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Abstract
The use of soil residual herbicides, along with other practices that diversify weed man-
agement strategies, have been recommended to improve weed management and deter the 
progression of herbicide resistance. Although soil characteristics influence recommended 
application rates for these herbicides, the common practice is to apply a uniform dose of 
soil residual herbicides across fields with variable soil characteristics. Mapping fields for 
soil characteristics that dictate the optimal dose of soil residual herbicides could improve 
the efficiency and effectiveness of these herbicides, as well as improve environmental 
stewardship. The objectives of this research were to develop and quantify the accuracy 
of management zone classifications for variable-rate residual herbicide applications using 
multiple soil data sources and soil sampling intensities. The maps were created from soil 
data that included (i) Soil Survey Geographic database (SSURGO), (ii) soil samples (SS), 
(iii) soil samples regressed onto soil electrical conductivity (EC) measurements (SSEC), 
(iv) soil samples with organic matter (OM) data from SmartFirmer® (SF) sensors (SSSF), 
and (v) soil samples regressed onto EC measurements plus OM data from SmartFirmer® 
sensor (SSECSF). A modified Monte Carlo cross validation method was used on ten com-
mercial Indiana fields to generate 36,000 maps across all sources of spatial soil data, 
sampling density, and three representative herbicides (pyroxasulfone, s-metolachlor, and 
metribuzin). Maps developed from SSEC data were most frequently ranked with the high-
est management zone classification accuracy compared to maps developed from SS data. 
However, SS and SSEC maps concurrently had the highest management zone classifica-
tion accuracy of 34% among maps developed across all fields, herbicides, and sampling 
intensities. One soil sample per hectare was the most reliable sampling intensity to gener-
ate herbicide application management zones compared to one soil sample for every 2 or 
4 hectares. In conclusion, soil sampling with ECa data should be used for defining the 
management zones for variable-rate (VR) residual herbicide applications.

Keywords  Variable-rate applications · Residual herbicides · Geostatistics · Monte carlo 
cross-validation · Soil sampling intensity · Electrical conductivity
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Introduction

Best management practices (BMPs) for mitigating herbicide resistance in weeds include 
multiple cultural (row spacing, seeding rates, cover crops, competitive cultivars, etc.), 
mechanical (hand-weeding, tillage, mowing, burning, electrocution, etc.), and chemical 
(herbicide mode-of-action rotation, herbicide mixtures, residual herbicides) weed manage-
ment practices to prevent the selection, dispersal and buildup of resistance genes in the soil 
seedbank (Norsworthy et al., 2012; Heap, 2014). The primary tactic for weed management 
in major agronomic crops since the 1990s has been the deployment of crops with tolerance 
to foliar (postemergence) herbicides such as glyphosate, glufosinate, dicamba, and 2,4-D 
(Dill et al., 2008; Kumar et al., 2020; Priess et al., 2022; Young, 2006). Consequently, these 
foliar herbicides became the primary weed management practice and growers were apply-
ing them at rates lower than what was stated on the herbicide label. The repeated use of the 
same foliar herbicide at reduced rates has contributed to the rapid evolution of weed species 
with resistance to these herbicides (Kumar et al., 2020; Priess et al., 2022; Heap, 2024), 
thereby reinforcing the need for more robust and diverse weed management strategies. Two 
specific practices encouraged through BMPs to mitigate herbicide resistance include: (i) 
applying herbicides at the full labeled rates and (ii) using residual herbicides (Norsworthy 
et al., 2012). The activity of a soil residual herbicide dependents on several soil character-
istics including soil texture, organic matter (OM), and pH. Thus, residual herbicides must 
be applied rate that match field specific soil conditions to provide the greatest efficacy and 
deter the potential expansion of herbicide resistance. Most soil residual herbicide labels 
convey the importance of these soil factors on herbicide activity by recommending multiple 
application rate ranges for specific soil conditions.

Soil characteristics can vary within production fields as a result of soil forming factors 
such as glacial disturbance or deposits, water drainage, soil erosion, and historical agricul-
tural use patterns. Therefore, a uniform herbicide application rate may result in portions of 
the field receiving inadequate or excessive rates of the active herbicide ingredient. Herbi-
cides such as metribuzin, sulfentrazone, trifluralin, acetochlor, isoxaflutole, s-metolachlor, 
etc. are more likely to cause crop injury when higher than recommended rates are applied 
under certain soil conditions (Armel et al., 2003, Green & Obien, 1969, Hartzler et al., 1989, 
Johnson et al., 2012). Conversely, reduced weed control and an increased risk of herbicide 
resistance may occur when a lower than recommended dose is applied under particular 
soil conditions. Ideally, the optimal rate of the soil residual herbicide would be applied to 
all sections of the field. However, this would require mapping field spatial soil variabil-
ity, with delineations for soil texture and/or OM levels into management zone. With these 
zones, variable-rate (VR) applications can be performed by applying multiple herbicide 
rates within a single field.

There are numerous data sources currently available within the United States that are 
used to map field spatial soil variability. These sources include: (i) Soil Survey Geographic 
database (SSURGO), (ii) intensive soil sampling, (iii) soil electrical resistivity sensors, and 
(iv) implement-mounted optical reflectance sensors using visible and near-infrared (VNIR) 
reflectance spectroscopy. For nearly the entire United States, the SSURGO data are pro-
vided for no cost, publicly-available, online soil database known as Web Soil Survey (WSS) 
by the United States Department of Agriculture Natural Resources Conservation Service 
(USDA-NRCS). Soils were mapped by visually delineating aerial photographs or digital 
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images based on local geology, topography, vegetation, or landforms (Soil Science Division 
Staff, 2017). The accuracy of these delineated area boundaries was verified with a limited 
number of soil pedons. The sampling procedures varied by scale, sampling intensity, and 
year of data collection. For regional information, soil scientists have found that these pedons 
along with the knowledge of the soil-vegetation-landscape relationship provided sufficient 
data for generating soil survey maps (Soil Science Division Staff, 2017). However, these 
soil surveys generally do not provide an accurate representation of OM and soil texture at a 
field-scale level for site-specific management practices (Anderson-Cook et al., 2002; Nawar 
et al., 2017).

In recent decades, intensive soil sampling has increased in popularity to improve fertil-
izer management recommendations by obtaining more accurate maps of soil nutrients, OM, 
pH, and soil texture These samples are commonly collected in a zonal pattern or on a 0.5- to 
4-ha grid pattern (Lange & Peake, 2020). However, these soil samples only provide infor-
mation at the known locations within the field and do not represent the spatial soil variability 
continuously across the whole field. To obtain a continuous spatial representation of the soil 
variability with the soil samples, a common geostatistical method known as ordinary krig-
ing is needed to interpolate the unknown area between sampling locations (Chabala et al., 
2017; Brouder et al., 2005; Meul & Van Meirvenne, 2003). More recently, the combination 
of soil apparent electrical conductivity (ECa) data and manually collected soil samples has 
been used to map the spatial soil variability and improve the accuracy of management zones 
for VR fertilizer application and soil mapping (Corwin & Lesch, 2005). Commercially, the 
more popular method for obtaining soil ECa measurements is through direct soil contact 
using vehicle-mounted electrical resistivity sensors (Doolittle et al., 2002). These sensors 
record data points at a 1hz logging rate up to ground speeds of 24 km/h, providing between 
20 and 40 ECa readings per acre (Adhikari et al., 2009). These semi-continuous readings 
enable mapping spatial variability within the field at a level of detail that would not be pos-
sible with intensive soil sampling; however, it challenging to distinguish main causes spatial 
variability in ECa readings.

The ECa readings can be coupled with soil samples to determine the relationship between 
the ECa and soil property values. Studies have shown soil ECa to have a strong correlation 
to both clay content (Corwin & Lesch, 2005; Broge et al., 2004) and soil OM (Broge et 
al., 2004). Therefore, coupling ECa and soil samples may improve the predictive accu-
racy of soil texture and OM between known soil samples when developing management 
zones for VR residual herbicide applications. The collected soil samples (target variable) 
and soil ECa (auxiliary variable) results can be utilized together to improve the accuracy 
of the predictions of unknown sampling locations using a geostatistical method known as 
regression kriging (Hengl et al., 2007). Guiding predictions with auxiliary variables such as 
ECa have been shown to perform better than other geostatistical methods such as ordinary 
kriging (Knotters et al., 1995). Nevertheless, regression kriging does not perform well if 
there is a poor correlation between the target and auxiliary variable (Zhu & Lin, 2010). 
Additionally, for ordinary and regression kriging, a minimum of 100 samples are recom-
mended to receive high predictive accuracy when using geostatistical methods (Webster 
& Oliver, 1992). However, a sampling intensity of 100 is not practical for managing agro-
nomic inputs, including residual herbicides due to the labor and cost of soil sampling. For 
VR residual herbicides, 100 samples per field would be expensive because each sampling 
location requires laboratory data of soil particle size distribution and basic soil analysis to 

1 3



Precision Agriculture

identify management zones. Further research is needed to determine if sampling densities 
currently adopted for soil fertility and health management (generally one sample per 0.5 to 4 
hectares) can produce reliable VR residual herbicide management zones using geostatistics.

One of the more recent commercially-available sources used to map spatial soil vari-
ability are optical reflectance sensors using VNIR reflectance spectroscopy, such as Smart-
Firmer® sensors (Precision Planting, Tremont IL). These sensors provide high resolution 
spatial soil data with the convenience of being fast, cost-effective, and nondestructive 
(Mouazen et al., 2020). The SmartFirmer® sensors are attached on the back of the seed 
trencher on a planter so the soil passing along the sides of the sensors can be measured for 
soil moisture, temperature, crop residue, furrow uniformity, and OM (Liu et al., 2021). Pub-
lished field data, albeit limited, has shown that the OM predictions with VNIR sensors in 
the seed furrow generally underestimate the soil sampled OM levels (Conway et al., 2022). 
Therefore, further evaluation is needed to determine if the predictions provided by planter-
mounted optical reflectance sensors are reliable sources for mapping spatial OM variability 
for VR residual herbicide applications.

