS  Google Scholar 

  • Baresel JP, Rischbeck P, Hu Y et al (2017) Use of a digital camera as alternative method for non-destructive detection of the leaf chlorophyll content and the nitrogen nutrition status in wheat. Comput Electron Agric 140:25–33

    Article  Google Scholar 

  • Barna M, Bosela M (2015) Tree species diversity change in natural regeneration of a beech forest under different management. For Ecol Manag 342:93–102

    Article  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39(1):205–207

    Article  CAS  Google Scholar 

  • Bender J, Hertstein U, Black CR (1999) Growth and yield responses of spring wheat to increasing carbon dioxide, ozone and physiological stresses: a statistical analysis of ‘ESPACE-wheat’ results. Eur J Agron 10(3–4):185–195

    Article  Google Scholar 

  • Biederman LA, Harpole WS (2013) Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis. GCB Bioenergy 5(2):202–214

    Article  CAS  Google Scholar 

  • Björkman O, Demmig B (1987) Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170(4):489–504

    Article  PubMed  Google Scholar 

  • Bloom AJ, Smart DR, Nguyen DT et al (2002) Nitrogen assimilation and growth of wheat under elevated carbon dioxide. Proc Natl Acad Sci USA 99(3):1730–1735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blum A, Ebercon A (1981) Cell membrane stability as a measure of drought and heat tolerance in wheat 1. Crop Sci 21(1):43–47

    Article  Google Scholar 

  • Brenchley R, Spannagl M, Pfeifer M et al (2012) Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491(7426):705–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bugbee BG, Salisbury FB (1988) Exploring the limits of crop productivity: I. Photosynthetic efficiency of wheat in high irradiance environments. Plant Physiol 88(3):869–878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Croft H, Chen JM, Luo X et al (2017) Leaf chlorophyll content as a proxy for leaf photosynthetic capacity. Glob Change Biol 23(9):3513–3524

    Article  Google Scholar 

  • Díaz J, Bernal A, Pomar F et al (2001) Induction of shikimate dehydrogenase and peroxidase in pepper (Capsicum annuum L.) seedlings in response to copper stress and its relation to lignification. Plant Sci 161(1):179–188

    Article  Google Scholar 

  • Dong C, Fu Y, Liu G, Liu H (2014a) Low light intensity effects on the growth, photosynthetic characteristics, antioxidant capacity, yield and quality of wheat (Triticum aestivum L.) at different growth stages in BLSS. Adv Space Res 53(11):1557–1566

    Article  CAS  Google Scholar 

  • Dong C, Hu D, Fu Y et al (2014b) Analysis and optimization of the effect of light and nutrient solution on wheat growth and development using an inverse system model strategy. Comput Electron Agric 109:221–231

    Article  Google Scholar 

  • Dong C, Fu Y, Liu G et al (2014c) Growth, photosynthetic characteristics, antioxidant capacity and biomass yield and quality of wheat (Triticum aestivum L.) exposed to LED light sources with different spectra combinations. J Agron Crop Sci 200(3):219–230

    Article  CAS  Google Scholar 

  • Dong C, Shao L, Wang M, Liu G, Liu H, Xie B, Li B, Fu Y, Liu H (2016a) Wheat carbon dioxide responses in space simulations conducted at the Chinese Lunar Palace-1. Agron J 108(1):32–38

    Article  CAS  Google Scholar 

  • Dong C, Liu G, Fu Y et al (2016b) Twin studies in Chinese closed controlled ecosystem with humans: The effect of elevated CO2 disturbance on gas exchange characteristics. Ecol Eng 91:126–130

    Article  Google Scholar 

  • Dong C, Chu Z, Wang M et al (2018) Influence of nitrogen source and concentrations on wheat growth and production inside “Lunar Palace-1”. Acta Astronaut 144:371–379

    Article  CAS  Google Scholar 

  • Dutta SS, Tyagi W, Rai M (2017) Physiological and molecular response to low light intensity in rice: a review. Agric Rev 38(3):209–215

    Google Scholar 

  • Embiale A, Hussein M, Husen A et al (2016) Differential sensitivity of Pisum sativum L. cultivars to water-deficit stress: changes in growth, water status, chlorophyll fluorescence and gas exchange attributes. J Agron 15(2):45–57

    Article  CAS  Google Scholar 

  • Eshghizadeh HR, Zahedi M, Mohammadi S (2018) Differential growth responses of wheat seedlings to elevated CO2. Not Sci Biol 10(3):400–409

    Article  CAS  Google Scholar 

  • Evtushenko EV, Chekurov VM (2004) Inheritance of the light intensity response in spring cultivars of common wheat. Hereditas 141(3):288–292

