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Abstract
Accurate modeling of site-specific crop yield response is key to providing farmers with 
accurate site-specific economically optimal input rates (EOIRs) recommendations. Many 
studies have demonstrated that machine learning models can accurately predict yield. 
These models have also been used to analyze the effect of fertilizer application rates 
on yield and derive EOIRs. But models with accurate yield prediction can still provide 
highly inaccurate input application recommendations. This study quantified the uncer-
tainty generated when using machine learning methods to model the effect of fertilizer 
application on site-specific crop yield response. The study uses real on-farm precision 
experimental data to evaluate the influence of the choice of machine learning algorithms 
and covariate selection on yield and EOIR prediction. The crop is winter wheat, and the 
inputs considered are a slow-release basal fertilizer NPK 25–6–4 and a top-dressed fer-
tilizer NPK 17–0–17. Random forest, XGBoost, support vector regression, and artificial 
neural network algorithms were trained with 255 sets of covariates derived from com-
bining eight different soil properties. Results indicate that both the predicted EOIRs and 
associated gained profits are highly sensitive to the choice of machine learning algorithm 
and covariate selection. The coefficients of variation of EOIRs derived from all possible 
combinations of covariate selection ranged from 13.3 to 31.5% for basal fertilization and 
from 14.2 to 30.5% for top-dressing. These findings indicate that while machine learning 
can be useful for predicting site-specific crop yield levels, it must be used with caution in 
making fertilizer application rate recommendations.

Keywords Economically optimal input rate · On-farm experimentation · Site-specific 
management · Variable-rate application · Winter wheat

Introduction

Site-specific crop management aims to use information about within-field variability of soil 
and topographic properties to increase farming profitability and sustainability. Understand-
ing of site-specific crop yield response facilitates effective site-specific crop management 
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(Bullock et al., 2019). Until recently, site-specific crop management was principally based 
on farmers’ and agronomists’ experiences and expectations about crop responses to agro-
nomic inputs. The expectations are based largely on inferences obtained from conventional 
small-plot trials that are presumed to represent what is occurring elsewhere. But these tri-
als are expensive and labor-intensive, and it may be inappropriate to draw inferences from 
small-plot trials to improve management across many farms (Bullock et al., 2019; Lacoste 
et al., 2022). In contrast, on-farm experimentations have a potential to provide more action-
able and practical insights to farmers as an alternative to small-plot trials.

Based on experimental data, process-based crop simulation models, such as APSIM 
(Holzworth et al., 2014), DSSAT (Hoogenboom et al., 2019), and WOFOST (Boogaard & 
de Wit, 2020) have been developed to understand the effects of crop management, soil, and 
weather on crop growth and final yield. Crop simulation models are basically point-based 
(Heuvelink et al., 2010). Spatialization of these models is of interest to precision agricul-
ture (PA) as it might contribute to optimizing site-specific crop management (Pasquel et 
al., 2022). However, spatialization of crop simulation models requires knowledge of site-
specific input application rates and model parameters that are difficult to estimate because 
of data scarcity. Environmental and agricultural models (e.g., crop simulation models) also 
suffer from error propagation as the uncertainty in model inputs influence the output (Cor-
ner et al., 2008; Heuvelink, 1998). Furthermore, crop simulation models can only predict 
potential, water-limited, or nutrient-limited yield, not the actual yield if other environmental 
variables not accounted for (e.g., weeds, insect pests, and disease) greatly affect yields (de 
Wit et al., 2019). Therefore, it is not straightforward to use crop simulation models for the 
purpose of optimizing site-specific input management.