Previous VR soil residual herbicide studies have focused on weed control, crop injury, 
or herbicide savings compared to uniform rate applications (Kurt, 2011; Gundy & Dille, 
2022; Williams & Mortensen, 2000). The only known study to compare data sources and 
methodology of documenting spatial soil variability for VR residual herbicide applications 
was conducted by Gundy and Dille (2022). In this research, intra-field soil variability was 
documented using soil ECa across the field and soil samples collected with a 1-ha sampling 
scheme to generate field specific algorithms (Gundy & Dille, 2022). However, this study 
focused on evaluating weed control and herbicide savings between the two algorithms: 
algorithm 1 using only OM soil data and algorithm 2 using OM and soil texture data. If 
growers want to optimize the herbicide efficacy, reduce the risk of crop injury, and further 
prolong the development of herbicide-resistant weeds, it is important to understand how the 
soil data currently available can be used for VR residual herbicide applications and which 
methods are the most reliable for documenting spatial soil variability.

The objectives of this study were to (1) quantify the reliability of five different combina-
tions of spatial soil data sources from SSURGO, soil samples, electrical resistivity sensors, 
and planter-mounted VNIR sensors for predicting the spatial variability of soil texture, OM, 
and residual herbicide management zones; and (2) determine the impact of soil sampling 
intensity on the management zone classification accuracy for VR applications of soil resid-
ual herbicides.

Methods and geostatistical analysis

Data collection

In the spring of 2021 in the United States, a survey was conducted across ten commercial 
Indiana fields within Benton, Daviess, Fulton, Franklin, Johnson, Rush, St. Joseph, and 
Warren Counties (Fig. 1). All fields included soil ECa data collected using a Veris 3100 
(Veris Technologies Salina, KS, USA) vehicle-mounted, soil electrical resistivity (ER) sen-
sor equipped with six electrodes (two transmitting and four receiving). A 15-m spacing was 
used between pass with the sensor while traveling at an average of 16 km/h. ECa readings 
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(mS/m) were collected at a 1 hz logging rate by determining the difference in current flow 
emitted from the transmitting to the receiving electrodes at shallow (0 to 30 cm) and deep (0 
to 90 cm) depth. Only shallow measurements were used for analysis since the upper portion 
of the soil profile has the greatest interaction with residual herbicides.

The digital SSURGO data were downloaded from the website WSS (Soil Survey Staff, 
2021) and processed in Microsoft Access using the .mdb file to link all the attribute data 
tables. All information provided in the .mdb files were linked to corresponding shapefiles 
using the Soil Data Viewer 6.2 Add-in in the geographic information system (GIS) software, 
ArcMap (Esri, Redlands, CA, USA). Soil texture and OM data used for developing manage-
ment zones for VR residual herbicides were selected from the “Soil Health-Organic Matter” 
and “Soil Health-Surface Texture” properties sections of the WSS website (see Appendix A 
in Supplement Information).

Before developing the soil sampling stratums for stratified random sampling, all extrane-
ous ECa values suspected to be the cause by metal debris, interference from a rock, poor 
soil-to-electrode contact, etc. were manually removed from dataset. A sampling point was 
labeled extraneous and removed if it was +/-15 mS/m from all surround data points. The 
prepared ECa dataset was then divided into three strata using quantile classification (Fig. 2) 
with 20 samples randomly assigned within each stratum, totaling 60 georeferenced points 
locations within each field. These georeferenced samples were used to guide an auto-
matic Wintex 1000 soil sampler (WintexAgro, Saint Bancroft, IA, USA) mounted on a 

Fig. 1  Locations of (A) Benton, 
(B) Davies, (C) Franklin, (D) 
Fulton, (E) Johnson 1, (F) 
Johnson 2, (G) Rush 1, (H) Rush 
2, (I) St. Joseph, and (J) Warren 
County fields within the state of 
Indiana
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UTV equipped with global positioning system (GPS) and Wide Area Augmentation System 
(WAAS) correction to collect a composite sample with 15 cores using a 2-cm diameter soil 
probe to a depth of 15 cm within a 0.5-m2 area. These samples were sent to a commercial 
soil testing lab for particle size analysis using a hydrometer method and OM was measured 
by loss on ignition (Combs & Nathan, 2012; Table 1).

Table 1  Particle and organic matter content analysis from soil samples collected in 2021 from ten commercial 
fields within Indiana¹
Field Size Sand Content Silt Content Clay Content Organic Matter

Min Max Min Max Min Max Min Max
ha %

Benton 26 19 69 20 56 9 35 0.8 5.1
Daviess 17 45 92 3 32 3 23 0.6 3.7
Franklin 17 11 38 41 66 16 31 1.1 2.7
Fulton 26 21 88 15 48 6 31 1.2 9.1
Johnson 1 24 17 45 22 60 15 37 1.6 4.3
Johnson 2 14 16 52 23 60 19 35 1.5 2.8
Rush 1 25 9 45 40 60 15 43 2 5.1
Rush 2 21 12 36 41 43 18 43 2 4.3
St. Joseph 23 46 76 2 45 5 23 1.8 52.6
Warren 25 16 66 23 57 9 33 1.6 35.6
¹Samples were analyzed at a commercial soil testing lab for particle size analysis using a hydrometer 
method and the basic soil fertility tests such as organic matter [loss on ignition (Combs & Nathan, 2012)], 
soil pH, buffer pH, cation exchange capacity, and selected macronutrients

Fig. 2  Example of quantile classification of apparent electrical conductivity (ECa) values at the Daviess 
County field with ArcGIS Pro World Imagery basemap
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Additionally, OM data from the 2020 planting season were collected from SmartFirmer® 
sensors (Precision Planting, Tremont IL) on two of the ten fields; Franklin and Rush 1 
county field. The sensors were spaced 3-m apart on a 12-row corn planter traveling approxi-
mately 9 km/h.

Map development

Three single active ingredient soil residual herbicides that are used in soybean were selected 
based on the maximum possible number of management zones that could be generated 
within a field according to the herbicide label (Table 2). The number of possible manage-
ment zones for each herbicide was three for pyroxasulfone (Anonymous, 2022c), six for 
s-metolachlor (Anonymous, 2022a), and ten for metribuzin (Anonymous, 2022b). The 
labeled application rate structure for these three herbicides were used throughout the study 
to develop the management zones for VR residual herbicide applications.

The methodology used to generate maps for each field, herbicide, and sampling intensity 
with manually collected soil samples was structured based on the general concepts of cross 
validation. Cross validation is one of the most popular methods for data resampling used 
to estimate the accuracy of models by splitting the original dataset into two categories: a 
training set and testing set (Berrar, 2019). Training sets are used to train the models, while 
the test sets are used to evaluate the output from the trained model. The cross-validation 
method that was used as the baseline for this study was the Monte Carlo cross validation 
(MCCV), also known as repeated random subsampling validation. MCCV works by ran-
domly selecting a defined number of test samples (k) and the remaining samples are used 
for the training set (Ramezan et al., 2019). Testing sets from MCCV are randomly selected 
with replacement, similar to bootstrapping (Fig. 3A). However, to ensure there are enough 
samples in the training set to compare the effects of sampling intensity on management zone 
classification accuracy for VR residual herbicide applications, a modified version of Monte 
Carlo cross validation (mMCCV) was required for this study. The MCCV was modified 
by splitting the training set further into two categories: (i) training set- used and (ii) train-
ing set-unused (Fig. 3B). This allows for multiple combinations of a defined sample size 
(determined by sample intensity) to be evaluated with consistent testing samples. After sev-

Table 2  Summary of herbicides used to develop management zone for variable rate residual herbicide appli-
cations based on the maximum possible number of management zone defined by the herbicide label
Herbicide Organic matter Herbicide rate by textural class²

Coarse Medium Fine
(g a.i. ha−¹)

pyroxasulfone All 91–128 119–183 146–210
s-metolachlor < 3% OM 1,071 − 1,424 1,424-1,788 1,424-1,788

≥ 3% OM 1,424 1,424-1,788 1,788-2,142
metribuzin < 2% OM Do Not Use 400–533 533–666

2–4% OM 400 533–666 533–932
≥ 4% OM 400 666–799 1,065
Muck¹ Do Not Use Do Not Use Do Not Use

¹ Muck soils were defined as any soil with organic matter (%) greater than 12 to 18% depending on clay 
content (%)
² Information derived from herbicide labels: pyroxasulfone (Anonymous, 2022c), s-metolachlor 
(Anonymous, 2022a), and metribuzin (Anonymous, 2022b)
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eral iterations occur using a particular testing set, all testing and training sets were pooled 
together, redistributed, and repeated. Additionally, not all combinations of training and test-
ing sets was processed. The modified cross-validation process is summarized into eight 
steps (Fig. 4) and explained in greater detail in the following sections. This process was 
used to generate 36,000 maps across all ten fields to determine the most reliable sampling 
intensity and source for most agricultural fields.

