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Abstract
Optical sensors, mounted on uncrewed aerial vehicles (UAVs), are typically pointed 
straight downward to simplify structure-from-motion and image processing. High horizon-
tal and vertical image overlap during UAV missions effectively leads to each object being 
measured from a range of different view angles, resulting in a rich multi-angular reflec-
tance dataset. We propose a method to extract reflectance data, and their associated dis-
tinct view zenith angles (VZA) and view azimuth angles (VAA), from UAV-mounted opti-
cal cameras; enhancing plant parameter classification compared to standard orthomosaic 
reflectance retrieval. A standard (nadir) and a multi-angular, 10-band multispectral dataset 
was collected for maize using a UAV on two different days. Reflectance data was grouped 
by VZA and VAA (on average 2594 spectra/plot/day for the multi-angular data and 890 
spectra/plot/day for nadir flights only, 13 spectra/plot/day for a standard  orthomosaic), 
serving as predictor variables for leaf chlorophyll content  (LCC), leaf area index  (LAI), 
green leaf area index  (GLAI), and nitrogen balanced index (NBI) classification. Results 
consistently showed higher accuracy using grouped VZA/VAA reflectance compared to 
the standard orthomosaic data. Pooling all reflectance values across viewing directions did 
not yield satisfactory results. Performing multiple flights to obtain a multi-angular data-
set did not improve performance over a multi-angular dataset obtained from a single nadir 
flight, highlighting its sufficiency. Our openly shared code (https://​github.​com/​ReneH​eim/​
proj_​on_​uav) facilitates access to reflectance data from pre-defined VZA/VAA groups, 
benefiting cross-disciplinary and agriculture scientists in harnessing the potential of multi-
angular datasets.
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Introduction

In agriculture, plant breeding, and crop science, structural and biochemical plant traits are 
collected and analyzed to understand and improve crop performance, yield, and overall 
crop quality (Herrmann & Berger, 2021). Mapping fields with remote sensing technolo-
gies, such as uncrewed aerial vehicles (UAVs), has shown a reduction in sampling time and 
produced good estimates of plant traits at the field scale in comparison to random manual 
sampling. For example, to predict yield and productivity, the leaf area index (LAI) is a 
widely applied measure in vegetation remote sensing (Fang et al., 2019; Hilty et al., 2021). 
There is a strong relationship between LAI, green LAI (GLAI), plant nitrogen and chloro-
phyll content (Gitelson et al., 2014). Plants with higher LAI tend to have higher nitrogen 
and chlorophyll content, which can result in increased photosynthesis and plant produc-
tivity. Optical remote sensing methods have been proven useful to obtain key biophysical 
variables such as LAI, leaf chlorophyll content (LCC), leaf nitrogen content (LNC), as the 
interaction of radiation with vegetation depends on its structural and biochemical proper-
ties (Asner et al., 2003; Gitelson et al., 2014; Houborg & Boegh, 2008; Schaepman et al., 
2005; Schaepman-Strub et al., 2006; Schlemmer et al., 2013).

When using optical UAV remote sensing in crop research, it has become standard to 
collect plant trait information with sensors facing straight down. However, this habit is lim-
iting the information potentially to be gained from a UAV mission. Several studies have 
suggested to include imagery from different viewing angles to better capture the three-
dimensional structure of plants (Asner et al., 1998; Burkart et al., 2015; He et al., 2020; 
Li et al., 2021a, 2021b, 2021c; Roosjen et al., 2018). Burkart et al. (2015) were one of the 
first to use a UAV and a non-imaging spectrometer to study angular effects and found sig-
nificant variations in various spectral vegetation indices. They highlighted the necessity of 
considering angular effects in optical sensors when assessing vegetation.

The prediction of plant canopy properties, such as LAI, canopy height, and canopy 
clumping, have been improved by Roosjen et al., (2017, 2018) using a 2D imaging system 
to collect a multi-angular and a nadir dataset. They harnessed the high overlap between 
adjacent images, resulting in objects on the ground being viewed in multiple different 
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images. By inversion of the PROSAIL radiative transfer model (Jacquemoud et al., 2009), 
they showed that multi-angular data performed better than inversion based on nadir data for 
estimating LAI and LCC. In a study by Li et al. (2021b), RGB data at close range were col-
lected using a custom-built buggy at view zenith angles of 0° and 45°, resulting in a multi-
angular dataset for estimating wheat (Triticum aestivum L.) leaf parameters. The multi-
angular data yielded improved results by allowing more plant parts to be represented by a 
denser and more detailed point cloud. Another study (He et al., 2020) utilized close-range 
hyperspectral data obtained with a handheld spectroradiometer. The data were grouped 
based on view zenith angles (VZA) ranging from − 60° to + 60°, aiming to estimate LAI in 
winter wheat. Results indicated the red-edge region’s pivotal role in LAI estimation when 
viewed from the nadir direction, with predictive ability decreasing as the view zenith angle 
increased. This type of data has thus been recognized as a promising resource in precision 
agriculture.

The previously mentioned studies often used handheld spectrometers and small ter-
restrial vehicles to capture multi-angular data. However, using aerial imagery from UAVs 
promises a less labor-intense and more  holistic collection of data. The standard flight 
plan for UAV missions  usually captures neighboring images with high overlap to allow 
for effective scene reconstruction by structure-from-motion. This results in a set of images 
where each point/pixel on the ground is seen from up to 40 different viewing angles (Roos-
jen et al., 2017). The range of reflectance values from the associated combination of VZAs 
(0°–90°) and view azimuth angles (0°–360° or -180°–180°) depends on the field of view 
of the camera system and the heading of the UAV. Both can be controlled with a gimbal 
mounted on the UAV and by setting a heading direction in the mission planning software. 
However, even when the camera is facing downward, only the center pixel is capturing 
reflectance signals at 0° VZA (i.e., nadir position). The VZA of the other pixels in the 
scene increases as the distance from the pixel to the image center increases. Different com-
binations of VZA and view azimuth angles (VAA) result in different intensities and shapes 
of the associated spectral signal (Burkart et al., 2015; Escadafal & Huete, 1991).