On-farm precision experimentation (OFPE) is a form of on-farm experimentation that 
uses PA technology to generate large amounts of crop input application and yield response 
data. Such data can be used to estimate spatially variable optimal input application rates 
and thus improve site-specific decision making (Bullock et al., 2019). Combining OFPE 
and machine learning approaches is expected to present an opportunity to facilitate under-
standing of site-specific crop yield response (Bullock et al., 2019). Since the early stage in 
the development of site-specific crop management, a wide range of models (e.g., intuitive, 
stochastic, and machine learning models) has been proposed to support farmers’ decision on 
the rate and timing of fertilizer application at a given location (Adams et al., 2000). The use 
of various statistical approaches and machine learning algorithms is nowadays becoming a 
hot topic, but no consensus has been reached on which model is the best.

Many studies have demonstrated the advantages of using spatial statistical modeling 
methods, including geographically weighted regression (Evans et al., 2020; Trevisan et al., 
2021) and machine learning techniques, such as random forest (RF) (Krause et al., 2020; 
Paccioretti et al., 2021; Wen et al., 2021) and convolutional neural networks (Barbosa et 
al., 2020). Although Evans et al. (2020) and Trevisan et al. (2021) attempted to explic-
itly model the spatially variable crop yield responses, most of previous studies focused 
only on the accuracy of crop yield prediction. Kakimoto et al. (2022) demonstrated that a 
machine learning model that accurately predicts site-specific yield levels does not necessar-
ily accurately predict yield response and the associated site-specific economically optimal 
input rates (EOIRs) of fertilizer. They highlighted the distinction between predicting yield 
levels at observed input rates and estimating yield response to input. For site-specific input 
management recommendations, the latter is critical, but not necessarily the former. Estimat-
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ing site-specific EOIRs accurately requires that the causal relationship between agronomic 
inputs and crop yield be discovered accurately.

Covariate selection is an essential process in machine learning modeling. Using machine 
learning for yield prediction can underestimate the impact of nitrogen fertilizer (N) on crop 
yields and EOIRs because of the inclusion of redundant or strongly correlated covariates 
(Kakimoto et al., 2022). Estimation of the impact of input on yield may also be biased when 
an important covariate is not included. With the increased adoption of PA technologies in 
commercial farms, there are numerous possibilities for selecting covariates (e.g., elevation 
data, satellite imagery, on-the-go soil sensor data, and digital soil maps) in establishing a 
yield prediction model for OFPE. Selecting only influential covariates may be a gold stan-
dard in establishing models, but rarely can practitioners identify and quantify the complete 
set of covariates contributing to yield variability. Previous studies have paid very little atten-
tion to the sensitivity of the quality of fertilizer management recommendations to different 
machine learning approaches.

Many studies have used synthetic data to compare the effects of machine learning algo-
rithms, covariate selection, and experimental design on yield and EOIR prediction accura-
cies (Alesso et al., 2020; Kakimoto et al., 2022; Saikai et al., 2020). To assess the prediction 
accuracy of site-specific crop yield response modeling, synthetic data can be generated 
using crop yield response functions, such as process-based crop simulation models (e.g., 
APSIM) and mechanistic models (e.g., the Mitscherlich-Baule function). Synthetic data 
can simulate ‘true’ crop yield response, which enables validating EOIR prediction accuracy. 
One of the shortcomings of synthetic data is that the spatial distribution of yield and yield-
limiting factors are generated based on simple assumptions. Although previous studies have 
considered random noise (e.g., the nugget effect), real farms have more artifacts, such as 
wheels, overlaps, missing strips of inputs, and further historical land uses (Roques et al., 
2022; Zhou et al., 2022). Therefore, synthetic data cannot fully represent the real-world 
conditions, and may not be capable of providing fair insights into the model uncertainty in 
machine learning approaches to the analysis of OFPE data.

The aim of this study was to quantify the uncertainty involved in modeling the inclusion 
of the application rates of two fertilizers and soil properties as covariates in a machine learn-
ing model of site-specific crop yield prediction, and to examine how the model uncertainty 
quantitatively affects the estimation of site-specific EOIRs and gained profits. An OFPE 
was conducted in Japan to assess the effects of soil properties and application rates of basal 
and top-dressed fertilizer on winter wheat yield. Site-specific crop yield response models 
were established using different combinations of machine learning algorithm and covariate 
selection. Site-specific EOIRs were derived for each of these combinations. A frequency 
distribution of the estimated EOIRs and gained profits was further assessed as a measure of 
model uncertainty.

