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Abstract
Crop growth models such as DSSAT-CERES-Maize have proven to be useful for analysing 
plant growth and yield within homogenous land units. The paper presents results of newly 
developed model-based site-specific Soil Profile Optimisation (SPO) tools in combination 
with an updated version of an already published Nitrogen Prescription Model (NPM). Site-
specific soil profiles were generated through an inverse modelling approach based on meas-
ured site-specific yield (point-based) and tops weight (above-ground biomass time-series) 
and evaluated. Site-specific soil profiles generated based only on measured yield variabil-
ity were able to explain 72%  (R2 0.72) of yield variability (dependent variable) based on 
selected soil profile input parameters (independent variable). Site-specific soil profiles 
generated based on measured yield and tops variability simultaneously (multiple target 
variable) explained 68% of yield variability  (R2 0.68). The NPM uses the SPO generated 
site-specific soil profiles for economic evaluation of site-specific N application rates. NPM 
simulated N application rates, aiming at the maximisation of marginal net return (MNR) 
were 25% lower compared to the uniform N application rates with an assumed grain and 
N price of 0.17 and 0.3 Euro  kg−1 respectively, under rainfed conditions over three years 
based on soil profiles generated via an inverse modelling approach only from measured 
yield variability (one target variable). N application rates were 28% lower when based 
on soil profiles generated from simultaneously included grain and tops variability in the 
inverse modelling approach. The results highlight the importance of site-specific fertilizer 
management when maximising MNR.

Keywords DSSAT-CERES-Maize · Site-specific N management · Marginal net return

 * E. Memic 
 emir.memic@uni-hohenheim.de

1 Agronomy, University of Hohenheim, Stuttgart, Germany

http://orcid.org/0000-0002-0184-5481
http://crossmark.crossref.org/dialog/?doi=10.1007/s11119-024-10126-z&domain=pdf


 Precision Agriculture

1 3

Introduction

Maize production in Germany plays an important role in society. Aspirations towards 
plant-based renewable energy supported under the German Renewable Act had an essential 
impact on maize production while increasing the negative side pressure on the environment 
(Theuerl et al., 2019). Maize production relies heavily on the use of nitrogen (N) fertilizer 
for attaining higher yield. Due to problems in the production and supply of N-based ferti-
lizer caused by the coronavirus and the war in Ukraine, prices got unpredictable, with prac-
tical implications on maize production for food or energy. Basic premise of Precision Agri-
culture (PA) and site-specific management of agricultural production inputs (e.g. nitrogen 
fertiliser) is to maximise marginal net return (MNR) while taking in-field heterogeneity 
into account. Site-specific units do not necessarily have to be “truly” homogenous in every 
sense, but homogenous enough to be uniformly treated in practice. Hence, it is important 
to have means for quantifying the degree of in-field homogeneity/heterogeneity. Historical 
data of site-specific yield mapping can be a useful indicator of in-field heterogeneity.