This variation of intensity and shape is complicating the generation of maps by struc-
ture-from-motion (Hardin & Jensen, 2011; Seifert et al., 2019). Therefore, off-nadir view-
ing angles are usually removed or corrected for airborne remote sensing. In the case of 
structure-from-motion algorithms used for UAV image processing, the algorithms typi-
cally select the most nadir-facing pixels for the final orthomosaic (Hardin & Jensen, 2011). 
While the removal of oblique angle information simplifies photogrammetric processes, the 
reflectance information from such observation angles is also removed and cannot be used 
anymore to analyze plant canopies and their biochemical and structural properties (Roosjen 
et al., 2018; Roth et al., 2018).

Despite some studies using multi-angular datasets, the current standard in UAV remote 
sensing is still using photogrammetrically orthorectified image products that are blended 
from the entire range of images collected during the UAV mission. During image blending, 
pixels that are part of the overlapping areas of two or more individual images are chosen 
based on different selection rules. A weighted average of pixel values in the overlapping 
areas are usually used to avoid transition lines, and maximum/minimum intensity blending 
giving preference to the highest/lowest intensity in the overlap areas (Agisoft LLC, 2022). 
However, concerns have been raised that blending of pixels potentially changes the original 
values from the raw images (Wang et al., 2020). None of these blending methods provide 
the option to select values that were derived from a specific range of VZAs or VAAs. But 
selecting specific viewing angles might be relevant for tasks such as estimating LAI. It 
is also known that leaf orientation differs across plant species and has a drastic influence 
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on the reflectance signal (Müller-Linow et  al., 2015). Therefore, it would be useful to 
select specific and optimal VZA-VAA angle combinations to capture plant canopies and 
leaves from an intentional perspective. Eventually, current standards in UAV photogram-
metry workflows result in a single orthomosaic which is used to extract plant trait informa-
tion. Inevitably, this reduces the wealth of observation angles to a single observation per 
pixel, thus discarding possibly relevant data.

The purpose of this study is to investigate the added value of moving beyond the stand-
ard UAV image processing approach. First, a method to effectively leverage all available 
reflectance data, incorporating both VZA and VAA in the captured imagery is presented. 
The method allows selection and extraction of sample areas based on a target coordinate. 
This way, informative reflectance data is not discarded during orthomosaic generation. 
Next, the method is applied in a case study on maize (Zea mays). Therefore, multispectral 
reflectance data was collected over two consecutive days to classify LAI, GLAI, LCC, and 
a proxy-metric for leaf nitrogen, the nitrogen-balanced index (NBI). The  current knowl-
edge  is advanced, by outlining that multi-angular reflectance data can also be used for 
classification problems and not only for radiative transfer modelling, as shown in previ-
ous studies. The first  research hypotheses states that (i) incorporating distinct VZA and 
VAA reflectance groups will improve classification compared to the standard orthomosaic 
approach. Further, it is hypothesized that (ii) a standard nadir flight already provides suf-
ficient viewing angles for an accurate classification without the need for additional flights, 
to further increase the range of viewing angles. Before testing the hypotheses, it is assessed 
which ground sampling distance is most suitable for the analysis.

According to our knowledge, no previous study has provided such a detailed assessment 
of a multi-angular, multispectral UAV reflectance dataset while openly providing the anal-
ysis and method for editing, reuse, and interdisciplinary transfer. The available code will 
allow users to extract reflectance signatures from all available viewing angles contained in 
their data.

Methods

Experimental site

In September 2020, a multivariate dataset was collected for a 4-hectare maize field (Zea 
mays) on the experimental farm Bottelare (Lat = 50.95746, Lon = 3.76629) of Ghent Uni-
versity in East Flanders, Belgium (Fig. 1). This field had a loamy sand soil with low organic 
content and moderate to high permeability (www.​geopu​nt.​be). The region has a temperate 
oceanic climate with no dry season, warm summers, and a frost-free period of approxi-
mately 199 days. The mean temperature is recorded as 11.0 °C, the average elevation is 
~ 60 m, and precipitation is about 786 mm per year. The maize was at a late reproductive 
growth stage and close to maturity. A nitrogen treatment trial was established in this field. 
The nitrogen treatment caused variations in NBI, LAI, GLAI, and LCC. The details of the 
nitrogen experiment were confidential but are not required to answer the research questions 
of this study.

To select the sample sites within the nitrogen experiment, we first classified the differ-
ent plots in low, medium, and high growth vigor based on the Enhanced Vegetation Index 
(Huete et al., 2002) and the Normalized Difference Vegetation Index (Rouse et al., 1974) 
that were extracted from an initial flight mission to survey the site. We then selected 26 

http://www.geopunt.be
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sampling points. From each of these points a range of reference data and remote sensing 
signals were collected as outlined below, spread evenly across the different growth vigor 
classes. A precision GNSS (R8s, Trimble, Sunnyvale, California, United States) was used 
to identify each sampling point precisely in the field.

Ground reference data

For each sampling point, the NBI, LCC, LAI and GLAI were measured  from the three 
plants closest to the established plot coordinate. The sampling was conducted on Septem-
ber 9 and 10, 2020 and serves as ground reference data for the UAV campaign.

The LCC and NBI were measured at 30 different points on different upper leaf sur-
faces for the top-, mid-, and lower third along the vertical axis of the three sampled plants 
using a Dualex leafclip sensor (Force A, Orsay, France). For the analysis, the lower-third 
measurements were discarded as it turned out that most leaves were fully senescent at this 
late growth stage. This resulted in 60 measurements per sampling point (n = 26 sampling 
points × 3 plants x (10 upper canopy measurements + 10 middle canopy measurements)). 
For maize, Cerovic et al. (2012) confirmed a direct linear response of the sensor to LCC 
and a direct equivalence between Dualex units and total chlorophyll content in μg cm−2.