    Article  CAS  PubMed  Google Scholar 

  • Fan XX, Xu ZG, Liu XY et al (2013) Effects of light intensity on the growth and leaf development of young tomato plants grown under a combination of red and blue light. Sci Hortic 153:50–55

    Article  Google Scholar 

  • Freeman KW, Girma K, Arnall DB et al (2007) By-plant prediction of corn forage biomass and nitrogen uptake at various growth stages using remote sensing and plant height. Agron J 99(2):530–536

    Article  CAS  Google Scholar 

  • Fu W, Li P, Wu Y (2012) Effects of different light intensities on chlorophyll fluorescence characteristics and yield in lettuce. Sci Hortic 135(135):45–51

    Article  CAS  Google Scholar 

  • Fu Y, Li L, Xie B et al (2016) How to establish a bioregenerative life support system for long-term crewed missions to the moon or Mars. Astrobiology 16(12):925–936

    Article  CAS  PubMed  Google Scholar 

  • Griggs DJ, Noguer M (2002) Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Weather 57(8):267–269

    Article  Google Scholar 

  • Gutiérrez D, Morcuende R, Del Pozo A et al (2013) Involvement of nitrogen and cytokinins in photosynthetic acclimation to elevated CO2 of spring wheat. J Plant Physiol 170(15):1337–1343

    Article  CAS  PubMed  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Calif Agric Exp Stn Circ 347(5406):357–359

    Google Scholar 

  • Jiang GM, Sun JZ, Liu HQ et al (2003) Changes in the rate of photosynthesis accompanying the yield increase in wheat cultivars released in the past 50 years. J Plant Res 116(5):347–354

    Article  CAS  PubMed  Google Scholar 

  • Joos F, Plattner GK, Stocker TF et al (1999) Global warming and marine carbon cycle feedbacks on future atmospheric CO2. Science 284(5413):464–467

    Article  CAS  PubMed  Google Scholar 

  • Kreslavski V, Tatarinzev N, Shabnova N et al (2008) Characterization of the nature of photosynthetic recovery of wheat seedlings from short-term dark heat exposures and analysis of the mode of acclimation to different light intensities. J Plant Physiol 165(15):1592–1600

    Article  CAS  PubMed  Google Scholar 

  • Kura-Hotta M, Satoh K, Katoh S (1987) Relationship between photosynthesis and chlorophyll content during leaf senescence of rice seedlings. Plant Cell Physiol 28(7):1321–1329

    CAS  Google Scholar 

  • Larrabee DA (2018) Climate change and conflicting future visions. Zygon 53(2):515–544

    Article  Google Scholar 

  • Leong WH, Teh SY, Hossain MM et al (2020) Application, monitoring and adverse effects in pesticide use: the importance of reinforcement of good agricultural practices (GAPs). J Environ Manag 260:109987

    Article  CAS  Google Scholar 

  • Li S, Yang W, Yang T et al (2015) Effects of cadmium stress on leaf chlorophyll fluorescence and photosynthesis of Elsholtzia argyi—a cadmium accumulating plant. Int J Phytoremediat 17(1):85–92

    Article  CAS  Google Scholar 

  • Li A, Li S, Wu X et al (2016) Effect of light intensity on leaf photosynthetic characteristics and accumulation of flavonoids in Lithocarpus litseifolius (Hance) Chun. (Fagaceae). Open J For 6:445–459

    Google Scholar 

  • Liu Q, Xiu WU, Chen B et al (2014) Effects of low light on agronomic and physiological characteristics of rice including grain yield and quality. Rice Sci 21(5):243–251

    Article  Google Scholar 

  • Liu G, Bollier D, Gübeli C et al (2018) Simulated microgravity and the antagonistic influence of strigolactone on plant nutrient uptake in low nutrient conditions. npj Microgravity 4(1):20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loconsole D, Cocetta G, Santoro P et al (2019) Optimization of LED lighting and quality evaluation of Romaine lettuce grown in an innovative indoor cultivation system. Sustainability 11(3):841

    Article  CAS  Google Scholar 

  • Lotfiomran N, Köhl M, Fromm J (2016) Interaction effect between elevated CO2 and fertilization on biomass, gas exchange and C/N ratio of European beech (Fagus sylvatica L.). Plants 5(3):38

    Article  PubMed Central  Google Scholar 

  • Mackinney G (1941) Absorption of light by chlorophyll solutions. J Biol Chem 140(2):315–322

    CAS  Google Scholar 

  • Mathur S, Kalaji HM, Jajoo A (2016) Investigation of deleterious effects of chromium phytotoxicity and photosynthesis in wheat plant. Photosynthetica 54(2):185–192

    Article  CAS  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51(345):659–668

    Article  CAS  PubMed  Google Scholar 

  • Medrano H, Tomás M, Martorell S et al (2015) From leaf to whole-plant water use efficiency (WUE) in complex canopies: limitations of leaf WUE as a selection target. Crop J 3(3):220–228