Crop growth models are mathematical models that simulate plant growth based on inter-
action of genetics, environment and management practices on a daily basis in order to sim-
ulate in-season biomass accumulation and partitioning among different plant organs (Boote 
et  al., 2010; Hoogenboom et  al., 2019). Plant growth is simulated on a daily basis from 
planting to harvest as a function of specific environmental factors such as solar radiation, 
temperatures, precipitation, and agricultural production inputs used in crop production. 
Crop growth models were originally developed for simulating crop growth on a field scale, 
but are being adapted to work at site-specific level (Batchelor et al., 2002; Gobbo et al., 
2022; Paz et al., 1999; Thorp et al., 2008), due to availability of more detailed information 
measured on site-specific scale (sensor-based) and importance of smaller scales in maxim-
ising yield and MNR of already highly productive crop production. Crop growth models 
offer a unique overview of most factors affecting crop growth and production within the 
framework of yield defining factors (potential yield) with respect to yield limiting factors 
(water and nutrients) and reducing factors (pests, leaf diseases etc.). Crop growth models 
are commonly used for evaluating specific management practice impacts on plant develop-
ment and yield on a field scale (homogeneous land unit). Thus, in-field site-specific hetero-
geneity (e.g., heterogenous soil properties) is often averaged to reflect field scale (a form 
of field-specific soil characterisation). This approach is acceptable for demonstrating the 
general impact of specific management decisions (e.g. planting date, amount of fertiliser 
etc.) on a field scale and in cases where the field is relatively homogeneous. More gen-
erally, field-scale approaches use field-specific soil characterisation and initial conditions 
for simulating field-specific yields. Here, the entire field is assumed to be a homogeneous 
land area unit. Site-specific yield variability is relatively easily quantifiable with on-board 
sensors mounted on combine harvesters with relatively low costs for data acquirement. 
In cases where in-field soil heterogeneity is present and results in site-specifically vari-
able yield, field specific soil profiles (one soil profile in crop model input) are not able to 
capture and explain the measured yield variability. In order to capture and explain in-field 
yield variability either site-specific soil measurements have to be conducted or an inverse 
crop modelling approach can be used for deriving site-specific soil profiles (Braga & Jones, 
2004). Within this study, the DSSAT-CERES-Maize crop growth model (Hoogenboom 
et al., 2021; Jones et al., 2003) was used for evaluating specific aspects of N fertiliser as 
yield limiting factor under rainfed conditions (observed). Based on the measured site-spe-
cific yield and above-ground biomass, in the current study more representative site-specific 
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soil profiles were derived with inverse modelling techniques based on a newly developed 
Soil Profile Optimisation tool (SPO) (Trenz et al., 2023). An updated version of the pub-
lished site-specific Nitrogen Prescription Model (NPM) (Memic et al., 2019) that uses SPO 
generated site-specific soil profiles was used for site-specific MNR maximising N prescrip-
tion sensitivity analysis based on grain and N fertiliser prices. The NPM tool was used for 
testing the following hypothesis: when compared to the common agricultural practice of 
uniform N application rate, variable N application rates are expected to lead to higher 
marginal net return while reducing the amount of applied N on site-specific level.

The hypothesis was tested through crop model-based evaluation of the economic impli-
cations of site-specific N management in maize, by comparing two different scenarios: (1) 
rainfed uniform N application (common agricultural practice), (2) rainfed MNR maximis-
ing N application rates based on NPM, with assumed grain and N prices 0.17 and 0.3 Euro 
 kg−1, respectively. The analysis was conducted based on different optimization strategies: 
site-specific soil characterization based on measured site-specific yield and above-ground 
biomass. The SPO tool was already made available at GitHub (https:// github. com/ memic 
emir). The NPM tool will be made available at the same GitHub account as soon as user 
guidelines are ready.

The paper is an extended version of the conference contribution presented at 14th Euro-
pean Precision Agriculture Conference in Bologna (Italy) in 2023 (Memic et al., 2023).

Materials and methods

Case study description—Riech field

Maize was planted in 2006, 2007 and 2008 at University of Hohenheim agricultural 
research station Ihinger Hof (Germany). The field was divided into 80 site-specific units 
(0.125 ha) to investigate the potential of variable N management. Variable N management 
was compared to a control treatment representing the common farmers’ N management 
practice of 160 kg N  ha−1 (uniform N application of 30 kg N shortly before planting and 
130 kg N  ha−1 approximately two weeks after planting) (Link et al., 2013). Size and posi-
tioning of designated site-specific units were kept constant over three years. Yield was 
measured site-specifically with yield mapping technology on a combine harvester over 
three years. In addition, above-ground biomass sample cuts were made three times in 20 
site-specific units during the vegetation period, at 4th leaf stage (BBCH 14), flowering 
(BBCH 65) and at maturity (BBCH 90), for additional crop model evaluation (Link et al., 
2013) over three years. The focus of this study was kept on these 20 site-specific units 
due to availability of the destructively collected biomass-related samples. The soil at the 
experimental site, as determined based on soil texture analysis, was characterised as heavy 
calcareous brown earth. This soil contains high clay and silt amounts (Link et al., 2013). 
20 site-specific units investigated within the current study were classified as silty clay and 
silty clay loam with 7.2 pH and average soil organic matter being 2.6%. Weather data was 
collected at a weather station located at Ihinger Hof. Soil preparation, planting, harvest, 
fertiliser and plant protection management was conducted according to common agricul-
tural practice at the time (for more information refer to Link et al., 2013). The precipitation 
patterns of the three seasons are shown in a form of cumulative amount in mm as days after 
planting Fig. 1.