On the same plants, the leaf length (LL), leaf width (LW) and leaf greenness of all 
leaves was measured. Greenness was estimated as the percentage of the leaf that was still 
green. Three different colleagues rated the leaf greenness in the field. A sub-sample of 30 

Fig. 1   Experimental site (Zea mays) in Bottelare, Belgium (BD72/Belgian Lambert 72 EPSG::31370). The 
white points show the 26 sampling points from which ground reference data was collected. From all pixels 
within a 2 m radius of these points, multispectral reflectance signals were extracted. Checkerboard patterns 
indicate ground control points that were used for georeferencing remotely sensed data
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leaves was used to assess the individual rating bias of each colleague and the average rating 
of all three colleagues was used to calibrate the overall field ratings.

From the LW and LL measurements, leaf area (LA) was calculated using an allometric 
relationship between LL and LW in maize (LA = LL × LW × 0.75) according to multiple 
studies (e.g., Mario et al., 2018). In addition, the correctness of the calculation was con-
firmed by measuring LW, LL, and the LA of 20 leaves from the mid- and top canopy sec-
tions, using a leaf surface area meter (LI-3100C, LI-COR Biosciences GmbH, Germany). 
The density of the maize plants was measured by counting the number of maize plants 
along a 2 m intra-row distance and the average of three inter-row distances was measured 
as well. Then, all LA measurements were summed and related to planting density to yield 
LAI. Similarly, GLAI was estimated by multiplying the LA with the greenness and was 
then related to plant density.

UAV data

Multispectral aerial imagery was collected to derive all potential  VZAs and VAAs and 
their associated reflectance data. To confirm that plant canopy spectral patterns in the 
data are robust, multispectral imagery on two consecutive days was collected (2020-09-
06, 3.18 pm–5.09 pm and 2020-09-07, 9.38 am–11.15 am). Flights were performed with a 
Matrice 600 Pro uncrewed aerial vehicle (DJI, Nanshan, Shenzhen, China) equipped with 
a MicaSense RedEdge Dual multispectral camera system (MicaSense Inc, Seattle, USA). 
The camera was mounted on a Gremsy T3V2 gimbal (Gremsy, Ho Chi Minh City, Viet-
nam). The multispectral camera has a horizontal and vertical field of view of 47.2° and 
35.4°, respectively. It has ten spectral bands, with central wavelengths at 444, 475, 531, 
560, 650, 668, 705, 717, 740, and 842 nm and is connected to a downwelling light sen-
sor (DLS2, MicaSense Inc, Seattle, USA). At the mission altitude of 60 m, the theoretical 
ground sampling distance (i.e., distance between the centers of two adjacent pixels) was 
4.17 cm.

The first flight on each day had the cameras in nadir position. Due to the camera/lens 
specifications, the VZA range would be limited to VZA between 0 and maximally 23.6° 
in nadir position. To collect a wider range of VZAs and VAAs, two additional flights each 
day with the view angle set manually at 20° were performed (Table 1). Across all three 
flights the flight path directions crossed each other to ensure the sun being at different azi-
muth directions in reference to the camera (S1 and S2).

Conditions were not the same during the flights. The flights were conducted in the after-
noon on the first day and in the morning on the second day. The first day was not opti-
mal for reflectance data collection due to intermittent cloud cover and changing illumina-
tion. The second day had close to optimal lighting conditions. The difference in flight time 
between days resulted in different illumination directions caused by different sun azimuth 
angles (SAA). On the first day, the sun illuminated the maize field from the south-west 
direction (2020-09-06 = 212°–242° SAA). This means that sun rays were parallel to the 
rows between plots. On the second day the sun was south-east of the field, meaning that 
illumination was perpendicular to the rows (2020-09-07 = 109°–133°). The weather condi-
tions and cloud cover also affected the proportion of direct and diffuse irradiance, with less 
direct irradiance on the first day and more on the second (Table 2).

Six custom-built and near-lambertian gray-scale radiometric calibration targets were 
placed in the field during data acquisition, see also Daniels et al. (2023) for more infor-
mation. The reflectance of each panel was measured using a micro-spectrometer within 
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the range of 350 and 810  nm (Ocean ST VIS, Ocean Optics, Orlando, USA). After the 
flights, the raw data had to be pre-processed before the multi-angular reflectance data was 
extracted. This entailed a brief screening for blurry images, relative radiometric calibra-
tion, and geo-referencing. For more details, see the flow chart in Fig.  2 and the further 
explanations given below.

Fig. 2   Flowchart showing the image pre-processing after multispectral images were collected. The pho-
togrammetry process is displayed followed by the scripted workflow of the reflectance and view angle 
retrieval. The file names (e.g. 02_filter_…py) are the same as in the online repository from where the 
method can be downloaded
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Initially, multispectral raw digital numbers (DN) were converted to reflectance by 
using the empirical line method based on the custom-built grey-scale panels and the 
micro-spectrometer reference measurements (Aasen et al., 2018). Vignetting effects, row 
gradient effects, and lens distortion were removed using a Python script (Daniels et  al., 
2023; https://​github.​com/​micas​ense) that was integrated into a custom scripted workflow 
(https://​github.​com/​ReneH​eim/​proj_​on_​uav), developed in the Python programming lan-
guage (Van Rossum & Drake, 2009) as well. The radiometrically calibrated and corrected 
imagery was processed using Agisoft Metashape 1.8.3.14331 (Agisoft LLC, Russia, St. 
Petersburg). Example spectra can be examined in the supplementary data section (S3–S6).