    Article  Google Scholar 

  • Meloni DA, Oliva MA, Martinez CA et al (2003) Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ Exp Bot 49(1):69–76

    Article  CAS  Google Scholar 

  • Monostori I, Heilmann M, Kocsy G et al (2018) LED lighting–modification of growth, metabolism, yield and flour composition in wheat by spectral quality and intensity. Front Plant Sci 9(605):1–16

    Google Scholar 

  • Monson RK, Rawsthorne S (2000) CO2 assimilation in C3–C4 intermediate plants. In: Leegood R, Sharkey TD, Caemmerer SC (eds) Photosynthesis. Springer, Dordrecht, pp 533–550

    Chapter  Google Scholar 

  • Muneer S, Kim E, Park J et al (2014) Influence of green, red and blue light emitting diodes on multiprotein complex proteins and photosynthetic activity under different light intensities in lettuce leaves (Lactuca sativa L.). Int J Mol Sci 15(3):4657–4670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nam MH, Heo EJ, Kim JY et al (2003) Proteome analysis of the responses of Panax ginseng CA Meyer leaves to high light: use of electrospray ionization quadrupole-time of flight mass spectrometry and expressed sequence tag data. Proteomics 3(12):2351–2367

    Article  CAS  PubMed  Google Scholar 

  • Nelson M, Allen J, Ailing A et al (2003) Earth applications of closed ecological systems: relevance to the development of sustainability in our global biosphere. Adv Space Res 31(7):1649–1655

    Article  CAS  PubMed  Google Scholar 

  • Ommen OE, Donnelly A, Vanhoutvin S et al (1999) Chlorophyll content of spring wheat flag leaves grown under elevated CO2 concentrations and other environmental stresses within the ‘ESPACE-wheat’project. Eur J Agron 10(3–4):197–203

    Article  Google Scholar 

  • Page V, Feller U (2016) Light intensity selectively influences the distribution and further redistribution of macro-and micronutrients in hydroponically grown wheat (Triticum aestivum L.). J Plant Nutr 39(3):428–437

    Article  CAS  Google Scholar 

  • Pan JQ, Guo BL (2016) Effects of light intensity on the growth, photosynthetic characteristics, and flavonoid content of epimedium pseudowushanense B.L. Guo. Molecules 21(11):1475

    Article  CAS  PubMed Central  Google Scholar 

  • Paunov M, Koleva L, Vassilev A et al (2018) Effects of different metals on photosynthesis: Cadmium and zinc affect chlorophyll fluorescence in Durum Wheat. Int J Mol Sci 19(3):787

    Article  CAS  PubMed Central  Google Scholar 

  • Poorter H, Nagel O (2000) The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: a quantitative review. Aust J Plant Physiol 27(6):595–607

    CAS  Google Scholar 

  • Poughon L, Farges B, Dussap CG et al (2009) Simulation of the MELiSSA closed loop system as a tool to define its integration strategy. Adv Space Res 44(12):1392–1403

    Article  CAS  Google Scholar 

  • Prasad PVV, Boote KJ, Allen LH Jr et al (2002) Effects of elevated temperature and carbon dioxide on seed-set and yield of kidney bean (Phaseolus vulgaris L.). Glob Change Biol 8(8):710–721

    Article  Google Scholar 

  • Sairam RK, Srivastava GC (2010) Water stress tolerance of wheat (Triticum aestivum L.): variations in hydrogen peroxide accumulation and antioxidant activity in tolerant and susceptible genotypes. J Agron Crop Sci 186(1):63–70

    Article  Google Scholar 

  • Schneider S, Ziegler C, Melzer A (2006) Growth towards light as an adaptation to high light conditions in Chara branches. New Phytol 172(1):83–91

    Article  PubMed  Google Scholar 

  • Sinha RK (2004) Photosynthesis. In: Sinha RK (ed) Modern Plant Physiology. CRC Press, Boca Raton, pp 176–255

    Google Scholar 

  • Somersalo S, Krause GH (1990) Photoinhibition at chilling temperatures and effects of freezing stress on cold acclimated spinach leaves in the field: a fluorescence study. Physiol Plant 79(4):617–622

    Article  CAS  PubMed  Google Scholar 

  • Spano G, Di Fonzo N, Perrotta C et al (2003) Physiological characterization of ‘stay green’mutants in durum wheat. J Exp Bot 54(386):1415–1420

    Article  CAS  PubMed  Google Scholar 

  • Stewart RRC, Bewley JD (1980) Lipid peroxidation associated with accelerated aging of soybean axes. Plant Physiol 65(2):245–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stutte GW, Mackowiak CL, Yorio NC et al (1999) Theoretical and practical considerations of staggered crop production in a BLSS. Life Support Biosph Sci 6(4):287–291