https://github.com/memicemir
https://github.com/memicemir


 Precision Agriculture

1 3

Site‑specific soil characterisation—invers modelling

The SPO allows users to optimise soil profile parameters in the standard DSSAT soil pro-
file. The software offers the capability to optimise parameters, both those defined for the 
entire soil profile (e.g. runoff curve) and layer-based parameters (e.g. soil water lower limit, 
upper limit, root growth factor, etc.) (Trenz et al., 2023). Soil profile characterisation used 
in DSSAT models is commonly conducted based on measurements of soil texture, bulk 
density etc., which are then used for estimating soil layer-based water lower limit, upper 
limit, etc. based on pedo-transfer functions (Saxton et al., 1986).The pedo-transfer function 
approach is commonly used due to costly and labours nature of acquiring soil related data 
required for crop modelling. Because of this minimum input data approach (only soil tex-
ture), potential uncertainty may occur in pedo-transfer function-based soil input parameters 
that might be improved indirectly based on indicators easier to measure. The SPO approach 
enables the user to adjust soil layer-based parameters affecting soil water holding capacity 
estimated based on pedo-transfer functions, to a certain degree. For this study, soil water 
lower limit (SLLL), root growth factor (SRGF) and runoff curve (SLRO) were targeted for 
optimisation in 20 site-specific units over three years, due to available site-specific yield 
and tops (above-ground biomass) measurements.

In order to set an inverse modelling technique into place, it was assumed that measured 
crop data could indirectly provide insight into soil water holding capacity and thus contrib-
ute to the explanation of measured yield variability by minimising the difference between 
simulated and measured yield and tops weight at site-specific level (Trenz et  al., 2023). 
The inverse modelling approach implemented in the SPO tool enables users to use all avail-
able measured in-season above-ground biomass data (e.g. leaf area index, canopy weight, 
leaf weight, etc.). Normalised root mean square error minimisation technique implemented 
in Time-Series cultivar coefficient Estimation tool for DSSAT (Memic et  al., 2021) was 
implemented in SPO as it enables the use of measured plant biomass (destructive sam-
pling) or sensor data with different unit scales as target variable for estimating indirectly 
specific crop model input parameters from observations (multiple target variables).

The user can use a field-specific soil profile and modify it with SPO to provide a better 
statistical fit based on measured site-specific yield or other crop variables on a site-specific 
level. The main premise of site-specific zone delineation is the creation of sub-field units 

Fig. 1  Cumulative precipitation [mm] observed at the local weather station (2006–2008)
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that are “homogenous” enough and can be treated in management practices homogenously. 
In cases when in-field soil heterogeneity is present and results in site-specifically variable 
yield, field specific soil profile (one soil profile in crop model input) is not able to capture 
and explain the yield variability measured (Fig. 2 a and b). In order to capture and explain 
in-field yield variability either site-specific soil measurements have to be conducted or an 
inverse crop modelling approach can be used for generating site-specific soil profiles based 
on measured yield variability. Based on the measurable end-of-season yield on site-spe-
cific level more representative site-specific crop model soil profiles can be generated with 
inverse modelling techniques (Fig. 2c).