Image alignment was grouped for the first and second day to limit stochastic errors to 
a single alignment process. For both days, pre-configured image alignment settings from 
the Agisoft Metashape Professional User Manual version 1.8 (Agisoft LLC, 2022) were 
used with slight modifications as reported in the supplementary data section (S7). The 
sparse point cloud was improved by optimizing the reconstruction uncertainty, the projec-
tion accuracy, and the reprojection error (Over et al., 2021). Then, image locations were 
optimized based on ground control points and according to best practices in UAV remote 
sensing (Harwin et al., 2015). The exact locations of the ground control points were logged 
with a GNSS receiver at an accuracy of 0.015 m. Dense point clouds and digital elevation 
models (DEMs) were produced under quality settings reported in the supplementary mate-
rial (S7). For the pixel-centers to exactly match for further processing, the DEM and ortho-
mosaic were superimposed by matching the orthomosaic boundaries with the DEM bound-
aries (Fig. 2, see photogrammetry box). Both the orthomosaic and DEM, were exported 
as GeoTIFF files at a ground sampling distance (GSD) of 20 cm, 50 cm, and 100 cm. As 
the information of each individual pixel at the overlapping areas of adjacent images is lost 
in the orthomosaic due to blending, all individual orthophotos were exported using the 
Belge Lambert 72 (EPSG::31370) coordinate system. Compared to the orthomosaic, the 
orthophotos still contain all available, and not yet blended, pixels and were the basis for the 
calculation of VZA and VAA (Fig. 2). For the calculation of VZA and VAA, the camera 
positions (xcam, ycam, zcam) were exported as ASCII file from Agisoft Metashape. Eventu-
ally, the standard orthomosaic was also exported to be used for a comparison with the pre-
sented multi-angular data extraction approach. The standard orthomosaic data extraction 
resulted in 13 reflectance spectra per plot (n = 26) and day (n = 2) for both flight patterns 
(i.e., nadir alone and nadir combined with two oblique flights). Our custom developed data 
extraction resulted in 890 reflectance spectra per plot and day for the nadir flight and 2594 
reflectance spectra per plot and day  for the NOO flight. These numbers resulted from a 
resampled ground sampling distance of 100 cm and a radius of 200 cm around the center 
of each plot. In case a smaller ground sampling distance is used, the number of extracted 
reflectance spectra can be increased (e.g., > 1 billion data points at a ground sampling dis-
tance of 10 cm). All processing was performed on a Windows 10 (64 bit) operating system, 
using an Intel(R) Core(TM) i9-10850  K CPU @ 3.60  GHz, 3600  MHz, 10 Core(s), 20 
Logical Processor(s), an NVIDIA GeForce RTX 3060 Ti 8 GB graphics card, and 64 GB 
of installed memory.

Calculating VZA and VAA

Once all photogrammetry products were exported from Metashape (i.e., digital elevation 
model, orthomosaic, orthophotos, camera positions), they were converted, in Python, into 
tabular data so that each row of the table contained a single pixel value. For each pixel, the 

https://github.com/micasense
https://github.com/ReneHeim/proj_on_uav
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image coordinate, the world coordinate in longitude and latitude, the associated reflectance 
signal, and elevation information was extracted from the image EXIF data. Eqs. 1 and 2 
were modified from Roosjen et al. (2017) to yield the VZA and VAA in degrees:

where xcam, ycam, zcam and xpix, ypix, zpix represent the longitude, latitude and altitude of the 
camera and the pixel, respectively.

The resulting tabular data contained reflectance values for 10 multispectral bands and 
the associated VZA and VAA values. As the resulting data exceeded multiple gigabytes, 
they were managed using Apache feather file formats (Apache Software Foundation, Dela-
ware, USA). This format allows high data volume compression and fast reading and writ-
ing speeds. To associate each listed reflectance value with the LAI, GLAI, NBI, and LCC 
reference values, pixels within a radius of 200 cm from the logged sampling coordinates 
were selected. To perform the pixel selection at high computational efficiency, the pixel list 
was first converted into a k-dimensional, binary search tree where the data in each node is 
a k-dimensional point in space. Thus, facilitating the look-up of sampling points and sam-
pling area definition.

Eventually, a smaller data frame, containing ground reference values for LAI, GLAI, 
NBI, LCC, VAA and VZA, and the associated reflectance in the 10 multispectral bands 
was used to perform the classification analysis. All four plant parameters were categorized, 
based on their quantiles, into three classes: high, medium, and low.

Machine learning model and statistical analysis

Reflectance data was prepared to compare classification performance of the standard data 
extraction approach from the orthomosaic, the full reflectance data extraction from a sin-
gle nadir flight (N) and the full reflectance data extraction from a nadir flight combined 
with two oblique angle flights. The input data for each tested classification approach are 
the reflectance values across 10 multispectral bands. To evaluate the best performing VZA 
and VAA groups, VZAs were split into balanced groups of reflectance values (see Table 2; 
VZA Groups). The VAAs were split into backscattering (0°–60°, 300°–360°), forward 
scattering (120°–240°), and side scattering (60°–120°, 240°–300°).

To pre-select classifiers that perform well on the data, the automated machine learn-
ing tool “Tree-based pipeline optimization tool (TPOT)” was run (Olson et al., 2016). It 
explores thousands of possible pipelines consisting of pre-processing algorithms and 
hyperparameters of various classifiers within the algorithmic families of naïve bayes, 
recursive partitioning, support vector machines, and others (Olson et  al., 2016). TPOT 
was run across all stratification levels and the VZA/VAA reflectance groups. Eventually, 
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the Random Forest (Breiman, 2001) and Extra Trees (Geurts et  al., 2006) classifiers 
were selected to compare the classification performance between the standard orthomo-
saic approach and the other two full data extraction approaches. The Extra Trees classifier 
performed slightly (but significantly) better across all four parameters (i.e., LAI, GLAI, 
LCC, and NBI) and will be reported later in the paper. To assess model performance, the 
f1-scores are used. The f1-score is a measure of the effectiveness of a classification model 
and can range from 0 to 1 (or 0% to 100%). It is calculated as the harmonic mean of preci-
sion and recall, where a score of 1 represents the best possible performance and a score of 
0 indicates the worst. Error matrices are provided as supplementary material (S8–S15). 
The algorithms were trained using a repeated stratified cross-validation approach with 5 
folds and 3 repeats. Therefore, the final f1 score was an average of 15 iterations, with each 
iteration having an unseen 20% subset for testing. This hold-out set is not truly independent 
but as the aim was data exploration and feature analysis and not to build a general model, 
the approach seemed reasonable.