Materials and methods

Experimental design and data collection

A split-plot or checkerboard OFPE (Fig. 1) was implemented in 2019–2020 Gifu, Japan 
(35°11’N, 136°39’E) to measure the effects of changing fertilizer application rates on the 
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yield of the ‘Satonosora’ wheat variety. The trial was conducted in cooperation with the 
Japanese farming company Fukue-eino, which owned the variable-rate application and 
yield monitoring equipment. In the first OFPE season, a checkerboard design was not 
implemented across all fields because the farmer was not convinced that the rate transition 
between plots could be achieved smoothly. Therefore, a split-plot design was implemented 
for the rest of the fields. Just before seeding (early November), a slow-release basal fertilizer 
NPK 25–6–4 was applied at rates of 0, 270, 360, 450, and 540 kg ha− 1. Before the booting 
stage (early March, Zadoks 41), NPK 17–0–17 was top-dressed at rates of 0, 222, 296, 370, 
and 444 kg ha− 1. The number of plots receiving no fertilizer was limited due to the risk of 
yield loss. A variable-rate fertilizer broadcaster with an 18-m working width (Axis 40.2, 
Kuhn, France) was used for both applications. All other managements (e.g., disease and 
weed control) were uniform. No serious disease and weed problems were observed. Yield 
data were collected using a combine harvester with a yield monitor sensor (WRH1200, 
Kubota, Japan). Although the combine had a 2.6-m header width, after data preprocessing 
based on the manufacturer’s recommended procedures yield values were averaged to obtain 
single values for each 5 m x 5 m cell within a grid. Cells in “transition zones” at the begin-
nings and ends of trial plots, in headlands and/or in buffer zones around the field’s perimeter 
were excluded from further analysis. The resulting dataset used for analysis contained 970 
observations at 5 m x 5 m spatial resolution.

Soil properties were used as covariates to perform site-specific crop yield response 
assessment. In mid October 2019, prior to the basal fertilizer application, a total of 52 soil 
samples were collected near the centroids of a 30 m x 30 m grid defined over the field. 
Within a 1 m2 area over the centroid of each soil sampling grid cells, three randomly located 
partial surface soil samples (0–150 mm) weighing approximately 0.5 kg each were col-
lected and mixed to produce one composite sample. The composite samples were air-dried 
and sieved through a 2.0-mm mesh before chemical analysis. Soil pH, electrical conduc-
tivity (EC), mineralizable N, available phosphorus (P), cation exchange capacity (CEC), 
exchangeable calcium (Ca), exchangeable magnesium (Mg) and exchangeable potassium 
(K) were measured. Mineralizable N was determined according toInoko’s (1986) method. 
Soils were anaerobically incubated at 30 °C for four weeks, and inorganic N was extracted 
with a 2 M KCl solution. The concentrations of NH4

+ and NO3
− in the extracts were deter-

mined using the indophenol method (Keeney & Nelson, 2015) and the Cataldo method 
(Cataldo et al., 1975). Mineralizable N was calculated by balancing the inorganic N (NH4

+ 

Fig. 1 Experimental design of the on-farm precision experiment. White space represents borders (e.g., 
transition zones and headlands). The numerals beside the X marks show the six randomly selected loca-
tions from which data were obtained to create scatterplots and histograms of the EOIRs of the basal NPK 
25–6–4 and top-dressed NPK 17–0–1 fertilizers (Fig. 7)
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and NO3
−) before and after anaerobic incubation. Available P was measured by the Truog 

method (Truog, 1930). Cation exchange capacity was measured by saturating the soil with a 
neutral 1 mol L− 1 ammonium acetate solution, washing with 80% ethanol to remove soluble 
NH4

+, and extracting exchangeable NH4
+ with 2 mol L− 1 KCl. The concentrations of Ca, 

Mg, and K were determined by inductively coupled plasma atomic emission spectroscopy 
(ICP-AES, ULTIMA 2, HORIBA, Japan).