Selecting samples for testing and map development (Fig. 4: steps 1 and 2)

Sixty samples were collected within each field to ensure enough samples for the testing 
and training datasets. The testing dataset refers to the samples that were used to confirm 
whether the OM, soil texture, and management zone prediction were accurate to the true 
values or class assignment. The number of testing samples was dependent on the field size in 
order to have approximately one sample per 0.8-hectare. The remaining soil samples were 
used to develop VR residual herbicide management zones at varying sampling intensities 
using spatial soil data collected from soil samples, EC, and VNIR OM data. The number 
of samples selected for the low, medium, and high sampling intensity were determined so 
there would be one sample per 4, 2, and 1 hectare, respectively. The total number of samples 
were rounded to a multiple of 3, if necessary, to ensure an equal number of samples were 
assigned to all three strata for stratified random sampling (Table 3). Maps at the low sam-

Fig. 3  (A) The Monte Carlo cross validation (MCCV) works by randomly selecting the training and test 
data sets with replacement. (B) A modified version of MCCV was used in this study to evaluate the effect 
of sampling size on soil texture, organic matter, and herbicide management zone classification accuracy. 
This was performed by splitting the training set into two categories: used and unused. Samples from the 
Daviess County field were used as an example
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pling intensity for Johnson 2 County field were not developed since only three samples were 
available for map development, which was not sufficient for fitting semivariogram models 
used for kriging.

Creating soil texture and organic matter layers (Fig. 4: step 3)

Once the samples used for map development were selected, the spatial point data (soil sam-
ples, electrical conductivity, and SmartFirmer® OM data) were used to determine the soil 
texture and OM data across the entire field. This step was not required for the SSURGO data 
since earlier methods conducted in ArcMap already provided continuous soil data across 

Field Sampling intensity¹ Valida-
tion 
samples

Low Medium High

No.
Benton, Fulton, Johnson 
1, Rush 1, St. Joseph, 
Warren

6 12 24 30

Rush 2 6 9 21 27
Daviess, Franklin 6 9 18 21
Johnson 2 NA2 6 15 18
¹ Number of samples used for map development at a low, medium, and 
high sampling intensity so each sample covered approximately 4-, 2-, 
and 1 ha, respectively.
² Insufficient number of samples at a low sampling intensity in 
Johnson 2 County field to fit semivariogram models used for ordinary 
and regression kriging.

Table 3  Number of samples 
used for developing variable-rate 
residual herbicide maps at each 
sampling intensity based on field 
size and the number of samples 
used for validating the accuracy 
of the maps

 

Fig. 4  Workflow for developing management zones for variable rate residual herbicide applications using 
soil samples alone (SS maps) or soil samples plus electrical conductivity (EC) data (SSEC maps). ¹Ordi-
nary Kriging (OK) was performed with the desired soil data. ²Regression Kriging (RK) was performed 
using the interpolated ECa raster with the desired soil data
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the field area as a shapefile. For all other sources, whole field data were generated using 
ordinary and regression kriging to interpolate the unknown area between the georeferenced 
sampling locations. To successfully perform kriging, the autocorrelation, or the relation-
ship of a measured value at a known location to the neighboring locations, was quantified 
using semivariogram models (Webster & Oliver, 1992). Semivariogram models were used 
to calculate the weighted values based on the distance of the sample location to the pre-
dicted location, the spatial relationship of the measured values, and the fit of the model to 
the measured values. When using geostatistics, such as kriging, accurate interpolations of 
the predictive variables rely on the fitness of the semivariogram model fit. However, fitting 
each semivariogram to the best model (spherical, exponential, Gaussian, Matérn, etc.) and 
parameters (range, nugget, sill) would be difficult in this study due to the large volume of 
maps being generated.

Preliminary work was completed to determine the best semivariogram model for this 
study. For St. Joesph County field, four training sample sets were selected at a low and high 
sampling intensity to see which models were the best for clay content data interpolated 
with and without ECa data (see Appendix B in Supplement Information). These four train-
ing sample sets were also subjected to the entire workflow shown in Fig. 4 to determine 
how each model impacts that accuracy of the management zones for VR applications of 
s-metolachlor. From the work on the St. Joseph County field, the exponential and Matérn 
semivariogram model were most frequently a best fit to the data and provided the highest 
management zone classification accuracies. Although the fit and accuracy of the exponential 
and Matérn semivariogram models were similar, ultimately, the Matérn model was selected 
since it resulted in the processing loop used for the mMCCV method shown in Fig. 4 to 
terminate less frequently than the exponential semivariogram model. This is likely from 
the Matérn model being a generalization of multiple theoretical semivariogram models and 
having an incorporated smoothness parameter that provides more flexibility in the model 
(Minasny & McBratney, 2005). Therefore, all electrical conductivity, OM, clay content, and 
sand content data were fitted to a Matérn semivariogram models using gstat package in R 
version 4.1.1.

Soil texture and OM layers were then developed using the fitted Matérn semivariograms 
for ordinary and/or regression kriging on a 10-meter grid to interpolate the spatial point 
data across the entire field. For developing soil texture and OM raster layers using only soil 
samples, ordinary kriging was performed on sand, clay, and OM content. The silt content 
raster layer was then created by summing the sand and clay values of the corresponding grid 
cell [i] and subtracting from 100 (Eq. 1).

	 silt [i] = (100− (clay [i] + sand [i]) � (1)

The sand, silt, and clay raster layers were then stacked together using the raster package in 
R (Hijmans, 2022). This was conducted so each cell was assigned a sand, silt, and clay value 
to determine the soil texture type.

Soil texture and OM raster layers generated from soil samples and ECa raster layer were 
created using regression kriging. The ECa data were used as an auxiliary variable to guide 
the predictions between the known sampling points. First, the ECa data were converted to 
a raster layer using ordinary kriging. From the ECa raster, a linear model is determined to 
extract the residuals at all sampling locations. Similar to the methods described earlier, the 
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silt content raster was developed by subtracting the sum of the sand and clay values from 
100. The sand, silt, and clay raster layers were then stacked into one raster to define the soil 
texture type present in the field.

OM data collected from the planter-mounted VNIR sensors, were interpolated using ordi-
nary kriging. The two fields containing this data were Franklin and Rush 1 County. Since 
VNIR sensors do not collect data on soil particle size, spatial information on sand, silt, and 
clay content was still required to define management zones for VR residual herbicide appli-
cations. Two variations of soil texture maps were developed based on the method described 
above: (1) with soil samples alone using ordinary kriging and (2) with soil samples plus ECa 
using regression kriging. For sources of spatial soil data, the next step was to delineate the 
interpolated soil texture and OM raster layers based on the pyroxasulfone, s-metolachlor, 
and metribuzin labels (Table 2).

Classifying soil texture and organic matter layers (Fig. 4: step 4 and 5)

All soil residual herbicides included in the study have the 12 soil texture types (STT) 
subdivided into three broad classifications as defined by each individual herbicide label: 
coarse, medium, and fine. These three soil classifications will be referred to as herbicide 
textural classes (HTC) for the remainder of the paper. The soil texture raster layers were 
then assigned to the appropriate HTC based on the residual herbicide label.

Similarly, the soil OM raster layers were delineated based on the soil residual herbicide 
labels. For metribuzin, applications on muck soils are not recommended. According to the 
organic soil material criterion listed in Soil Survey Staff (1999), muck soils are defined as 
any soil with organic carbon values greater than 12 + 0.1 (% clay content) when the clay is 
less than 60% or organic carbon content is greater than 18% when clay content is greater 
than 60% (Fig. 5). Since OM is a combination of organic carbon, soil humus, and nutrients, 
a conversion factor can be used to calculate the organic carbon content needed to define 
muck soils from the OM raster layers. Most research investigating the conversion factors 
between organic carbon and organic matter have found 1.724 and 2.5 to be acceptable (Nel-
son & Sommers, 1983), with a factor of 2 being most accurate under the assumption that 
OM is 50% carbon (Pribyl, 2010). For this study, a conversion factor of 2 was used for 
calculating organic carbon levels.

Fig. 5  Soils that fall within the 
gray area are defined as muck 
soils based on the clay-organic 
carbon content relationship de-
fined by Soil Survey Staff (1999)
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Once the soil texture and OM layers were reclassified, the layers were intersected together 
using the sf package in R (Pebesma, 2018) to generate desired management zones. For the 
remainder of the article, management zones for all fields were developed with spatial soil 
data from the SSURGO data, soil samples alone using ordinary kriging (SS), and soil sam-
ples with ECa data using regression kriging (SSEC). For the two fields with VNIR OM data 
from the SmartFirmer® (SF) sensor, two additional sources were included: 1) one created 
with a soil texture raster generated with ordinary kriging (SSSF) and another using a soil 
texture raster from regression kriging with the ECa data (SSECSF). The SSSF and SSECSF 
sources were only evaluated with s-metolachlor and metribuzin since pyroxasulfone does 
not have restraints on application rate based on OM levels.

Validating map accuracies and resampling (Fig. 4: step 6–8)

To confirm the accuracy of the STT, HTC, OM, and management zone predictions, the test-
ing samples withheld from map development were used to extract the predictions at known 
sampling locations (Fig. 4: Step 6). Since the dataset devoted to map development contains 
more samples than what was needed for each sampling intensity, Steps 2 through 6 were 
repeated 20 times, selecting a new combination of samples with each pass. Once Step 7 
was completed, all testing and map development samples were pooled back together. Then 
a new combination of the testing set was selected and steps 2 through 7 were repeated. All 
steps were conducted in R using a series of loops and functions (Fig. 4). Every time the 
loops reached Step 6, the information extracted at the testing sampling sites were exported 
into spreadsheets and saved for further analysis.