Inverse modelling techniques can be depicted as optimisation of objective functions by 
means of input parameter sensitivity analysis based on measured variables (targets), which 
are easier attainable. The SPO is used for modifying specific soil profile parameters in the 
process of repetitive execution of the crop growth model and subsequent comparison and 
error minimization between simulations and measurements of target variables. A more 
detailed description of the SPO inverse modelling can be found in Trenz et al. (2023). For 
this study, in addition to the published grain target variable (end-of-season) approach in 
Trenz et al. (2023) tops weight target variable (time-series) and a combination of the grain 
and tops weight target variables approach were investigated:

1. Target variable GRAIN (G)—end-of-season (point-based)
2. Target variable TOPS (T)—multiple in-season (time-series-based)
3. Target variables GRAIN and TOPS (G–T)—combination

Input parameters sensitivity analysis—exhaustive gridding

Technically speaking crop growth models are a set of equations describing the behav-
iour of specific natural phenomena (in this case plant) under specific conditions over 
time. Equations in crop growth models are commonly the result of direct measurements 
or regression-based correlations used for mimicking biomass accumulation and plant 
development in digital form. All equations used in crop models rely on input parameter 
values that can meaningfully reflect physical and physiological processes with respect to 
soil and atmosphere conditions. Due to the nature of correlation regressions and math-
ematical frameworks underlying the crop growth model, input parameters have limited 
range (minima and maxima range), if physics and physiology engraved in the crop mod-
elling algorithm are to be sustained. As a result, this means that pure mathematical fit 
cannot overrule basic agronomic restraints reflecting real natural phenomena (e.g., plant 

Fig. 2  Conceptual framework of transition from field-scale soil characterisation to site-specific soil charac-
terisation based on measured site-specific biomass variability
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growth and biomass accumulation). This means in concrete example of crop model-
ling that every input parameter has minimum and maximum input parameter values that 
have to be respected (e.g. input parameters defining size of a leaf have to obey observa-
tion-based minimum and maximum size). Due to crop model complexity, huge number 
of parameters with sometimes large gaps between minimum and maximum values of 
input parameters can result in extremely challenging sensitivity analysis and potential 
multiple optima solutions. The SPO algorithm was designed in a way that enables users 
to conduct semi-automatically sensitivity analysis of specific input parameters in a user-
friendly manner. Among various methods used for defining potential scenarios based on 
minima and maxima range, random probabilistic methods or exhaustive gridding meth-
ods can be used to explore how the algorithm reacts to changes in input values. Even 
though exhaustive gridding method is a primitive and deterministic approach (Duan 
et al., 1992) in search of optima it was selected for SPO algorithm because it enables the 
users to conduct more systemic sensitivity analysis of input parameters and their influ-
ence on output variables. If not used carefully exhaustive gridding method may lead to 
long time-consuming analysis due to amount of discretization steps for every parameter 
range (number of scenarios) and over-fitting of the data. However, if used strategically 
it can be fast (e.g. range reduction methods) and provide systemic insight into parameter 
sensitivity in more systemic way when compared to any other randomised or probabil-
istic methods. Two applications of exhaustive gridding method are shown in Table 1: 
high density (HD) (Trenz et al., 2023) and sufficient density (SD) of number of discre-
tization steps for demonstrating the meaning of the exhaustive gridding method with 
respect to number of scenarios resulting from minima and maxima range with respect 
to intermediate steps. The HD sensitivity analysis was published and described in detail 
by Trenz et al. (2023). As it can be seen in Table 1, primitive deterministic application 
of exhaustive gridding method with high density (HD) of discretization steps in specific 
range when considered in the context of three years (each year 20 site-specific units) 
will require crop model to be executed 196  800 times (60 × 3280). Further sufficient 
density (SD) of discretization steps range will require the model to be executed 11 340 
times (60 × 189). The number of executed scenarios have practical implications in the 
context of computational power and required time. For example, the values for SLLL in 
Table 1 and SPO interface are used as a form of multipliers which modify the available 
parameter values in crop model input files (Trenz et al., 2023). This means that if field 
scale SLLL (original SLLL) in the existing DSSAT soil profile is multiplied with 0.8, 

Table 1  Exhaustive gridding methods HD (Trenz et al., 2023) and SD with corresponding minima, maxima 
ranges based on discretization steps

Exhaustive gridding Param Minima Maxima Step # scenarios

High density (HD) SLRO 60 100 10 5
SLLL 0.8 1.2 0.01 41
SRGF 0.7 1.3 0.05 16

Total number 3280
Sufficient density (SD) SLRO 60 100 20 3

SLLL 0.8 1.2 0.05 9
SRGF 0.7 1.3 0.10 7

Total number 189
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0.85 etc., it is effectively reduced by 20%, 15% etc. Table 2 shows the process of input 
parameter sensitivity analysis in search of optima, as it was described in detail in Trenz 
et al., (2023).