Interpolation of soil sample property values

Because the 5 m x 5 m resolution of the dataset’s grid was finer than the 30 m x 30 m resolu-
tion of the soil sampling grid, soil property measurements taken from samples pulled near 
the centroids of the 30 m x 30 m cells had to be spatially interpolated to assign values at the 
centroids of the 5 m x 5 m cells. Interpolated values were calculated using the ‘geoR’ pack-
age (Ribeiro & Diggle, 2001) of R version 3.6.2 (R Development Core Team, 2019) and 
applying the empirical best linear unbiased prediction (E-BLUP) method (Lark et al., 2006). 
Box–Cox transformation (Box & Cox, 1964) was applied prior to geostatistical modeling 
when the distribution of the observations was highly skewed, and predicted mean values 
from the E-BLUP were back-transformed. The Matérn covariance function (Webster & Oli-
ver, 2007) and the restricted maximum likelihood estimator were used for estimation of the 
semi-variogram parameters. The resultant interpolated soil maps are presented in S1. Since 
covariate values were smoothed using kriging with external drift, they also had interpola-
tion errors (S2). Interpolation errors were evaluated as the coefficients of variance (CV) by 
dividing the kriging standard deviation by the kriging prediction.

Data analysis

Four machine learning regression models, RF, XGBoost, support vector regression (SVR), 
and artificial neural network (ANN) were trained with different combinations of covariates 
to model site-specific yield responses to the fertilizers. RF and SVR were implemented 
using the Python module ‘scikit-learn’ (version 1.1.1) (Pedregosa et al., 2011). XGBoost 
was implemented with xgboost (version 1.5.1) (Chen & Guestrin, 2016). ANN was imple-
mented using the Keras (version 2.9.0) machine learning application programming interface 
(Chollet, 2015) with the TensorFlow (version 2.9.0) (Abadi et al., 2015) backend.

All 255 possible combinations (i.e., 28 − 1) that can be made from using between one 
and eight soil properties as covariates were included in the estimations, for each of the four 
machine learning algorithms, meaning that a total of 1,020 cases were examined. Because 
the study area was relatively small, spatial differences in weather and other environmental 
factors were assumed negligible and excluded from the analysis. Of course, the inference 
space of the experiment should not be assumed to be expandable beyond the field itself. 
Further research with real-world large-scale experiments is needed to test the robustness of 
the results reported.

The dataset’s 970 observations were randomly split into a 679 observations training data-
set and a 291 observations test dataset. Hyperparameters of RF and SVR were determined 
by grid search with a five-fold cross-validation using the training dataset. This procedure 
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was repeated three times with different subsets. Then models were retrained with an optimal 
hyperparameter using the training dataset. For RF, grid searches were performed to optimize 
the n_estimators (the number of decision trees). For SVR, grid searches were conducted to 
optimally assign values to parameters C and ε. The ANN architecture involves three hidden 
layers. The input layer was fed into a rectified linear unit (ReLU) layer with 64 neurons, 
followed by batch normalization. The batch normalization layer was fed into the ReLU 
layer with 128 neurons, followed by the ReLU layer with 128 neurons again. Finally, the 
fully-connected ReLU layer with 128 neurons was fed into an output layer with a linear 
activation function. According to a preliminary experiment, the model performance of ANN 
did not largely depend on the architecture, and three to four layers and 32–128 neurons were 
sufficient to model crop prediction. To avoid over-fitting, early stopping was used to monitor 
validation loss with a ten epochs of patience. 30% of the training dataset was used to cal-
culate the validation loss for ANN. For both the training and test datasets, model prediction 
accuracies were evaluated by root mean square error (RMSE) and R2.