The influence of the ground sampling distance (i.e., GSD at 20 cm, 50 cm, and 100 cm) 
to classify plant parameters, was additionally evaluated. A Kruskal-Wallis Test (McKight 
& Najab, 2010) revealed that there was a statistically significant difference in classifi-
cation accuracy (f1-score) between at least two groups (chi-squared = 362.38, df = 2, 
p-value < 2.2e-16). A pairwise comparison using Wilcoxon Rank Sum Test (McKight & 
Najab, 2010) with continuity correction and a Bonferroni p-value adjustment method found 
that the mean value of f1-score was significantly different between all three GSDs (20 cm: 
100 cm, p =  < 2e-16; 50 cm: 100 cm, p = 4.1e-06; 50 cm: 20 cm, p =  < 2e-16). Therefore, 
results are reported based on a GSD of 100 cm as this provided the highest classification 
accuracies and, conveniently, the lowest computer memory requirements. It was also tested 
whether the selection of only plant pixels results in more accurate classification. There-
fore, a thresholding procedure (Otsu, 1979) based on EVI and NDVI was used to separate 
the green plant pixels and the soil pixels. However, differences in classification accuracies 
were marginal, so data without segmentation was used.

Results

Plant trait summary statistics

Across all 26 plots, LAI, GLAI, LCC, and NBI had a mean of 3.6, 2.6, 38 μg cm−2, and 
44.3 μg cm−2, respectively. LCC and NBI were highly positively correlated (r = 0.892), and 
so were LAI and GLAI (r = 0.911). The biochemical traits (LCC, NBI) however showed no 
correlation with the structural traits (LAI, GLAI). (Please refer to Table 3 for descriptive 
statistics on each plant parameter).

Table 3   Displayed are 
descriptive statistics for the 
reference plant parameters 
collected in the field

Plant Traits N Mean SD Min Max

LAI [n.d.] 26 3.6 0.8 2.1 5.4
GLAI [n.d.] 26 2.6 0.6 1.5 3.6
LCC [μg cm−2] 26 38.0 5.6 29.2 49.4
NBI [n.d.] 26 44.3 7.0 32.2 60.4
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Effect of days and VZA/VAA groups on classification accuracy

A one-way ANOVA was performed to compare the effect of different days on the classifi-
cation accuracy. Across all plant traits and VZA/VAA groups, the second day (2020-09-07) 
performed significantly better (f1 score = 80.4%; F(1, 446) = 22.7, p = 2.610-6) compared 
to the first day (2020-09-06; f1 score = 77.5%).

On average, on both days, the datasets with the categorized VZA/VAA groups per-
formed markedly better (Day 1 = 75.2%–82.3% and Day 2 = 77.9%–84.5%) than the stand-
ard orthomosaic approach (Day 1 = 70.2% and Day 2 = 69%) or when all VAA groups are 
combined into a single predictor (64.2% and 64.5%).

Effect of flight type (nadir versus nadir  + oblique) on classification accuracy

With a sampling radius of 2 m and a GSD of 100 cm, 13 reflectance spectra were collected 
in the orthomosaic approach, whereas 890 spectra were available for a standard (nadir) 
flight, and 2593 spectra when the oblique flights were added. When the 13 spectra from 
the standard orthomosaic approach were used for classifying all four plant traits, across 
both days, an overall f1-score of 69.6% was reached. When all the available reflectance 
spectra were used, classification accuracies of 78.6% (N, 890 spectra) and 79.3% (NOO, 
2593 spectra) were achieved. While there is no significant difference between the N and 
NOO approach, both clearly outperform the standard orthomosaic approach. For both flight 
types, N and NOO, it was observed that lower VZAs result in a more balanced dataset (i.e., 
having similar amounts of reflectance spectra for each available VAA; Fig. 3c and d).

In the following, more details on the classification results for each individual plant trait 
are provided. All reported results were confirmed using one-way ANOVA tests.

Fig. 3   Distribution of view zenith angles (VZA) per view azimuth angle (VAA) group (a, b) and distribu-
tion of VAAs per VZA group (c, d). Plots on the left half (a, c) show data collected from a single nadir 
flight (N). Plots on the right half (b, d) show data collected from all 3 flights together (nadir, oblique 20°, 
oblique 20°; NOO). The N flight resulted in a smaller VZA range and total amount of collected pixels com-
pared to the NOO flights
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Classification of LAI and GLAI

For the data obtained with the single nadir flight, the classification based on the orthomo-
saic approach shows accuracies between 67 and 69% across both days for LAI (Fig. 4a). 
When all data from all VZA and VAA angles were included, the model performance was 
slightly lower, with f1-scores of 63% on the first and 65% on the second day (All VZA, 
Fig. 4). However, if data with VZA and VAA for a specific range were included, the per-
formance of all models was markedly higher, ranging between 74 and 89% (all scatter-
ing directions, Fig. 4a). Pooling all VZA and VAA reflectance signals into a single group 
increases signal heterogeneity and therefore can lead to lower classification accuracies.

For all azimuth directions, on average, the second day provided significantly higher 
f1-scores (forward scattering = 84.1%, back scattering = 85.6%, side scattering = 80.3%) 
compared to the first day (forward scattering = 80.0%, back scattering = 76.8%, side scat-
tering = 81.4%). The back scattering direction especially differed between both days, being 
less accurate on the first day. The overall irradiance intensity was lower on the first day, 
deteriorating the signal-to-noise ratio on that day.

When the data from the non-nadir flights are included (NOO), very similar model 
results emerge (Fig.  4b). With the additional data of the camera tilted at 20°, the range 
of VZA angles increases (0°–50°), but still few data were collected with VZA above 40° 
(Fig. 3b). The more extreme the VZA, the less stable the coverage of VAAs (Fig. 3c, d). 
When comparing the f1-scores that were achieved using the orthomosaic (75%–76%), and 
by pooling all VZA and VAA groups (66%–67%), it can be observed that again, the dis-
tinct VZA/VAA groups deliver higher f1-scores on both days. Overall, f1-score accuracies 
drop with increasing VZA angle. A one-way ANOVA revealed that there was no statisti-
cally significant difference in f1-scores between the nadir and the multi-flight dataset (F(1, 
110) = 0.31, p = 0.58).