Statistical analysis

The accuracy of the STT, HTC, and management zone classification was determined by 
calculating the percentage of testing samples accurately predicted by the maps. The clas-
sification accuracies were analyzed using an analysis of variance (ANOVA) with the stats 
package in R (R Core Team, 2021). The means were separated using Tukey-Kramer’s Hon-
est Significant Difference (HSD) at a significance level of 0.05. When analyzing the effect 
of sampling intensity on classification accuracy, a one-way ANOVA was setup by filtering 
the dataset by field, herbicide, and source of spatial soil data. To determine the effect of 
source of spatial soil data on classification accuracy, a one-way ANOVA was performed 
after filtering the dataset by field, herbicide, and sampling intensity. The effect of the number 
of possible management zones on the herbicide label was conducted similarly by filtering 
the dataset by field, then pooling the data across sampling intensity for a given source. Data 
analysis was conducted by each field due to an interaction with sampling intensity, source of 
spatial soil data, or herbicide. To quantify the reliability of individual sources of spatial soil 
data and sampling intensities across all fields, the frequency that a source or sampling inten-
sity was either the most accurate (denoted by an (A) or (a) from Tukey- Kramer’s HSD) was 
quantified as a percentage of the total observations.

To determine whether the HTC were under-, over-, or accurately predicting, the HTC 
were first assigned to a numeric value (1 = coarse, 2 = medium, and 3 = fine). The numeric 
values of the actual HTC were then subtracted from the predicted HTC. Therefore, values 
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less than zero implied that the predictions underestimated the true textural class, equal to 
zero meant they were the same, and values greater than zero indicated predictions were 
overestimated. For each iteration, the frequency of the testing samples under-, equally, 
and over-estimated were calculated and subjected to ANOVA to determine any difference 
between the sources of spatial soil data for predicting HTC.

The accuracy of the OM predictions was determined by calculating the difference 
between the predicted and measured OM values. The data were subjected to a two-sided 
t-test analysis at an alpha equal to 0.05 for determining whether the values were different 
from zero. The mean error (ME) was calculated to determine if the predicted OM values 
tended to over-, under-, or equally predict the actual OM values. The measured OM values 
were derived from the testing samples withheld from map development. The predicted OM 
values were extracted at the locations of the georeferenced testing samples and precision 
of the OM predictions was determined with root mean squared error (RMSE). There was 
less variance between the predicted and measured OM values when the RMSE was smaller, 
meaning the predictions were more precise.

Pearson’s correlation coefficient (r) and coefficient of determination (R2) were conducted 
between ECa values and several soil properties (OM, clay, silt, and sand content) to deter-
mine the relationship between these variables. Lack of relationship between soil ECa data 
and soil properties, such as clay content and OM, can affect the prediction accuracy of maps 
developed with regression kriging.

Results and discussion

Soil texture type (STT) and herbicide textural class (HTC) predictions

The mapping accuracy for each source of spatial soil data was evaluated based on the 
percentage of samples in the testing (or validation) dataset that were accurately predicted 
within each map. The frequency of SS, SSEC, and SSURGO maps having the highest-
ranking STT classification was 62%, 72%. and 28%, respectively (see Appendix C: Table 
C1 in Supplemental Information). The frequency of SS, SSEC, and SSURGO maps having 
the greatest rank of accuracy for HTC was 59%, 62%, and 3.4%, respectively (see Appendix 
C: Table C2 in Supplemental Information). Maps developed using SSEC were among the 
most accurate soil data sources for STT and HTC.

Accurate predictions of HTC as specified on individual herbicide labels is critical for VR 
residual herbicide applications. For all fields, the HTC accuracy of the SS and SSEC maps 
was greater than the classification accuracy for STT (Table 4). Misclassified STT often fell 
within the same HTC as the measured soil sample, which resulted in greater predictive accu-
racy for HTC. For the SSURGO maps there were two fields, Franklin and Fulton County, 
where an increase in classification accuracy was not observed from STT to HTC. In these 
fields, the misclassification of the STT fell outside of the HTC of the collected soil sample, 
resulting in no improvement in classification accuracy. Additionally, for the SS and SSEC 
maps, the highest sampling intensity was the most accurate sampling intensity for predicting 
HTC at 90 and 100% of the fields, respectively.

Since the maps made at the high sampling intensity most frequently had the greatest HTC 
accuracy, the high sampling intensity was used to determine whether the HTC predictions 
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were being under-, equally, or over-estimated for each source of spatial soil data. When mis-
classification of the HTC occurred, the SSURGO data tend to overestimate the textural class 
(Table 5). Overestimating the HTC could result in a higher application rate being assigned 
to a management zone, which increases the possibility of crop injury. Whereas the SS and 
SSEC maps tended to underestimate in 7 out of the 10 fields. Daviess County field was the 
only site where none of the maps underestimated the HTC across all sources of spatial soil 
data. This occurred because the actual HTC was classified as coarse; therefore, the predic-
tions could only be equally or overestimated. At the Daviess County field, the SSURGO 
data overestimated 45% of the testing samples since the source indicated a medium HTC 
when the actual HTC was coarse.

Table 4  Comparison between classification accuracy of soil texture type (STT) and herbicide textural class 
(HTC) for sources of spatial soil variability and sampling intensity (if applicable)¹
Field Soil class Mean classification accuracy by source of spatial soil data and sampling 

intensity²³
SSURGO SS SSEC

Low Medium High Low Medium High
(%)

Benton STT 8.3 b 50 b 52 b 55 b 55 b 57 b 58 b
HTC 65 a 61 a 63 a 64 a 69 a 70 a 71 a

Daviess STT 17 b 47 b 49 b 54 b 58 b 63 b 62 b
HTC 38 a 100 a 100 a 100 a 98 a 99 a 99 a

Franklin STT 62 a 85 b 85 b 86 b 81 b 82 b 84 b
HTC 64 a 86 a 87 a 89 a 82 a 84 a 85 a

Fulton STT 57 a 78 b 78 b 78 b 78 a 78 b 78 b
HTC 57 a 83 a 82 a 83 a 83 a 83 a 83 a

Johnson 1 STT 8.3 b 57 b 62 b 62 b 52 b 55 b 57 b
HTC 55 a 80 a 82 a 82 a 80 a 79 a 80 a

Johnson 2 STT 30 b -- 33 b 36 b -- 36 b 38 b
HTC 40 a -- 63 a 66 a -- 68 a 69 a

Rush 1 STT 43 b 42 b 43 b 47 b 41 b 45 b 43 b
HTC 62 a 73 a 75 a 75 a 78 b 76 a 81 a

Rush 2 STT 30 b 39 b 40 b 38 b 37 b 41 b 41 b
HTC 42 a 55 a 54 a 51 a 57 a 58 a 57 a

St. Joseph STT 22 b 74 b 77 b 79 b 70 b 75 b 78 b
HTC 48 a 76 a 80 a 83 a 72 a 77 a 82 a

Warren STT 10 b 44 b 45 b 48 b 46 b 52 b 58 b
HTC 25 a 58 a 59 a 61 a 61 a 66 a 70 a

¹ Abbreviations: SSURGO, Soil Survey Geographic Database; SS, soil samples alone; SSEC, soil samples 
with electrical conductivity (EC) data, STT; soil texture type; HTC; herbicide textural class
² Low, medium, and high sampling intensity means each sample covers approximately 4-, 2-, and 1 ha, 
respectively.
³The mean classification accuracy is the average percent of validation samples that were correctly predicted 
from the maps developed from each source of spatial soil data and sampling intensity. Classification 
accuracy means within a column followed by the same letter are not significantly different according to 
Tukey’s HSD (α = 0.05). Classification accuracy means are not compared across fields.
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Organic matter predictions

The accuracy and precision of the OM predictions across all sampling intensities and 
sources of spatial soil data were summarized (Table 6). Results from the mean error (ME) 
and t-test were used to evaluate the accuracy of the OM predictions. Fields with a nega-
tive ME value indicates that the OM predictions on average underestimated the actual OM 
levels at each testing sampling location across all iterations of the mMCCV. Conversely, 
positive ME values indicate an overestimation of the actual OM levels occurred on average 
at the testing sampling locations. The SSURGO data overestimated the predicted values in 
eight out of ten fields, whereas OM predictions generated by maps with SS, SSEC, and SF 
underestimated the actual OM levels across all sampling intensities, except Rush 2 and St. 
Joseph County fields. OM predictions from the SF sensor have been reported to generally 
underestimate OM levels (Conway et al., 2022).