In this study, model uncertainty refers to the variability in EOIR and gained profit that are 
predicted from different model algorithms and covariates. To evaluate site-specific uncer-
tainty in decision making for fertilizer application among the selection of algorithms and 
covariates, site-specific EOIRs were calculated by treating the predicted values from the 
models as deterministic outcomes. First, site-specific net revenue ($ ha− 1) was defined as,

 ∆ri = p × yi − wBF × BFi − wTF × TFi  (1)

where p = $1.16 kg–1 (136.8 JPY kg–1) is the price of wheat grain, yi is the model’s predicted 
wheat grain yield at location i, wBF = $1.58 kg–1 (187.0 JPY kg–1) is the basal fertilizer price, 
BFi is the basal fertilizer application rate at location i, wTF = $0.60 kg–1 (71.2 JPY kg–1) is 
the top-dressing fertilizer price, and TFi is the top-dressing fertilizer application rate at loca-
tion i. Prices were obtained from the farmer in the corresponding year.

To assess EOIR estimation robustness, fertilizer application rates were optimized by run-
ning the model at intervals of 5 kg ha− 1 (basal fertilizer: 1.25 kg N ha− 1, 0.30 kg P2O5 
ha− 1, 0.20 kg K2O ha− 1; top-dressing fertilizer: 0.85 kg N ha− 1, 0.00 kg P2O5 ha− 1, 0.05 
K2O ha− 1) with other values of soil property covariates unchanged. Application rate ranges 
were 270–540 kg ha–1 and 222–444 kg ha–1 for the basal and top-dressing fertilizers. Rates 
less than the minimum application rates were not tested because of the limited number 
of experimental plots receiving no fertilizer. According to the information of a local crop 
advisory service, N and K were assumed to limit crop yield across the fields because the 
interpolated values were smaller than the recommended ranges (S1). Therefore, the machine 
learning models might assess the effect of multiple nutrients, such as N and K on crop 
yield. To explore the robustness of the site-specific EOIR estimations, mean values and CVs 
were calculated for each experimental grid. CVs were evaluated by the ratio of the standard 
deviation to the mean either from all combinations of algorithm and covariate selection 
(n = 1,020) or from combinations of covariates for each algorithm (n = 255) for each experi-
mental grid. Six locations were randomly selected for visualizing the distributions of the 
basal and top-dressing EOIRs (Fig. 1). Furthermore, gained profits by adopting optimal 
site-specific fertilization were evaluated by subtracting the net revenue under the uniform 
conventional rate (i.e., 450 and 370 kg ha–1 for the basal and top-dressing fertilizers) from 
the net revenue under the optimal site-specific fertilization rate.

1 3



Precision Agriculture

Results

Results of on-farm precision experiment and yield prediction performance

The relationships between yield and inputs are shown as box plots in Fig. 2. Yield tended 
to increase with basal fertilizer rates. The median value of yield was extremely low when 
no top-dressing fertilizer was applied. There were no large differences in yield among the 
top-dressing application rates from 222 to 444 kg ha–1. This indicates the importance of 
OFPE for recommending basal fertilizer application rates rather than top-dressing applica-
tion rates. Furthermore, high variations for each treatment indicate that yield responses can 
vary substantially, even within a small area.

Both the RMSE and R2 values of the test dataset indicated that RF had the best yield pre-
diction performance (Fig. 3). Although XGBoost generally showed high prediction accura-
cies, there were some cases with very high RMSEs (> 0.5 h ha–1) and low R2 values (< 0.2). 
SVR and ANN were not capable of predicting yield values more than approx. 4.0 t ha–1 
(Fig. 4). Meanwhile, RF and XGBoost underestimated yield values more than approx. 4.5 t 
ha–1. This result indicates that the difference in yield underestimation in the ranges of high 
yield might affect overall yield prediction accuracies. All models failed to predict extremely 
high yield values (> 6 t ha–1). This might be due to the lack of important covariates that is 
related to high yield values. Importantly, the inaccuracies of yield prediction could lead to 
underestimation of EOIRs in high yield levels.