In Fig.  3, specifically for SLLL parameter, this principle is shown graphically with 
respect to HD and SD number of sensitivity analysis scenarios described in Table 1.

Site‑specific Nitrogen Prescription Model (NPM)

Based on the assumption of water stress-free conditions, yield response to applied N can 
be depicted in three phases: (i) at lower N application rates yield response to applied N 
is exponential-like (high N utilisation efficiency, Fig.  4, segment 1), (ii) after a certain 
amount of applied N, yield response is still positive but decreasing (lower N utilisation 
efficiency) (Fig. 4, segment 2); (iii) at specific N application rate, yield response reaches a 
plateau where additional N application does not lead to further yield increases (N utilisa-
tion efficiency equals zero, Fig. 4, segment 3).

Table 2  Example of SPO sensitivity analysis based on minima/maxima and discretization step: 0.8 (min-
ima), 1.2 (maxima) and 0.05 (step) Table 1 SD section

Number of scenarios 1 2 3 4 5 6 7 8 9

SPO coeff. setup
(interface—multipliers)

0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20

Percentage equivalent − 20 − 15 − 10 − 5 Original
SLLL

+ 5 + 10 + 15 + 20

Fig. 3  High density (HD) (a) and Sufficient Density SD (b) exhaustive gridding example for SLLL based 
on discretization steps with respect to minima and maxima range
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The basic NPM theoretical assumption is: Crop yield in a fully parameterised crop 
model is the result of applied N. The updated NPM is based on the same principle as the 
former version. Sensitivity analysis is conducted by investigating yield response to differ-
ent N kg  ha−1 amounts (e.g. 0, 10, 20, …). The NPM algorithm was designed as a form of 
marginal return analysis tool. Marginal return analysis looks into the marginal increase of 
specific outputs resulting from additional one-unit increase (this case additional 10 kg N 
 ha−1 at each run) of variable input, without other crop model input parameters being modi-
fied (ceteris paribus). In the process of analysing marginal return of additional N unit, crop 
model is repeatedly executed and yield response for every marginal N input unit is calcu-
lated. The crop model is executed for each application rate and simulated yield is extracted 
for calculating simplified MNR (Eq.  1). For the study, original parametrisation of crop 
model was based on common N practice (160 kg N  ha−1), measured weather data, cultivar 
genetics and in- and end-of-season destructive above-ground biomass cuts collected over 
three years. Fully parametrised crop model in-season above-ground biomass and end-of-
season yield was expected to correctly respond to different N amounts and enable analysis 
of simplified MNR maximising N application rates. In this simplified MNR analysis, N 
application rate with highest MNR, based on prices, was selected as optimal N prescription 
rate for each site-specific unit (Basso et al., 2012; Paz et al., 1999).

If N price was zero, agronomic yield maximising N application rate would also max-
imise MNR (Fig. 4, point A). Since N price was not zero, MNR maximising N application 
rate was always lower than the one maximising agronomic yield. After a certain N applica-
tion rate, even though there was the potential of increasing agronomic yield, additional kg 
of N did not produce enough yield to cover the costs of applied N (Fig. 4, point B).