Field Source¹ Accuracy of HTC predictions²
Underestimated Equal Overestimated

Mean % of validation samples
Benton SS 17 Ab 76 Aa 7.6 Bc

SSEC 11 Bb 80 Aa 9.2 Bb
SSURGO 13 ABc 65 Ba 22 Ab

Daviess SS 0.0 Ab 100 Aa 0.0 Bb
SSEC 0.0 Ac 98 Aa 1.7 Bb
SSURGO 0.0 Ab 55 Ba 45 Aa

Franklin SS 14 Ab 85 Aa 0.7 Ac
SSEC 14 Ab 85 Aa 0.5 Ac
SSURGO 14 Ab 86 Aa 0.0 Ac

Fulton SS 12 Ab 88 Aa 0.1 Cc
SSEC 10 Ab 85 Ba 5.4 Bc
SSURGO 8.3 Ac 67 Ca 25 Ab

Johnson 1 SS 12 Ab 84 Aa 3.4 Bc
SSEC 12 Ab 84 Aa 3.8 Bc
SSURGO 8.5 Bc 61 Ba 31 Ab

Johnson 2 SS 32 Ab 66 Ba 2.1 Bc
SSEC 29 Bb 69 Aa 1.9 Bc
SSURGO 17 Cb 67 ABa 17 Ab

Rush 1 SS 9.7 Bc 77 Ba 14 Ab
SSEC 11 Bb 84 Aa 5.0 Bc
SSURGO 37 Ab 63 Ca 0.0 Cc

Rush 2 SS 27 Ab 51 Ba 23 Ab
SSEC 26 Ab 58 Aa 17 Bc
SSURGO 37 Ab 45 Ca 18 ABc

St. Joseph SS 13.1 Bb 82.6 Aa 4.3 Bc
SSEC 16.2 Ab 81.2 Aa 2.6 Cc
SSURGO 15.6 Abc 46.1 Ba 38 Ab

Warren SS 14 Bc 62 Ba 24 Bb
SSEC 9.6 Cc 71 Aa 19 Cb
SSURGO 20 Ac 31 Cb 50 Aa

Table 5  Average percent of vali-
dation samples that were under, 
equally, or over predicted for 
herbicide textural class (HTC) 
among SS, SSEC, and SSURGO 
maps¹

Abbreviations: SSURGO, Soil 
Survey Geographic Database; 
SS, soil samples alone; SSEC, 
soil samples with electrical 
conductivity (EC) data
Sample size equals 40 for SS 
and SSEC for each herbicide 
and 6 for SSURGO
¹ Predictions at the high 
sampling intensity were used for 
the SS and SSEC maps.
²Means within a column 
followed by the same upper-
case letter (ABC) are not 
significantly different and 
means within a row followed by 
the same lower-case letter (abc) 
are not different according to 
Tukey’s HSD (α = 0.05). Means 
are not compared across fields.
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Although, most of the ME values differed from zero, most of the predictions were less 
than 1% from the actual OM levels. A difference of 1% or 0.5% might seem small but 
can become problematic for delineating the field area for VR residual herbicide applica-
tions. For example, if the true OM level at a particular field location is 2.4%, being off by 
0.5% could affect whether that area gets assigned to the appropriate management zone for 

Table 6  Precision and accuracy of the predicted organic matter (OM) values comparison to the collected and 
measured OM values with each field by source and sampling intensity (if applicable)
Field Statistics² Mean ME and RMSE of OM by source of spatial soil data and sampling 

intensity¹
VNIR SSURGO SS SSEC

low medium high low medium high
Benton ME (%) -- 0.85 -0.19 -0.27 -0.26 -0.24 -0.18 -0.18

RMSE -- 1.39 1.22 1.21 1.17 1.07 1.02 0.98
Sample size -- 60 2400 2400 2400 2400 2400 2400

Daviess ME (%) -- 0.31 -0.06 -0.08 -0.03 -0.001 -0.05 -0.07
RMSE -- 0.83 0.69 0.67 0.61 0.63 0.55 0.50
Sample size -- 42 1680 1680 1680 1680 1680 1680

Franklin ME (%) -0.19 -0.11 -0.14 -0.17 -0.16 -0.17 -0.16 -0.17
RMSE 0.31 0.3 0.35 0.34 0.33 0.37 0.35 0.33
Sample size 3280 42 1640 1640 1640 1640 1640 1640

Fulton ME (%) -- 0.12 -0.08 -0.12 -0.17 0.03 0.02 -0.01
RMSE -- 12.2 1.52 1.46 1.34 1.76 1.43 1.24
Sample size -- 60 2400 2400 2400 2400 2400 2400

John-
son 1

ME (%) -- 0.27 -0.07 -0.05 -0.04 -0.06 -0.03 -0.05

RMSE -- 1.16 0.71 0.65 0.61 0.76 0.67 0.61
Sample size -- 60 2400 2400 2400 2400 2400 2400

John-
son 2

ME (%) -- -0.05 -- -0.05 -0.1 -- -0.07 -0.11

RMSE -- 0.62 -- 0.29 0.29 -- 0.3 0.29
Sample size -- 36 -- 1440 1440 -- 1440 1440

Rush 1 ME (%) -0.24 0.08 -0.04 -0.13 -0.18 -0.1 -0.12 -0.14
RMSE 0.59 1.02 0.73 0.64 0.56 0.68 0.61 0.53
Sample size 4640 60 2320 2320 2320 2320 2320 2320

Rush 2 ME (%) -- 0.52 0.08 0.07 0.07 0.06 0.1 0.09
RMSE -- 5.15 0.42 0.44 0.44 0.5 0.49 0.44
Sample size -- 60 2400 2400 2400 2400 2400 2400

St. 
Joseph

ME (%) -- 3.07 -0.32 0.81 0.54 1.31 0.93 0.69

RMSE -- 18 9.47 7.02 5.53 13.25 10.74 6.91
Sample size -- 60 2400 2400 2400 2400 2400 2400

Warren ME (%) -- 3.14 -0.86 -0.6 -0.47 -0.7 -0.91 -0.53
RMSE -- 10.6 6.04 5.53 4.95 6.03 5.52 4.67
Sample size -- 60 2400 2400 2400 2400 2400 2400

¹ Low, medium, and high sampling intensity means each sample covers approximately 4-, 2-, and 1- 
hectare, respectively
²Abbreviations: SSURGO, Soil Survey Geographic Database; SS, soil samples alone; SSEC, soil samples 
with electrical conductivity (EC) data; VNIR, organic matter data from a planter-mounted visible near 
infrared sensor; ME, mean error; RSME, root mean squared error.
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a herbicide such as metribuzin. Depending on the HTC, this error could result in the field 
area being assigned a rate from the OM levels < 2% OM class opposed to the 2–4% OM 
class (Table 2). This area would be assigned a lower application rate that would potentially 
result in a shorter duration or extent of residual weed control (Grey et al., 2013; Knezevic 
et al., 2009). Conversely, being assigned a management zone with a higher OM level would 
increase the herbicide application rate and potentially increase the risk of crop injury from 
the herbicide (Szmigielski et al., 2009). Both scenarios would be considered an illegal appli-
cation since the herbicide was not delivered according to the herbicide label.

The precision of the OM predictions was indicated by the RSME values (Table 6). The 
closer the RMSE value is to zero, the more accurate the source/sampling intensity. Alter-
natively, RMSE can be interpreted as the standard deviation of the error. For the SS and 
SSEC maps, the RMSE values decreased as the number of samples included in the map 
development process increased. Therefore, the variance between the predicted and actual 
OM values was decreased by increasing the number of samples used for spatially predicting 
the OM levels within a field. In five out of the ten fields the SSURGO data did not differ 
from the sampled OM results following a t-test analysis. This can be explained by the large 
RMSE that indicated a relatively greater variance between the predicted and actual OM val-
ues. Additionally, in nine out of the ten fields, the variance between the predicted and actual 
OM values was the greatest with the SSURGO OM maps compared with the SS, SSEC, and 
SF OM maps. The more variance between the predicted and actual OM levels increases the 
risk of the field area being assigned the wrong management zone.

Management zone classification

Due to significant interactions between fields and sampling intensity or source of spatial 
soil data, alternative methods were used to quantify the most reliable sources and sampling 
intensities across all fields. For quantifying the reliability of the low, medium, and high 
sampling intensities, the frequency that an individual sampling intensity was the most accu-
rate was calculated as a percentage of the total fields. The complete set of data means, and 
statistical results can be found in Appendix C: Table C3-C5 in Supplemental Information; 
however, a summary of these results are shown in Tables 7 and 8.

Management zone classification accuracy across sampling intensity

For all herbicides, the high sampling intensity (~ 1 sample per ha) was the highest-ranking 
sampling intensity for the management zone classification accuracy (Table 7). These results 
align with other studies that evaluated the effect of sampling intensities on predication accu-
racy of various soil properties using kriging (Saurette et al., 2022; Li, 2010). For SS maps 
with pyroxasulfone, the medium sampling intensity had an identical frequency for hav-
ing the highest management zone classification accuracy as the high sampling intensity. 
Overall, the low sampling intensity was unreliable for classifying management zones, par-
ticularly for s-metolachlor and metribuzin. By decreasing the number of samples used for 
kriging, each sample was interpolated to a larger surrounding area, ultimately, leaving more 
room for error when predicting the appropriate management zone. Additionally, it was chal-
lenging to get a well fitted semivariogram model for clay, silt, sand, and OM content (see 
Appendix B: Table B3 and Table B4 in Supplemental Information). Even at a high sampling 
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intensity (15 to 24 samples depending on field size), the number of samples used for krig-
ing were lower than what is recommended for interpolating soil variables at a field-scale 
level (Saurette et al., 2022; Brouder et al., 2005; Kerry et al., 2010). Further research should 
investigate sampling intensities covering less than 1 ha per sample to determine if sampling 
intensities greater than what was tested in this study can provide better management zone 
classification accuracy.

Although the reliability of the management zone classification was the greatest at the 
high sampling intensity, there were several scenarios where management zone classification 
accuracy was not impacted by sampling intensity. The factors contributing to these results 

Table 8  Frequency of individual source of spatial soil data with the highest ranking for accuracy across all 
combinations of herbicide and sampling intensity for all fields, and fields grouped by similar characteristics²
Source Frequency of highest management zone classification accuracy by field grouping

All fields¹ Group 1 Group 2 A Group 2B Group 3
% of total observations

SS 72 59 94 92 58
SSEC 79 85 70 83 100
SSURGO 33 24 21 17 33
SSSF -- -- -- -- 75
SSECSF -- -- -- -- 75
¹ Field Group 1: fields that have a significant relationship between electrical conductivity and organic 
matter data; Field Group 2 A: fields without a relationship between electrical conductivity and organic 
matter data, Field Group 2B: All group 2 A fields excluding St. Joseph County; Field Group 3: fields with 
organic matter data from planter-mounted VNIR sensor.
² The frequency of an individual source of spatial soil data having with the greatest accuracy was determined 
by quantifying the number of observations denoted with an “a” from Tukey- Kramer’s HSD from Appendix 
C: Table C3-C5 in Supplemental Information and dividing by the total number of observations of 87, 54, 
33, 24, and 12 for All Fields, Group 1, Group 2 A, Group2B, and Group 3, respectively.