As expected from the high Pearson correlation coefficient between LAI and GLAI 
(r = 0.911), the results of GLAI (Fig. 5) are in line with those of LAI. A one-way ANOVA 

Fig. 4   Classification f1-scores for leaf area index (LAI) according to the extra trees algorithm (ET). The 
upper plot (a) shows results that were derived from a single nadir flight (NADIR). The lower plot (b) shows 
the results originating from the dataset where two oblique flights were added to the nadir flight (NOO). 
Shapes differentiate (circle and triangle) between both flight days
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revealed that there was no statistically significant difference in f1-scores between the nadir 
and the multi-flight dataset (F(1, 110) = 0.15, p = 0.69).

Classification of LCC and NBI

For the LCC (Fig. 6) and NBI (Fig. 7) data, very similar trends were observed. Again, 
models derived from the nadir flight data, where all VZA and VAA observations were 

Fig. 5   Classification f1-scores for green leaf area index (GLAI) according to the extra trees algorithm (ET). 
The upper plot (a) shows results that were derived from a single nadir flight (N). The lower plot (b) shows 
the results originating from the dataset where two oblique flights were added to the nadir flight (NOO). 
Shapes differentiate (circle and triangle) between both flight days

Fig. 6   Classification f1-scores for leaf chlorophyl content (LCC) according to the extra trees algorithm 
(ET). The upper plot (a) shows results that were derived from a single nadir flight (N). The lower plot 
(b) shows the results originating from the dataset where two oblique flights were added to the nadir flight 
(NOO). Shapes differentiate (circle and triangle) between both flight days
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pooled, or where the orthomosaic was used for data extraction, performed worse than 
those where distinct VZA/VAA angles were used as predictor variables. For the nadir 
flights of LCC estimation, only a few f1-scores generated from the most extreme 
VZA groups (21°–35° and 25°–50°) were as low as the orthomosaic data f1-scores. 
For LCC, the first day provided worse classification accuracies (78.4%), as already 
observed for the structural plant traits, compared to the second day (80.5%), however 
not significantly worse. For NBI, the first day was significantly worse (76.0%) com-
pared to the second day (78.9%). The VZA groups closest to nadir performed best 
on both days. However, on the second day, the VZA group 19°-25° was among the 
top three best-performing for LCC and NBI. Still, the overall trend of extreme VZA 
groups performing worse than close-nadir groups holds true.

As for the azimuth directions, on the first day for LCC and NBI, side scattering 
and forward scattering performed best (forward scattering = 79.8%, back scatter-
ing = 77.8%, side scattering = 82.2%). No significant difference was observed between 
side scattering and forward scattering; however, forward scattering differed signifi-
cantly from back scattering. Back scattering, on the other hand, did not show a signifi-
cant distinction from forward scattering.

On the second day, when flight conditions were optimal, side scattering (80.6%) 
demonstrated a lower accuracy compared to forward scattering (83.7%) and back scat-
tering (83.6%) for both LCC and NBI. Notably, back scattering played a more influ-
ential role in overall accuracies on that second day, contrasting its less relevant role 
on the first day when the sun azimuth angle and lighting conditions were suboptimal. 
The similarities in classification accuracies between both biochemical parameters are 
supported by a positive Pearson correlation coefficient (r = 0.892). Most importantly, 
a one-way ANOVA revealed that there was no statistically significant difference in 
f1-scores (N = 76.9% and NOO = 77.9%) between the nadir and the multi-flight dataset 
(F(1, 110) = 0.23, p = 0.64).

Fig. 7   Classification f1-scores for nitrogen balanced index (NBI) according to the extra trees algorithm 
(ET). The upper plot (a) shows results that were derived from a single nadir flight (N). The lower plot 
(b) shows the results originating from the dataset where two oblique flights were added to the nadir flight 
(NOO). Shapes differentiate (circle and triangle) between both flight day
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Analysis of feature importance

To further support the classification results, it was investigated whether feature importance 
is robust across both days and weather conditions. As the overall pattern of the relative 
importance did not change across all four plant parameters, relative feature importance 
was reported for both sampling days and only for the nadir data in the main body of the 
text (Figs.  8 and 9). The visualization for both days of the NOO data can be found as 

Fig. 8   Relative feature importance for the nadir-only dataset, the extra trees classifier and the first flight day. 
Each subplot is subset according to the view zenith angle group (top line labels) and view azimuth angle 
group (bottom line labels). Bar colors indicate plant parameters. The last two plots show the relative impor-
tance for the case when all groups are pooled (all vza, all vaa) and the orthomosaic dataset

Fig. 9   Relative feature importance for the nadir-only dataset, the extra trees classifier and the second flight 
day. Each subplot is subset according to the view zenith angle group (top line labels) and view azimuth 
angle group (bottom line labels). Bar colors indicate plant parameters. The last two plots show the relative 
importance for the case when all groups are pooled (all vza, all vaa) and the orthomosaic dataset
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supplementary data (S16 and S17). For the nadir-only data, on the first day, the near-infra-
red band (NIR) (842 nm, Fig. 8) was most important for the structural plant parameters 
(LAI and GLAI). This was true for most observation angles. The NIR band was also most 
relevant for the classification of LAI and GLAI when the standard orthomosaic data was 
used. This was the case across all dates and datasets (N and NOO). Interestingly, in few 
cases on the second day, the NIR band had a high relevance for the classification of NBI. 

The multispectral sensor that was used provided three different red edge bands (705 nm, 
717 nm, 740 nm). Across all observation angles, days, and datasets, it seems that the red 
edge band at 740 nm, which is closest to the NIR band, tends to follow the importance 
patterns of the NIR band. Both red edge bands that are closer to the red band at 668 nm, 
behave more like this red band itself, meaning, that the red edge bands at 705  nm and 
717 nm tend to be more important for the classification of the biochemical parameters (i.e., 
LCC and NBI) compared to the structural plant parameters (i.e., LAI and GLAI). This 
seems true across all VZAs and VAAs. In the standard orthomosaic approach or when all 
observation angles are pooled, the differences between structural and biochemical param-
eters become less obvious in that spectral region.