Results

Site‑specific yield based on field‑scale soil characterisation

Figure  5a shows simulated and measured yield results on a field-scale over three years. 
Field-scale measurement was a result of an average of 20 site-specific measured yields for 
each year. Field-specific soil profile was a result of averaging 20 soil profiles that were 

(1)MNR = Grain (kg) ∗ Grain Price (C∕kg) − N (kg) ∗ N Price (C∕kg)

Fig. 4  Yield response to N appli-
cation with corresponding MNR
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used. Field-specific regression fit indicated a relatively good agreement of simulated and 
measured yield with  R2 of 0.87 and RMSE of 587 kg  ha−1 (n = 3) (Fig. 5a). Based on the 
field-scale analysis (Fig. 5a), it can be concluded that the model performed well and the 
results seem to be consistent. Since field-specific yield was a result of 20 site-specific units 
average, therefore, further analysis was conducted to understand how homogenous the field 
“truly” was. In Fig. 5b, the DSSAT crop model was used with field-specific soil profile for 
simulating yield for 20 site-specific units over three years. Model results were compared to 
the site-specific measured yield of 20 site-specific units over three years. Figure 5b indi-
cated that field-specific soil profile was not able to explain site-specific yield variability 
with  R2 0.03 and RMSE 1938 kg  ha−1 (n = 60) over three years.

In 2006, yield average over 20 site-specific units was 5548 kg  ha−1 with standard devia-
tion of 1156 kg  ha−1 (Fig. 6). In 2007, yield average was 6824 kg  ha−1, and 5485 kg  ha−1 
in 2008 with a standard deviation of 2391 kg  ha−1 and 1493 kg  ha−1, respectively (Fig. 6). 
These values are an important indicator of the given field heterogeneity, while they are 
indirectly estimated based on measured site-specific yield. In 2006, 2007, and 2008, yield 
medians were 5417, 7488, and 5532  kg   ha−1, respectively (Fig.  6). Large differences 

Fig. 5  Simulated and measured yield shown in 1:1 graphs for: field-specific soil characterisation and field-
specific measured yield (a), field-specific soil characterisation with site-specific measured yield (b)

Fig. 6  Boxplot for three seasons 2006 (06), 2007 (07) and 2008 (08) with corresponding yield measure-
ments, average and median values
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between the median and average yield in 2007 with a standard deviation of 2391 kg  ha−1 
raised additional concerns on the representativeness of the determined field average.

Target variable GRAIN (G)—SD gridding based site‑specific soil characterisation

In Fig. 7a, results of the implemented SPO inverse modelling approach are shown where 
site-specific yield variability (n = 60, yield as explanatory target variable) measured over 
three years was used for deriving site-specific soil profiles (n = 20) with  R2 0.72 and RMSE 
937 kg  ha−1. The main assumption of the approach was that site-specific soil profiles used 
over three years can reflect and capture yield variability (dependent variable) caused by 
varying factors from season to season with respect to spatial and temporal variability. 
Within this study, spatial variability refers to the site-specific yield variability within a field 
during one season and temporal variability to the impact of seasons from year-to-year yield 
variability. Temporal variability at small scale within one season (year) may have huge 
impact on yield variability as well but was not investigated in detail. The interpretation of 
the results when considered within the used crop model  R2 0.72 and RMSE 973 kg  ha−1 
indicated that the model was able to explain 72% of site-specific yield variability (depend-
ent variable yield) by soil profile parameterization (independent variable) conducted with 
SD gridding. Overall analysis of the data for 20 site-specific units over 3 years (60 meas-
urements in total) is a good indicator of crop model “prediction” ability with respect to 
spatial variability. To understand the ability of site-specific soil profiles to reflect season-
ality (temporal variability) each year was investigated independently (20 yield measure-
ments). As it can be seen in Fig. 7b the ability of site-specific soil profiles was evaluated 
at seasonal level. Based on the results, it looks like site-specific soil profiles were able to 
explain around 95% of site-specific yield variability in 2007 and 2008, with only 2% of 
site-specific yield variability in 2006.

Due to a high temporal variability in 2006, the explanatory power of the model in this 
specific year was quite low wherefore the overall, good accuracy or ability of site-specific 
soil profiles to explain site-specific yield variability over three years might not have practi-
cal implications.