Herbicide Source³ Highest management zone clas-
sification accuracy frequency by 
sampling intensity²
Low² Medium High

% of fields
pyroxasulfone SS 80 90 90

SSEC 60 70 90
s-metolachlor SS 20 80 100

SSEC 30 90 100
metribuzin SS 50 60 90

SSEC 40 80 100
¹ For each herbicide, the frequency of an individual sampling intensity 
having with the greatest accuracy was determined by quantifying the 
number of fields denoted with an “A” from Tukey- Kramer’s HSD 
from Appendix C: Table C3-C5 in Supplemental Information and 
dividing by the field sample size of 9, 10, and 10 for low, medium, and 
high sampling intensities, respectively.
²Low, medium, and high sampling intensity means each sample 
covers approximately 4-, 2-, and 1 ha, respectively.
³ Abbreviations; SS, soil samples alone; SSEC, soil samples with 
electrical conductivity (EC) data.

Table 7  Frequency of individual 
sampling intensity having the 
most accurate management zone 
classification accuracy across 
all fields¹
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include: (1) the level of spatial soil variability present within a field and (2) the possible 
number of management zones on the herbicide label. There were three fields that saw no dif-
ference in management zone classification accuracy across all sampling intensities: Daviess, 
Franklin, and Rush 2 County field (see Appendix C: Table C3 in Supplemental Informa-
tion). These three fields had very little spatial variability for HTC which resulted in similar 
management zone classification accuracies across all sampling intensities. Franklin County 
field was the only location that was not impacted by sampling intensity for pyroxasulfone, 
s-metolachlor, and metribuzin (see Appendix C: Table C3 through Table C5 in Supplemen-
tal Information). This resulted from Franklin County field being nearly homogeneous in 
both soil texture (100% of field was medium HTC) and OM (1.1–2.7% OM). Therefore, 
a VR application would only be required for metribuzin at the Franklin County field. The 
herbicide that was impacted the least by sampling intensity was pyroxasuflone since man-
agement zones were defined by soil texture only. Despite finding some scenarios where 
lower sampling intensities can provide similar management zone classification accuracies 
as the high sampling intensity, there is no way of knowing whether a low or medium sam-
pling intensity will provide enough spatial soil data for VR residual herbicide applications 
without physically taking all the soil samples at a higher sampling intensity. Another chal-
lenge with intensive soil sampling for VR residual herbicide applications is cost. Current, 
intensive soil sampling methods are generally collecting soil samples for a basic soil analy-
sis which includes data on OM, soil pH, buffer pH, cation exchange capacity, and select 
macronutrients. The methods used in this study require soil analysis on soil particle size 
which is approximately double the cost of a basis soil analysis. However, the cost for soil 
particle size analysis is a one-time expense since soil texture changes very little over time.

Management zone classification accuracy across source

Across all fields, SSEC was more frequently among the highest-ranking sources for clas-
sifying all herbicide management zones and sampling intensities than SS and SSURGO 
(SSEC = 79%, SS = 72%, and SSURGO = 33%; Table 8). The SS and SSEC maps were con-
currently highest-ranking sources 34% of the time (data not shown). Since the relationship 
of the soil variables (target variables) to the ECa data (auxiliary variable) has been proven to 
influence the predictive accuracy of regression kriging, the fields were split into two groups 
based on the results of the correlation analysis (Table 9). Group 1 contained all the fields 
that had a significant relationship between ECa and OM which included Benton, Daviess, 

Field Clay content Organic matter
r R2 r R2

Benton County 0.78* 0.61 0.81* 0.66
Daviess County 0.8* 0.64 0.78* 0.6
Franklin County 0.32* 0.1 0.45* 0.2
Fulton County 0.52* 0.27 0.44* 0.2
Johnson County 1 0.72* 0.51 0.15 0.02
Johnson County 2 0.34* 0.11 0.09 0.01
Rush County 1 0.75* 0.57 0.50* 0.24
Rush County 2 0.5* 0.25 -0.02 0.0
St. Joseph County -0.13 0.02 -0.13 0.02
Warren County 0.37* 0.14 0.50* 0.25

Table 9  Pearson correlation 
coefficient (r) and coefficient of 
determination (R2) between ap-
parent electric conductivity and 
clay content or organic matter 
(n = 60)¹

¹Significance (*) at an alpha 
level of 0.05.
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Fulton, Franklin, Rush 1, and Warren County fields. From this group of fields, SSEC was 
the most accurate source nearly 25% and 60% more than SS and SSURGO, respectively 
(Table 8).

The correlation analysis also indicated that four out of the ten fields did not have a 
relationship between ECa and OM content (Johnson 1, Johnson 2, Rush 2, and St. Joseph 
County fields). When there was not a significant relationship between ECa and OM, the 
frequency of SS maps being ranked the most accurate source was greater than SSEC maps 
(94% and 70%, respectively; Group 2 A fields in Table 8). However, this large difference 
between SS and SSEC maps in the Group 2 A fields was largely influenced by one field, St. 
Joseph County, which did not have a significant relationship between clay or OM content 
with the ECa data. The lack of relationship between clay and OM content could possibly be 
from the low clay content (< 23% clay content) and the wide range in OM levels (1.8–52.6% 
OM). Together, these soil conditions could have negatively impacted the relationship to the 
ECa data. Other soil variables such as soil moisture could have affected the relationship, 
however, we are unable to determine the impact of soil moisture on ECa since spatial soil 
moisture data was not collected. When the St. Joseph field was excluded, the frequency of 
each source having the highest classification accuracies was 92% for SS maps followed by 
83% for the SSEC maps. Additionally, the SS and SSEC maps were concurrently among 
the most accurate sources 75% of the time for Group 2B (data not shown). Including ECa 
data in map development when neither clay nor OM content have a relationship to EC could 
increase the risk of misclassifying management zones and reduce the overall classifica-
tion accuracy for VR residual herbicides. However, the only way to know whether the soil 
parameters will have a relationship to ECa is by collecting the data first. This would have a 
negative financial impact to the growers since they risk paying for data that is not needed. 
For the two fields with SF OM data (Group 3), the SSSF and SSECSF were the most accu-
rate source 75% of the time. Similar to Group 2 A fields, the Franklin and Rush 1 County 
fields had the highest management zone classification accuracy with SSEC maps more fre-
quently than the SS maps. Both fields have significant relationships of clay and OM content 
with ECa (Table 9), which could contribute to the improved management zone classification 
accuracy with the SSEC maps.

Overall, soil samples alone were reliable for classifying management zones for pyroxas-
ulfone, s-metolachlor, and metribuzin. The risk of reducing the management zone classifica-
tion accuracy by including the ECa data with soil samples is less than 20% and 86% of the 
time SSEC maps achieve similar or better classification accuracies compared to SS maps 
(data not shown).

Management zone classification accuracy across herbicides

In general, as the number of possible management zones on the herbicide label increased, 
the classification accuracy decreased, resulting in lower classification accuracies for 
metribuzin that has a possibility of ten different management zones (Table 10). There were 
a few instances where the classification accuracy increased between s-metolachlor and 
metribuzin: Rush 1 County with SS, SSEC, SSSF, and SSECSF; Rush 2 County with SS and 
SSEC; and Warren County with SSURGO. Lower management zone classification accura-
cies for s-metolachlor were the result of the actual and predicted OM being at or near 3% 
OM, which is the cutoff defined on the herbicide label (Table 2). Interestingly, many of the 
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Field Source³ Mean MZ classification accuracy by maximum number of manage-
ment zones²
3 6 10
(pyroxasulfone) (s-metolachlor) (me-

tribuzin)
(%)

Benton SSURGO 73 a 63 b 40 c
SS 63 a 58 b 35 c
SSEC 71 a 63 b 47 c

Daviess SSURGO 38 a 38 a 37 a
SS 100 a 93 b 72 c
SSEC 99 a 90 b 86 c

Franklin SSURGO 63 a 58 b 17 c
SS 83 a 83 a 44 b
SSEC 83 a 83 a 48 b
SSSF -- 83 a 45 b
SSECSF -- 83 a 46 b

Fulton SSURGO 70 a 68 a 37 b
SS 87 a 68 b 44 c
SSEC 83 a 70 b 42 c

Johnson 1 SSURGO 63 a 48 b 33 c
SS 81 a 63 b 52 c
SSEC 78 a 59 b 54 c

Johnson 2 SSURGO 43 a 43 a 27 b
SS 64 a 64 a 46 b
SSEC 67 b 70 a 49 c

Rush 1 SSURGO 63 a 58 a 17 b
SS 76 a 50 c 68 b
SSEC 77 a 58 c 68 b
SSSF -- 48 b 69 a
SSECSF -- 47 b 71 a

Rush 2 SSURGO 45 a 0.0 b 0.0 b
SS 55 a 31 b 53 a
SSEC 57 a 34 b 57 a

St. Joseph SSURGO 75 a 40 b 37 b
SS 80 a 73 b 57 c
SSEC 78 a 67 b 48 c

Warren SSURGO 23 a 10 c 20 b

Table 10  Mean management zone (MZ) classification accuracy¹ for herbicides with a different number of 
unique soil parameters for a specific application rate: pyroxasulfone (3), s-metolachlor (6), and metribuzin 
(10)

1 3



Precision Agriculture

predicted OM levels were less than 0.25% OM different from the actual OM levels (data 
not shown). Although, the intra-field soil variability can be extremely small, there is still a 
risk of reducing the herbicide efficacy and crop safety by applying a uniform application. 
Previous research has shown that when a pendimethalin application rate for coarse soil was 
selected and applied across three different soil types (coarse with 1.9% OM, medium with 
2.4% OM, and medium with 6.2% OM), the percent of weed control was 94%, 77% and 
57%, respectively (Metcalfe et al., 2018). The soils with higher clay content and organic 
matter did not receive a high enough dose to achieve effective weed control. However, 
when the application rate was selected based on the medium texture soils, the percent weed 
control was increase to 91% and 82% on the medium soils with 2.4% and 6.2% OM, respec-
tively. This demonstrates that weed control can be optimized when soil residual herbicide 
rates were selected based on the soil properties.