Fig. 2 Box plots of yield for each application rate for basal and top-dressing fertilizers across the fields. 
Lower and upper box boundaries indicate 25th and 75th percentiles. Lines inside boxes represent medi-
ans. The ranges between the lower and upper whiskers are 1.5 times the interquartile range. Filled circles 
show outliers falling outside 1.5 times the interquartile range
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Variability in EOIRs and gained profits

CV values of the EOIRs were spatially heterogeneous (Fig. 5) for all covariate combi-
nations using all machine learning algorithms, ranging from 13.3 to 31.5% for the basal 
and from 14.2 to 30.5% for the top-dressing fertilizer. Spatial distributions of EOIR CV 
values for each machine learning algorithm are shown in Fig. 6. RF was not sensitive to 
covariate selection, while SVR and ANN were very sensitive to it. However, this study did 
not attempt to identify which machine learning models were best for generating economic 
profits. Indeed, doing so is not possible since the true EOIRs, which are needed to validate 
the model performance, cannot be directly observed. Therefore, it should not be concluded 
that RF is the best machine learning model for optimizing site-specific input management.

Spatial distributions of mean values of the EOIRs varied greatly among machine learning 
algorithms (Fig. 7). For both fertilizers, recommended application rates from the tree-based 
models RF and XGBoost were less spatially heterogeneous and relatively lower than those 
from SVR and ANN. For example, for basal fertilizer, the estimated EOIRs ranged from 
270 to 427 kg ha–1 for RF. In contrast, the corresponding range was from 348 to 538 kg ha–1 
for ANN. This result indicates that crop yield response can vary substantially even within a 
small area according to the algorithm selection.

Fig. 3 Histograms of RMSE and R2 values for all four machine learning models with different combina-
tions of covariates
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Fig. 5 Spatial distributions EOIR CV values, resultant from the combined effects of algorithm and covari-
ate selection

 

Fig. 4 Density scatter plots of predicted against observed yield for all four machine learning models with 
different combinations of covariates. The black line indicates the 1:1 reference line
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Figure 8 shows the scatterplots and histograms of estimated EOIRs from all the 1,020 
cases at the six locations (See Fig. 1). The 5th- and 95th-percentile borders (indicated by the 
dashed lines in Fig. 8) show that the EOIRs for both fertilizers had large variations. More 
specifically, the interval of values containing the central 90% of EOIRs ranged almost from 
the lowest to highest applied rates for top-dressing fertilizer. Furthermore, a clear unimodal 
distribution was found only for the basal fertilizer at location (1) In contrast, a bimodal dis-
tribution was evident for basal fertilizer at locations 3 and 4 and for top-dressing fertilizer 
at locations 1 and (2) In these cases, decision makers would be forced to make an extreme 
choice between the lowest and highest fertilizer application rates, which could ultimately 
result in a completely different revenue. These results indicate that the EOIR predictions are 
highly sensitive to algorithm and covariate selection, and that simple averaging methods, 
such as the ensemble learning approach may not provide reliable recommendations. The 
high model uncertainty begs the question of whether machine learning approaches can be 
used effectively for site-specific input management.

The estimated gained profits (relative to the uniform input management) ranged from 150 
to 660 $ ha–1 depending on selected algorithms and covariates (Fig. 9). RF and XGBoost 
occasionally showed extremely high gained profits. ANN showed lower gained profits and 
higher uncertainty than other models. SVR showed a lower uncertainty in predicted gained 
profits. Thus, gained profits predicted by machine learning approach are quite sensitive to 
algorithm and covariate selection.