When looking at the bands in the visual region, the blue and the red bands often show a 
higher relative importance compared to the green bands. This pattern especially stands out 
when evaluating the data collected on the second day. From the first blue band to the last 
NIR band, it seems that first the relative importance is high, then drops in the green region, 
climbs a bit in the red region, and then drastically increases towards the NIR band. Overall, 
trends were very similar across both days, confirming the robustness of the method.

Discussion

This study contributes to the existing knowledge of multi-angular reflectance datasets by 
conducting a comprehensive analysis on maize (Zea mays). Improved classification of LAI, 
GLAI, LCC, and NBI was achieved through the use of specific view zenith and azimuth 
angle reflectance groups. To enhance accessibility to the presented multi-angular UAV 
reflectance data extraction method, we provide the coded framework that can also be used 
to reproduce the results (https://​github.​com/​ReneH​eim/​proj_​on_​uav).

We demonstrated that harnessing all reflectance values from a single nadir flight sig-
nificantly enhances the classification of biochemical and structural plant traits. However, 
additional flights and a tilted camera potentially add valuable data for different crops and/or 
phenotypic stages. Varied observation angles can capture relevant prediction phenomena, 
such as plant disease symptoms on the lower leaf surface of upright leaves or hidden leaf 
biomass not visible from above.

Unlocking multi‑angular data for classification analysis

For orthomosaic creation, standard photogrammetry software selects the single observation 
closest to nadir (Hardin & Jensen, 2011; Roth et al., 2018; Seifert et al., 2019). By captur-
ing images with high horizontal and vertical overlap, pixels are sampled multiple times and 
appear in two or more different images. Therefore, it is possible to blend adjacent images 
into a single orthomosaic. This blending procedure implicates that only a single pixel value 
from all available values is retained. The blending mode varies in its range of functionality 

https://github.com/ReneHeim/proj_on_uav
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depending on the commercial software that is used. It dictates which pixel value is retained 
(e.g., average, minimum, or maximum).

In this investigation, it is illustrated that utilizing a subset of VZA-VAA angle com-
binations as input in classification models, specifically a relatively homogeneous subset 
comprising a significantly larger dataset than that available in an orthomosaic, leads to a 
pronounced enhancement in the performance of the models. This notable improvement in 
plant trait modeling prompts the consideration of whether, and under what circumstances, 
the conventional orthomosaic approach should take precedence in the analysis of spectral 
UAV data. A comparable approach was demonstrated by Roosjen et al. (2018), who found 
that incorporating simulated multi-angular reflectance data from a potato field, obtained 
by a frame-camera mounted on a UAV, led to enhanced estimations of LAI and LCC com-
pared to using solely nadir data. Their improvements using measured data were not sig-
nificantly better compared to the standard approach. This is not the case in the present 
study, where model accuracy improvements through simulated data can be confirmed with 
measured field data. Thus, harvesting multi-angular information from UAV-based frame-
cameras can contribute to more accurate plant trait estimations. This aspect makes the pre-
sented approach, aimed at unlocking the complete spectrum of available reflectance data, 
particularly attractive for operational use.

However, when using multi-angular reflectance data, one should consider at which phe-
notypic stage the data is collected. In the present study, data was collected on two different 
days, one with optimal weather and lighting conditions and one with suboptimal condi-
tions. On the optimal day, it was found that using reflectance data that was recorded in 
the backscattering direction (i.e., the sun being behind the observer), was most accurate in 
classifying our structural and biochemical plant traits. This is in line with previous stud-
ies (Roosjen et al., 2017; Verrelst et al., 2012) and explained by the fact that reflectance 
from the backscattering direction is less influenced by shadows and more sensitive to small 
signal variations that are often caused by structural plant traits such as the leaf area index 
(LAI). While the improved prediction of LAI by reflectance data from the backscattering 
direction is well described, it was suggested by Roosjen et al. (2017) that more research 
should investigate the effect of different azimuth view direction on the prediction of bio-
chemical plant traits. Through radiative transfer simulations it was shown that in the visible 
domain of the electromagnetic spectrum (VIS; 400–700 nm) canopy reflectance is mostly 
influenced by chlorophyll a + b content in the backscattering direction (Jacquemoud et al., 
2009). Here, these results are confirmed with actual measurements as the backscattering 
reflectance resulted in the most accurate prediction for leaf chlorophyll content as well as 
for the highly correlated nitrogen balanced index.

Weather and illumination can have a strong effect on the prediction accuracy. On the flight 
day when weather and illumination were suboptimal, the backscattering direction dropped in 
accuracy and the side scattering direction provided the highest accuracies. Unfortunately, the 
illumination direction was also different on that day. Sun rays were entering the maize field in 
parallel to larger maintenance rows and perpendicular to the smaller rows that were separat-
ing the plots. It is known that tassels have a higher reflectance intensity compared to healthy 
leaves (Viña et al., 2004). Also, they protrude above the leaf canopy. Highly variable illumina-
tion conditions in combination with a moderate sun zenith angle (Table 1), might have cast 
shadows from adjacent plots into the sampling plots, negating the positive effect of backscat-
tering reflectance. As reflectance in the side scattering direction is a more homogenous mix 
of forward and back scattering reflectance, this azimuth direction might have a normalizing 
effect on the reflectance, thus leading to better predictions when illumination conditions are 
difficult to correct with the empirical line method. Especially in maize, where the tassels have 
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a stronger reflectance intensity than a healthy leaf, the predictive differences VAAs must be 
investigated at different growth stages. Also investigating the influence of viewing geometry 
on other plant traits (Cotrozzi et al., 2020) would be an interesting follow-up study. Any fol-
low-up study might want to consider the hotspot effect (Jones & Vaughan, 2010). Reflected 
light in this area has strong specular characteristics, thus any change in viewing or illumi-
nation direction can result in strong signal variation. Conversely, examining reflectance data 
from the perimeter of the hotspot is associated with enhanced signal quality. This is attributed 
to the diminished impact of shadowing effects, resulting in a more pronounced first-order scat-
tering. Consequently, this leads to an enriched representation of subtle variations in reflec-
tance (Verrelst et al., 2012).