Conclusions

For this study, we focused on the impact that the source of spatial soil data, sampling inten-
sity, and herbicide label have on the accuracy of delineating the management zones for VR 
residual herbicide applications. Our study validates that commercial fields have inherent 
field variability that translates to multiple management zones for soil residual herbicide 
applications. For developing the management zones for VR residual herbicide applications, 
the highest management zone classification accuracies and lowest RMSE for the OM pre-
dictions occurred most frequently with a high sampling intensity of approximately one sam-
ple per hectare. However, the low and medium sampling intensities often provide similar 
management zone classification accuracy as the high sampling intensity.

Additionally, management zones delineated from SSEC maps had higher prediction 
accuracy with the HTC, lower RMSE with the OM predictions, and were most frequently 
the most accurate sources of spatial soil data for herbicide management zone classification. 

Field Source³ Mean MZ classification accuracy by maximum number of manage-
ment zones²
3 6 10
(pyroxasulfone) (s-metolachlor) (me-

tribuzin)
(%)

SS 59 a 46 b 45 b
SSEC 66 a 53 b 42 c

¹ The mean classification accuracy is the average percent of validation samples that were correctly 
predicted from the maps developed from each source of spatial soil data.
² For each field, the classification accuracy was averaged across sampling intensity for each herbicide 
x source combination. Classification accuracy means within a row followed by the same letter are not 
significantly different according to Tukey’s HSD (α = 0.05).
³ Abbreviations: SSURGO, Soil Survey Geographic Database, SS, soil samples alone, SSEC, soil samples 
with electrical conductivity (EC) data, SSSF, soil samples with organic matter data from planter-mounted 
visible and near-infrared (VNIR) sensor, SSECSF, soil samples with EC plus with planter-mounted VNIR 
sensor organic matter data. Sample size equals 120 for SS, SSEC, SSSF, and SSECSF for each herbicide 
and 2 for SSURGO for each herbicide.

Table 10  (continued) 
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The inclusion of ECa data provided increased or similar classification accuracy compared to 
the SS maps 86% of the time. Therefore, the addition of ECa data is encouraged whenever 
there is a relationship to at least clay content, to capture the variability that is not provided 
by soil samples alone. However, since there is no way to know whether the ECa and soil 
parameters will have a relationship, there is a small risk that inclusion of the ECa data 
could lower the management zone classification accuracy. Although the OM predictions 
from the planter-mounted VNIR sensor underestimated the true OM level more than SS and 
SSEC prediction, this technology or future adaptations of these sensors, may provide a cost-
effective alternative for the purpose of developing prescription maps for VR soil residual 
herbicides. Lastly, we recommend that SSURGO data be avoided for variable-rate residual 
herbicide applications since that data was consistently unreliable for spatial soil data when 
developing herbicide management zones, especially for soil OM content.

Future considerations

These data have shown that the spatial soil variability within Indiana fields justifies VR 
residual herbicide applications. Further investigation should focus on determining if the 
rates on the herbicide label vary enough to justify VR residual herbicides in terms of eco-
nomics and field performance of the VR herbicide applications for weed control and crop 
safety. As shown in Table 2, some herbicide management zones share similar rate struc-
tures meaning that a field may be treated as a uniform application despite having mul-
tiple management zones. The VR application of certain soil residual herbicides may be a 
significant opportunity to enhance weed management and reduce environmental impact. 
However, some herbicides with few management zones on the product label and overlap-
ping herbicide rate ranges across the listed management zones on the label may limit the 
utility and impact of VR applications. Thus, herbicides with the greatest range in application 
rate across the labeled management zones (e.g. metribuzin) should be the target for further 
research and potential commercial adoption.

Additionally, conservative parameters were used on the semivariograms for ordinary and 
regression kriging to ensure computation efficiency for the thousands of maps developed 
for this study. Overall, the conservative parameters resulted in poorly fitted semivariograms 
that lacked spatial autocorrelation which is important for regression kriging. This was espe-
cially noticeable at the low sampling intensity. However, training set D in Supplemental 
Information Figure B4 shows that the gaussian semivariogram was well fitted but had no 
impact on the management zone classification accuracy. It may be possible that the manage-
ment zone classification accuracy was impacted by the samples selected with the training set 
more than the variogram model. More research is needed on the semivariogram parameters 
and/or alternative models to fully understand the potential impact of semivariograms on VR 
residual herbicide management zones.

Regarding the spatial data provided by the planter-mounted VNIR sensor, additional 
research should be conducted to determine whether the soil moisture and temperature data 
collected simultaneously with the OM data can be used as an auxiliary variable for regres-
sion kriging when delineating management zones for VR residual herbicide applications.

Supplementary Information  The online version contains supplementary material available at https://doi.
org/10.1007/s11119-024-10130-3.

1 3

https://doi.org/10.1007/s11119-024-10130-3
https://doi.org/10.1007/s11119-024-10130-3


Precision Agriculture

Acknowledgements  Thank you to all farmers who showed their support and collaboration through field 
space and data sharing which were instrumental for this study.

Funding  This work was partially funded by the USDA-National Institute of Food and Agriculture, Hatch 
Project 7000862.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons 
licence, and indicate if changes were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. 
If material is not included in the article’s Creative Commons licence and your intended use is not permitted 
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Adhikari, K., Carré, F., Tóth, G., & Montanarella, L. (2009). Site Specific Land Management General con-
cepts and applications, EUR 23978 EN. European Commission.

Anderson-Cook, C. M., Alley, M. M., Roygard, J. K. F., Khosla, R., Noble, R. B., & Doolittle, J. A. (2002). 
Differentiating soil types using electromagnetic conductivity and crop yield maps. Soil Science Society 
of America Journal, 66, 1562–1570.

Anonymous (2022a). Dual II Magnum herbicide label. Syngenta. Retrieved on January 30, 2021, from 
https://www.cdms.net/ldat/ld0G6011.pdf.

Anonymous (2022c). Zidua herbicide label. BASF. Retrieved on January 30, 2021, from https://www.cdms.
net/ldat/ldAMK018.pdf.

Anonymous (2022b). Tricor DF herbicide label. UPL NA. Retrieved on January 30, 2021, from https://www.
cdms.net/ldat/ld8CD012.pdf.

Armel, G. R., Wilson, H. P., Richardson, R. J., & Hines, T. E. (2003). Mesotrione, acetochlor, and atrazine for 
weed management in corn (Zea mays). Weed Technology, 17, 284–290.

Berrar, D. (2019). Cross-validation. In S. Ranganathan, M. Gribskov, K. Nakai, & C. Schonbach (Eds.), 
Encyclopedia of bioinformatics and computational biology. Academic Press.

Broge, N. H., Thomsen, A. G., & Greve, M. H. (2004). Prediction of topsoil organic matter and clay content 
from measurements of spectral reflectance and electrical conductivity. Acta Agriculturae Scandinavica 
Section B – Soil & Plant Science, 54(4), 232–240.

Brouder, S. M., Hofmann, B. S., & Morris, D. K. (2005). Mapping Soil pH. Soil Science Society of America 
Journal, 69(2), 427–442.

Chabala, L. M., Mulolwa, A., & Lungu, O. (2017). Application of ordinary kriging in mapping soil organic 
carbon in Zambia. Pedosphere, 27(2), 338–343.

Combs, S. M., & Nathan, M. V. (2012). Chap. 12: Soil Organic Matter. In Grafton K (Ed.). Recommended 
Chemical Soil Test Procedures for the North Central Region 221, (pp. 1–3).

Conway, L. S., Sudduth, K. A., Kitchen, N. R., Anderson, S. H., Veum, K. S., & Myers, D. B. (2022). 
Soil organic matter prediction with benchtop and implement-mounted optical reflectance sensing 
approaches. Soil Science Society of America Journal, 86(6), 1379–1706.

Corwin, D. L., & Lesch, S. M. (2005). Apparent soil electrical conductivity measurements in agriculture. 
Computers and Electronics in Agriculture, 46(1–3), 11–43.

Dill, G. M., CaJacob, C. A., & Padgette, S. R. (2008). Glyphosate-resistant crops: Adoption, use and future 
considerations. Pest Management Science, 64(4), 326–331.

Doolittle, J. A., Indorante, S. J., Potter, D. K., Hefner, S. G., & McCauley, W. M. (2002). Comparing three 
geophysical tools for locating sand blows in alluvial soils of southeast Missouri. Journal of Soil and 
Water Conservation, 57(3), 175–182.

Green, R. E., & Obien, S. R. (1969). Herbicide equilibrium in soils in relation to soil water content. Weed 
Science, 17, 514–519.

Grey, T. L., Cutts, I. I. I. G. S., Newsome, L. J., Newell, & III N.S. (2013). Comparison of pyroxasulfone to 
soil residual herbicides for glyphosate resistant palmer amaranth control in glyphosate resistant soy-
beans. Crop Management, 12(1), 1–6.