Fig. 6 Spatial distributions of EOIR CV values derived from 255 covariate combination runs per combi-
nation of machine learning algorithm and fertilizer type
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Discussion

Precise yield prediction and estimation of the causal effects of inputs are essential for the 
successful implementation of site-specific crop management supported by OFPE. Gener-
ally, researchers prefer to select the ‘best’ model based on the metrics of yield prediction 
accuracies, such as RMSE, mean absolute error, and R2 values (Barbosa et al., 2020; Wen 
et al., 2021). But this study has provided valuable information about the impacts of algo-
rithm and covariate selection on fertilization rate management. Overall, machine learning 
models can predict crop yield well based on RMSE and R2 values (Figs. 3 and 4). But each 
machine learning model showed very different EOIR predictions even within a small area 
(Fig. 7). Predicted site-specific EOIRs were very sensitive to the choice of algorithm and 
selection of covariates (Figs. 5, 6 and 8). These results highlight that practitioners need a 
careful consideration of model uncertainty before providing decision makers with fertilizer 
management recommendations.

The reason that the CV values of EOIRs are not constant in space (Figs. 5 and 6) must be 
because soil properties are not constant in space (S1), as that is the only input that spatially 
varies. There are also other factors that influence spatial variability of EOIRs. For instance, 
spatial variability in established seedlings significantly affect yield (Tanaka et al., 2019), 

Fig. 7 Spatial distributions EOIRs mean values, for each machine learning algorithm
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Fig. 8 Scatterplots and histograms of EOIRs of the basal and top-dressing fertilizers in six randomly 
selected locations (Fig. 1). Data derived from all combinations of algorithms and covariate selection 
(n = 1,020). Dashed lines in scatterplots represent borders of the 5th and 95th quantiles
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while locations that were trenches before land consolidation had approx. 1.0 t ha–1 lower 
yield than the other parts of the study area, probably due to differences in temporal change in 
soil moisture conditions (Zhou et al., 2022). However, it is not practical to conduct manual 
counting of seedlings or to install soil moisture sensors across fields in order to include 
these factors in the crop yield response modeling. Given the expense of data collection 
for OFPE, remotely or proximally sensed data might be useful to develop better machine 
learning models. Although causal factors affecting crop yield could not be identified, either 
of in-season crop sensing or historical yield map might also enable explaining the pattern 
of yield response. Given a better management strategy might be established by combining 
multiple information, it might be necessary to include not only soil data but also in-season 
and previous proximal/remote sensing data as covariates in crop yield response modeling.

Insufficient consideration on model uncertainty may lead to making highly undesirable 
input use decisions. The binominal distribution having two peaks at the lowest and highest 
application rates were found at several locations (Fig. 8), indicating large uncertainty about 
the effect of fertilizer application on yield. Given little crop yield response to top-dressing 
fertilizer at the high rate of basal fertilizer (Fig. 2), the highest top-dressing application rates 
could lead to considerable revenue loss. Although basal fertilizer is a main determinant of 
yield variation, topdressing fertilizer might be a nuisance covariate for the yield prediction 
model. Thus, not only outcomes from machine learning but also supplement insights from 
agronomic knowledge might be important for a sensible EOIR recommendations.

High uncertainty in gained profits was evident depending on model and covariate selec-
tion (Fig. 9). For instance, the estimated gained profits ranged from 150 to 660 $ ha–1. This 
has major implications on the analysis of cost-benefit performance of PA technology, which 
in turn affects adoption decision of new technology. Previous studies evaluated either of 
farming scales or seasons that is necessitated for recovering the purchase cost of variable-
rate application equipment (Maine et al. 2010; Tanaka et al., 2023a). In such cases, model 
uncertainty will affect decision making not only on fertilization but also on the adoption of 
variable-rate application equipment. ANN had higher uncertainty and lower gained profits. 
This indicates that ANN provided a more pessimistic and conservative scenario than other 
models. Therefore, it should be noted that each model tends to provide different uncertainty 
and recommendation in assessing gained profits. In practice, researchers tend to use only 