Fig. 7  Simulated and measured yield for site-specific soil profiles with all three seasons (n = 60) (a) and 
season based for three seasons, (b) based on site-specific grain variability as target variable
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To understand crop model parametrization success rate, additional time-series data of 
above-ground biomass was used with three in-season sample cuts for each site-specific unit 
over three years of evaluation. In Fig. 8 three sample cuts at BBCH-14 (a), BBCH-65 (b) 
and BBCH-90 (c) are shown. Ideally if crop growth model parametrization is correct it 
would mean that all ratios in the model are accurate and adjustment of any of those factors 
would result in correct biomass accumulation response. As we can see in Fig.  8 above-
ground biomass was not simulated satisfactory overall. To delve deeper into the underlying 
issues, the subsequent section of this paper will focus on concurrently targeting grain and 
tops weight during the derivation of site-specific soil profiles.

Target variable TOPS (T)—SD gridding based site‑specific soil characterization

Site-specific soil profiles for 20 site-specific units have been derived based on time-series 
site-specific tops weight measurements (180 in total over three years). In Fig. 9, three sam-
ple cuts at BBCH-14 (a), BBCH-65 (b) and BBCH-90 (c) are shown after SPO calibration. 
Time-series data of three sample cuts and simulations are shown separately in 1:1 graphs 

Fig. 8  Simulated and measured tops weight (above-ground biomass) for three sample cuts: BBCH14 (a), 65 
(b), and 90 (c), with a total 180 measurements over three years (each sample cut 60 measurements)

Fig. 9  Simulated and measured tops weight (above-ground biomass) for three sample cuts: BBCH14 (a), 65 
(b) and 90 (c), with in total 180 measurements over three years
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to show efficiency of the optimisation for each of them separately. As it can be seen in the 
Fig. 9 simulations of: BBCH-14 cut (a) and end-of-season cut (c) (BBCH-90) with  R2 0.67 
and 0.63, respectively are satisfactory. The BBCH-65 sample cut in Fig. 9b has very low 
 R2 0.02. This is an optimisation challenge commonly faced when evaluating and optimis-
ing crop models with time-series data.

During site-specific soil profile optimization based on one target variable “tops” the 
other output variable grain weight got less accurate with  R2 0.34 (Fig. 10).

Target GRAIN and TOPS simultaneously (G‑T)—SD gridding based site‑specific soil 
characterization

The SPO software was used for deriving site-specific soil profiles based on end-of-sea-
son grain yield and in-season observations of tops weight (three sample cuts) simultane-
ously. Multi target variable based soil profile optimization was conducted in principle as 
described in Memic et al. (2021). As it can be seen in Fig. 11 overall explanatory power 
of site-specific soil profiles when it comes to grain was reduced, with  R2 0.68, when com-
pared to 0.72 (Fig. 7a). Season-based explanatory power of newly derived site-specific soil 
profiles based on grain and tops weight had minor changes when compared to the sce-
nario where only grain was the target variable of optimization. It is expected that multi-
target variable based site-specific soil profiles have better  practical application potential 
when used for site-specific N optimization, due to expected better underlying crop model 
parametrization.

When it comes to tops weight as shown in Fig.  12, three different sample cuts were 
shown separately. In the process of multiple target variable based site-specific soil profile 
optimization usually mathematical compromises based on error minimization methods are 
achieved, and it seems that soil profile parameters were more effective in explaining grain 
yield variability  than above-ground biomass. Above-ground biomass parameters include 
different plant organs: leaf, stem, pod, etc. Further analysis into leaf the stem to pod ratio 
is required to understand the reason for lower explanatory power of above-ground biomass 
measurements when it comes to site-specific soil profiling.