This study consistently achieved optimal results with VZA groups near nadir, outperform-
ing the orthomosaic alone. Simulation studies by Dorigo et  al. (2007), Duan et  al. (2014), 
and Roosjen et  al. (2018) emphasized that increased and well-distributed viewing angles 
improved LAI and LCC estimations. Indeed, VZAs up to 30° enhance the estimation of the 
presented plant traits compared to using solely close-nadir data from the orthomosaic. How-
ever, this study observed a decline in classification performance with more extreme VZAs, 
potentially due to the underrepresentation of such angles in the dataset for this study. Beyond 
30° VZA, VAAs were sparsely collected, known to adversely affect classification results as 
machine learning algorithms assume balanced data (Krawczyk, 2016). In September 2020, the 
maize was in a late reproductive growth stage with a well-developed and closed canopy, mak-
ing extreme viewing angles likely less informative. Additionally, reflectance intensities, par-
ticularly in the NIR region (750 nm–1300 nm), increase with rising VZA (Jones & Vaughan, 
2010). A comparison of angle-dependent reflectance variation in the NIR region before and 
after the tasseling stage could provide valuable insights. Also, the higher the VZA, the less 
intense the irradiance (Jones & Vaughan, 2010), thus the signal-to-noise ratio decreases. 
Still, this study distinguishes itself by showcasing advancements over the classic orthomosaic 
method. Employing real measurements and a machine learning approach, this study demon-
strates the potential for LAI and LCC improvement with distinct VZA groups.

Our method leverages a broader, yet precisely defined, range of UAV-captured reflectance 
data, substantially improving plant parameter classification in comparison to the traditional 
orthomosaic approach. Performance was notably inferior when all viewing angles were 
employed for classification, as the inclusion of continuously more observation directions intro-
duced redundant information and noise, as highlighted by Weiss et al. (2000). This ultimately 
leads to increased uncertainty in the parameter retrieval. However, given the variability in 
blending modes and software solutions for orthomosaic generation, further studies are needed 
to compare plant parameter predictions between the classic orthomosaic approach and our 
proposed method. Wang et al. (2020) already expressed a general concern about the impact 
of blending modes, noting inconsistent patterns in pixel values that deviated from their origi-
nal values. Thus, in the optimization of commercial photogrammetry software incorporating a 
blending option to selectively choose specific view angles could prove beneficial. This is par-
ticularly relevant since the optimal view angle for plant parameter analysis may vary depend-
ing on the canopy type.

Feature importance

The selected spectral bands crucial for classification in our study align with well-estab-
lished knowledge of the relationships between the red edge (RE), red, and near-infrared 
(NIR) reflectance and structural and biochemical plant traits (Curran & Milton, 1983; 
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Curran et al., 1991; Daughtry et al., 2000; Gitelson et al., 1996; Gitelson et al., 2014). The 
NIR band at 842 nm, and the red bands at 650 nm and 668 nm, were consistently relevant 
in our analysis. The red edge, spanning approximately 680 to 750 nm and marking the tran-
sition between the red and NIR wavelengths, exhibited higher significance in classifying 
biochemical parameters compared to structural plant parameters. These findings, supported 
both empirically and mechanistically in the literature, strengthen the robustness of our pre-
sented results.

Consequences of ground sampling distance to data handling

The presented approach generates substantial data volumes, necessitating user considera-
tion for efficient handling. Future optimization could include features allowing users to 
selectively choose specific VZAs or VAAs, enhancing computational efficiency. In our 
case, with a best ground sampling distance of 100 cm, a system with less than 32 GB of 
RAM and a commercial-grade graphics adapter could manage the data. However, testing 
at a GSD of 10 cm approached the computing environment’s limits. Weiss et  al. (2000) 
emphasized the need for a pixel size sufficient to observe heterogeneous pixels accurately. 
While the code was optimized and parallelized, further enhancements in computational 
efficiency and accessibility are possible.

Conclusion

This study introduces a method (https://​github.​com/​ReneH​eim/​proj_​on_​uav) designed to 
extract multi-angular reflectance data from multispectral UAV imagery. The case study on 
maize illustrates that specific view zenith angle (VZA) and view azimuth angle (VAA) 
groups significantly enhance the classification of biochemical and structural plant param-
eters, surpassing the standard orthomosaic approach. The enhanced classification accuracy 
is attributable not solely to the selection of specific viewing angles but also to the meth-
odology’s capability to augment the data volume by over 50 times compared to the con-
ventional orthomosaic approach, achievable already through a single UAV mission. This 
highlights the effectiveness of utilizing the presented method, especially in combination 
with data-intensive machine learning methods. This marks a departure from previous stud-
ies that harnessed deterministic modeling approaches. The applicability of this method in 
enhancing classification approaches with multi-angular datasets in other disciplines war-
rants further investigation. It is essential to assess whether the inclusion of additional view-
ing angles contributes meaningful information to the associated research question. For 
example, a completely closed and planophile canopy may not present sufficient openings 
for extra viewing angles to be informative. Conversely, in erectophile canopy types, optical 
signals may more readily penetrate the leaf layers, offering potentially valuable insights. 
The utility of this approach extends beyond the classification of biochemical and struc-
tural plant traits. This approach offers potential across diverse fields, such as evaluating 
the spectral variability hypothesis in plant ecology, detecting objects in urban and natural 
settings, and diagnosing biotic and abiotic stress within forestry and agricultural contexts, 
among others. Should additional cases corroborate these and prior findings regarding the 
effectiveness of multi-angular remote sensing, it becomes imperative to reconsider existing 
methodologies in photogrammetric processing.

https://github.com/ReneHeim/proj_on_uav
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