Fig. 9 Histograms of gained profits of entire simulations (n = 1,020) and each algorithm (n = 255)
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one model. But this is not without risk, since different models produce different results and 
lead to different recommendations. Thus, it seems to be reasonable to use ensemble learning 
approach. However, as discussed in the case of site-specific EOIR predictions, ensemble 
learning approach might not be able to enhance prediction accuracy for the causal impact 
derived from the yield prediction models because the predicted EOIR showed a completely 
different recommended application rate (i.e., either of lowest or highest input rates) (Fig. 8). 
Practitioners should keep it mind that ensemble learning might be helpful to assess the 
model uncertainty, but resultant recommendations should not simply be derived from the 
average.

This study focused only on the effect of model and covariate selection on spatial uncer-
tainty in the EOIRs for fertilizer recommendation. But there are also other sources of uncer-
tainty that deserve attention in future research. For instance, the CV value of exchangeable 
K was not small (approx. 27%) (S2), indicating substantial uncertainty in model input. 
While spatial interpolation of soil properties based on geostatistics has been common in pro-
ducing digital soil maps (Heuvelink & Webster, 2022), it may lead to interpolation errors. If 
crop yield response models were linear in the soil input, propagation of interpolation errors 
in digital soil maps could be obtained by simple error propagation rules (Taylor, 1982), but 
that simple approach is not available for non-linear machine learning models. Due to the 
high computational cost of Monte Carlo uncertainty propagation methods, this study did 
not pursue this topic but instead focused on the effect of algorithm and covariate selection 
on prediction uncertainty. Further study might be needed to explore the effect of machine 
learning covariate uncertainty on EOIRs and profit prediction.

To train machine learning models, 970 observations with up to eight covariates were 
used in this study. The data size seemed to be sufficient to achieve the accurate predic-
tion accuracy of site-specific yield levels (Figs. 3 and 4). However, this study used only 
small-scale on-farm experimental data. The sensitivity of the model uncertainty to the size 
of the training dataset should be explored in future studies. The differences in predicted 
EOIRs and profits between model algorithms will be smaller if the training dataset is large. 
Furthermore, not only spatial but also temporal uncertainty would be essential to consider 
for better fertilizer recommendation. This study only used annual real on-farm data, while 
it is difficult to repeat the experiments at the same site for multiple years due to the con-
straint in the real farm situation. Synthetic data generated by mechanistic models (e.g., the 
Mitscherlich-Baule function) are not capable of simulating the impact of weather on crop 
yield. Therefore, a possible solution for the data scarcity problem is to integrate geosta-
tistical simulation and crop simulation model to simulate space-time variability in crop 
yield (Tanaka et al., 2023b). A surrogate model consisting of a machine learning model 
trained with synthetic data from a crop simulation model has been proposed to combine 
biophysical domain knowledge of crop simulation models with data-driven machine learn-
ing approaches (Pylianidis et al., 2022). Therefore, integration of Gaussian simulation, crop 
simulation model, and machine learning approach would provide a chance to assess the 
space-time model uncertainty.
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Conclusions

OFPE are frequently conducted to generate data for the estimation of site-specific crop yield 
response models. Interest is growing in employing machine learning algorithms to identify 
spatially heterogeneous and non-linear relationships between agronomic inputs and crop 
yield. Research has shown that EOIR and gained profit prediction were very sensitive to 
the selection of machine learning algorithm and covariates. Furthermore, yield response to 
fertilization could vary substantially from site to site, even in a small area. This might be 
due to the model uncertainty derived from algorithm and covariate selection. These results 
highlight the difficulty of providing reliable site-specific input application rate recommen-
dations based on one specific machine learning algorithm and one specific set of covariates. 
Note that the outcomes of this study were based on small-scale on-farm data conducted in a 
single season. Further research with data analysis from large-scale OFPEs or synthetic data 
generated by process-based models should be oriented towards exploring causal inference, 
thus supporting deriving accurate and robust EOIR predictions.
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