    CAS  PubMed  Google Scholar 

  • Taub DR, Miller B, Allen H (2008) Effects of elevated CO2 on the protein concentration of food crops: a meta-analysis. Glob Change Biol 14(3):565–575

    Article  Google Scholar 

  • Tikhomirov AA, Ushakova SA, Gribovskaya IA et al (2003) Light intensity and production parameters of phytocenoses cultivated on soil-like substrate under controled environment conditions. Adv Space Res 31(7):1775–1780

    Article  CAS  PubMed  Google Scholar 

  • Tilly N, Hoffmeister D, Cao Q et al (2014) Multitemporal crop surface models: accurate plant height measurement and biomass estimation with terrestrial laser scanning in paddy rice. J Appl Remote Sens 8(1):083671

    Article  Google Scholar 

  • Ushakova S, Tikhomirova N, Velichko V et al (2018) Analysis of the gas exchange and water balance in a closed experimental model of the artificial ecosystem intended for an estimated portion of a human. Acta Astronaut 152:105–111

    Article  CAS  Google Scholar 

  • Van Eerden FJ, Melo MN, Frederix PWJM et al (2017) Exchange pathways of plastoquinone and plastoquinol in the photosystem II complex. Nat Commun 8:15214

    Article  PubMed  PubMed Central  Google Scholar 

  • Walker BJ, Drewry DT, Slattery RA et al (2018) Chlorophyll can be reduced in crop canopies with little penalty to photosynthesis. Plant Physiol 176(2):1215–1232

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Xie B, Fu Y et al (2015) Effects of different elevated CO2 concentrations on chlorophyll contents, gas exchange, water use efficiency, and PSII activity on C3 and C4 cereal crops in a closed artificial ecosystem. Photosynth Res 126(2–3):351–362

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Liu H, Dong C et al (2016) Elevated CO2 enhances photosynthetic efficiency, ion uptake and antioxidant activity of Gynura bicolor DC. Grown in a porous tube nutrient delivery system under simulated microgravity. Plant Biol 18(3):391–399

    Article  CAS  PubMed  Google Scholar 

  • Wang N, Gao J, Zhang S (2017) Overcompensation or limitation to photosynthesis and root hydraulic conductance altered by rehydration in seedlings of sorghum and maize. Crop J 5(4):337–344

    Article  Google Scholar 

  • Ware MA, Belgio E, Ruban AV (2015) Photoprotective capacity of non-photochemical quenching in plants acclimated to different light intensities. Photosynth Res 126(2–3):261–274

    Article  CAS  PubMed  Google Scholar 

  • Weatherley PE (2006) Studies in the water relations of the cotton plant. New Phytol 49(1):36–51

    Article  Google Scholar 

  • Weiguo F, Pingping L, Yanyou W et al (2012) Effects of different light intensities on anti-oxidative enzyme activity, quality and biomass in lettuce. Hortic Sci 39(3):129–134

    Article  Google Scholar 

  • Wheeler RM (2017) Agriculture for space: people and places paving the way. Open Agric 2(1):14–32

    Google Scholar 

  • Xiong D, Douthe C, Flexas J (2018) Differential coordination of stomatal conductance, mesophyll conductance, and leaf hydraulic conductance in response to changing light across species. Plant Cell Environ 41(2):436–450

    Article  CAS  PubMed  Google Scholar 

  • Yi Z, Liu H, Fu Y, et al (2018) Study on the application effect of cold tolerant biocontrol agent Pseudochrobactrum kiredjianiae A4 in BLSS. In: Proceedings of the 42nd COSPAR Scientific Assembly, p 42

  • Zhang M, Cao T, Ni L et al (2010) Carbon, nitrogen and antioxidant enzyme responses of Potamogeton crispus to both low light and high nutrient stresses. Environ Exp Bot 68(1):44–50

    Article  CAS  Google Scholar 

  • Zhang J, Liu J, Yang C et al (2016) Photosynthetic performance of soybean plants to water deficit under high and low light intensity. S Afr J Bot 105:279–287

    Article  CAS  Google Scholar 

  • Zhang YJ, Sack L, Cao KF et al (2017) Speed versus endurance tradeoff in plants: leaves with higher photosynthetic rates show stronger seasonal declines. Sci Rep 7(42085):1–9

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (PR China, No. 31870852), and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuming Fu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 926 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, Z., Cui, J., Fu, Y. et al. Effect of different light intensity on physiology, antioxidant capacity and photosynthetic characteristics on wheat seedlings under high CO2 concentration in a closed artificial ecosystem. Photosynth Res 144, 23–34 (2020). https://doi.org/10.1007/s11120-020-00726-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-020-00726-x

Keywords

Navigation