Gundy, G. J., & Dille, A. J. (2022). Implementing variable-rate herbicide applications based on soil physical 
properties in grain sorghum. Precision Agriculture, 23, 768–790.

1 3

http://creativecommons.org/licenses/by/4.0/
https://www.cdms.net/ldat/ld0G6011.pdf
https://www.cdms.net/ldat/ldAMK018.pdf
https://www.cdms.net/ldat/ldAMK018.pdf
https://www.cdms.net/ldat/ld8CD012.pdf
https://www.cdms.net/ldat/ld8CD012.pdf


Precision Agriculture

Hartzler, R. G., Fawcett, R. S., & Owen, M. D. K. (1989). Effects of tillage on trifluralin residue carryover 
injury to corn (Zea mays). Weed Science, 37, 609–615.

Heap, I. (2014). Herbicide resistant weeds. In D. Pimentel, & R. Peshin (Eds.), Integrated Pest Management. 
Springer.

Heap, I. (2024). The International Herbicide-Resistant Weed Database. Retrieved on January 27, from www.
weedscience.org.

Hengl, T., Heuvelink, G. B. M., & Rossiter, D. G. (2007). About regression-kriging: From equations to case 
studies. Computers & Geosciences, 33(10), 1301–1315.

Hijmans, R. J. (2022). Raster: Geographic Data Analysis and Modeling. R package version 3.6-3.0 https://
CRAN.R-project.org/package=raster.

Johnson, W. G., Chahal, G. S., & Regehr, D. L. (2012). Efficacy of various corn herbicides applied preplant 
incorporated and preemergence. Weed Technology, 26, 220–229.

Kerry, R., Oliver, M. A., & Frogbrook, Z. L. (2010). Sampling in precision agriculture. In M. Oliver (Ed.), 
Geostatistical applications of precision agriculture (pp. 35–63). Springer.

Knezevic, S. Z., Datta, A., Scott, J., & Porpiglia, P. J. (2009). Dose-response curves of KIH-485 for preemer-
gence weed control in corn. Weed Technology, 23, 34–39.

Knotters, M., Brus, D. J., & Oude Voshaar, J. H. (1995). A comparison of kriging, co-kriging, and kriging 
combined with regression for spatial interpolation of horizon depth with censored observations. Geo-
derma, 67, 227–246.

Kumar, K., Gambhir, G., Dass, A., Tripathi, A. K., Singh, A., Jha, A. K., Yadava, P., Choudhary, M., & Rak-
shit, S. (2020). Genetically modified crops: Current status and future prospects. Planta, 251, 91.

Kurt, D. N. (2011). The integration of variable rate technologies for a soil-applied herbicide in leafy green 
production. Journal of Soil Science and Environmental Management, 2, 159–166.

Lange, A. F., & Peake, J. (2020). Precision Agriculture. In J. T. Morton, van F. Diggelen, J. J. Spilker Jr., 
B. W. Parkinson, S. Lo, & G. Gao (Eds.), Position, Navigation, and Timing Technologies in the 21st 
Century (pp. 1735–1747). Wiley.

Li, Y. (2010). Can the spatial prediction of soil organic matter contents at various sampling scales be improved 
by using regression kriging with auxiliary information? Geoderma, 159, 63–75.

Liu, F., Nie, P., He, X., & Liu, X. (2021). Soil information sensing technology. In Y. He, P. Nie, Q. Zhang, & 
F. Liu (Eds.), Agricultural internet of things. Agriculture Automation and control. Springer.

Metcalfe, H., Milne, A. E., Hull, R., Murdoch, A. J., & Storkey, J. (2018). The implications of spatially vari-
able pre-emergence herbicide efficacy for weed management. Pest Management Science, 74, 755–765.

Meul, M., & Van Meirvenne, M. (2003). Kriging soil texture under different types of nonstationarity. Geo-
derma, 112, 217–223.

Minasny, B., & McBratney, A. B. (2005). The Matern function as a general model for soil variograms. Geo-
derma, 128(3–4), 192–207.

Mouazen, A. M., Alexandridis, T., Buddenbaum, H., Cohen, Y., Moshou, D., Mulla, D., Nawar, S., & Sud-
duth, K. A. (2020). Chap. 2-Monitoring. Agricultural internet of things and decision support for Preci-
sion Smart Farming (pp. 35–138). Academic.

Nawar, S., Corstanje, R., Halcro, G., Mulla, D., & Mouazen, A. M. (2017). Chapter four-delineation of Soil 
Management zones for variable-rate fertilization: A review. Advances in Agronomy, 143, 175–245.

Nelson, D. W., & Sommers, L. E. (1983). Total Carbon, Organic Carbon, and Organic Matter. Methods of Soil 
Analysis: Part 2 Chemical and Microbiological Properties, 9, 539–579.

Norsworthy, J. K., Ward, S. M., Shaw, D. R., Llewellyn, R. S., Nichols, R. L., Webster, T. M., Bradley, K. 
W., Frisvold, G., Powles, S. B., Burgos, N. R., Witt, W. W., & Barrett, M. (2012). Reducing the risks 
of herbicide resistance: Best management practices and recommendations. Weed Science, 60, 31–62.

Pebesma, E. (2018). Simple features for R: Standardized support for spatial Vector Data. The R Journal, 
10(1), 439–446.

Pribyl, D. W. (2010). A critical review of the conventional SOC to SOM conversion factor. Geoderma, 156, 
75–83.

Priess, G. L., Norsworthy, J. K., Godara, N., Mauromoustakos, A., Butts, T. R., Roberts, T. L., & Barber, T. 
(2022). Confirmation of glufosinate-resistant Palmer amaranth and response to other herbicides. Weed 
Technology, 36(3), 368–372.

R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical 
Computing. Vienna, Austria. https://www.R-project.org/.

Ramezan, C. A., Warner, T. A., & Maxwell, A. E. (2019). Evaluation of sampling and cross-validation tuning 
strategies for regional-scale machine learning classification. Remote Sensing, 11(2), 185.

Saurette, D. D., Berg, A. A., Laamrani, A., Heck, R. J., Gillespie, A. W., Voroney, P., & Biswas, A. (2022). 
Effects of sample size and covariate resolution on field-scale predictive digital mapping of soil carbon. 
Geoderma, 425.

1 3

http://www.weedscience.org
http://www.weedscience.org
https://CRAN.R-project.org/package=raster
https://CRAN.R-project.org/package=raster
https://www.R-project.org/


Precision Agriculture

Soil Survey Staff (2021). Natural Resources Conservation Service, United States Department of Agriculture. 
Web Soil Survey, Retrieved on Februrary 15, 2021, from http://websoilsurvey.sc.egov.usda.gov/.

Soil Science Division Staff. (2017). Soil survey manual. In C. Ditzler, K. Scheffe, & H. C. Monger (Eds.), 
USDA Handbook 18. Government Printing Office.

Soil Survey Staff. (1999). Soil taxonomy: A Basic System of Soil classification for making and interpret-
ing soil surveys, Natural resources Conservation Service (2nd ed.). U.S. Department of Agriculture 
Handbook.

Szmigielski, A. M., Schoenau, J. J., Johnson, E. N., Holm, F. A., Sapsford, K. L., & Liu, J. (2009). Develop-
ment fo a laboratory bioassay and effect of soil properties on sulfentrazone phytotoxicity in soil. Weed 
Technology, 23, 486–491.

Webster, R., & Oliver, M. A. (1992). Sample adequately to estimate variograms of soil properties. Journal 
of Soil Science, 43, 177–192.

Williams, I. I., M.M., & Mortensen, D. A. (2000). Crop/Weed outcomes from Site-Specific and Uniform Soil-
Applied Herbicide Applications. Precision Agriculture, 2, 377–388.

Young, B. G. (2006). Changes in herbicide use patterns and production practices resulting from glyphosate-
resistant crops. Weed Technology, 20(2), 301–307.

Zhu, Q., & Lin, H. S. (2010). Comparing ordinary Kriging and regression kriging for Soil properties in con-
trasting landscapes. Pedosphere, 20(5), 594–606.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Authors and Affiliations

Rose V Vagedes1  · Jason P Ackerson2  · William G Johnson1  · Bryan G Young1

	
 Rose V Vagedes
rvagedes@purdue.edu

1	 Purdue University, West Lafayette, IN, USA
2	 Soil Health Institute, Morrisville, NC, USA

1 3

http://websoilsurvey.sc.egov.usda.gov/
http://orcid.org/0000-0002-1241-1072
http://orcid.org/0000-0001-8123-0200
http://orcid.org/0000-0001-9145-1058
http://orcid.org/0000-0001-8373-4840

	﻿Management zone classification for variable-rate soil residual herbicide applications
	﻿Abstract
	﻿Introduction
	﻿Methods and geostatistical analysis
	﻿Data collection
	﻿Map development
	﻿Selecting samples for testing and map development (Fig. ﻿4﻿: steps 1 and 2)
	﻿Creating soil texture and organic matter layers (Fig. ﻿4﻿: step 3)
	﻿Classifying soil texture and organic matter layers (Fig. ﻿4﻿: step 4 and 5)
	﻿Validating map accuracies and resampling (Fig. ﻿4﻿: step 6–8)


	﻿Statistical analysis
	﻿Results and discussion
	﻿Soil texture type (STT) and herbicide textural class (HTC) predictions
	﻿Organic matter predictions
	﻿Management zone classification
	﻿Management zone classification accuracy across sampling intensity
	﻿Management zone classification accuracy across source
	﻿Management zone classification accuracy across herbicides


	﻿Conclusions
	﻿Future considerations
	﻿References