Fig. 10  Simulated and measured yield for site-specific soil profiles with all three seasons (n = 60) (a) and 
season-based for three seasons (b)
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NPM results

Site-specific N prescription is expected to deliver meaningful results only if crop growth 
model parametrization is conducted properly. Specific soil input parameters were esti-
mated indirectly based on the observed site-specific yield and above-ground biomass vari-
ability. The statistics summary of three soil profile calibration scenarios: target variable 
GRAIN (G), target variable TOPS (T) (above-ground biomass) and simultaneously target-
ing GRAIN and TOPS (G-T) are shown in Table 2. Based on the  R2 and RMSE statistics 
shown in Table 3 we can see different levels of seasonal accuracy. The statistics indicate 
the ability of derived soil profiles to explain site-specific grain variability over three years 
based on this crop model analysis. All three years were used for deriving site-specific 
soil profiles in order to understand to what degree site-specific soil profiles can explain 
observed variability with respect to seasonality factor (weather-related seasonality). Based 
on the seasonal performance (2006, 2007 and 2008) of the site-specific soil profiles we 

Fig. 11  Simulated and measured yield for site-specific soil profiles with all three seasons (n = 60) (a) and 
season-based for three seasons (b)

Fig. 12  Simulated and measured tops weight (above-ground biomass) for three sample cuts: BBCH14 (a), 
65 (b), and 90 (c), with in total 180 measurements over three years
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can see that site-specific soil profiles perform differently. Based on the seasonal accuracy 
of explaining site-specific yield, two scenarios were selected for estimating site-specific N 
prescriptions: target variable GRAIN and target variable GRAIN and TOPS. Even though 
all optimization scenarios underperformed for 2006 season it was still included in the N 
prescription evaluation. The issue with 2006 season is addressed in discussion.

Site-specific MNR maximising N application rates were estimated for 20 site-specific 
units over three years. Yearly averages of 20 site-specific units are shown in Table 4 for 
two different scenarios: (1) rainfed uniform N application (common agricultural practice) 
and (2) rainfed MNR maximising N application rates based on NPM, with assumed grain 
and N prices 0.17 and 0.3 Euro  kg−1, respectively based on optimization strategies: G and 
G-T shown in Table 3. N was applied on two different dates: N1—shortly before planting, 
and N2—approximately two weeks after planting. The first scenario shows yield, revenue, 
costs and MNR for uniform N application rate (160 kg N  ha−1 (30 + 130)). The second sce-
nario shows the results of site-specific NPM optimisation under rainfed conditions where 
the amounts of applied N were varied for N-1 and N-2 from 0 to 200 kg N  ha−1 with incre-
ments of 10 kg  ha−1 in the form of marginal return analysis where marginal input unit was 
10 kg N  ha−1.The N application rates, based on the assumed prices, providing the high-
est MNR were selected as “optimum” and used for calculating 20 site-specific unit yearly 
averages.

Based on the post-processing analysis of the rainfed data for 20 site-specific units over 
three years with simplified MNR analysis it can be concluded that variable N application 
over three years would lead to 10% higher MNR with a 25% lower N application rate for G 
optimization strategy. For G-T optimization strategy site-specific N prescriptions resulted 
in 11% higher MNR with 28% lower N application rates, when compared to the uniform 
(common agricultural practice) N application strategy.

Discussion

Braga and Jones (2004) used an inverse modelling approach for deriving soil water hold-
ing capacity-related parameters (all three together: lower limit, upper limit and saturated 
rate) based on two different target variables: measured site-specific end-of-season yield 
and time-series of soil water content. It was concluded that soil parameters estimated from 
end-of-season yield led to acceptable estimates of end-of-season yield. However, soil water 
content was not accurate when compared to measured values due to errors in estimated 

Table 3  Optimization strategies 
based on target variables used in 
the inverse modelling approach

Optimization targets 2006 2007 2008

R2

 GRAIN (G) 0.02 0.94 0.96
 TOPS (T) 0.0 0.67 0.54
 GRAIN and TOPS (G&T) 0.09 0.94 0.63

RMSE (kg  ha−1)
 GRAIN (G) 1382 906 327
 TOPS (T) 1863 2845 2500
 GRAIN and TOPS (G&T) 1213 958 946
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soil water holding limits. To avoid problems encountered in the study of Braga and Jones 
(2004), the current study focussed only on the optimisation of the lower limit in combi-
nation with root growth factor and runoff, based on end-of-season yield. Upper limit and 
saturation rates were kept fixed, as determined based on the field-specific reference (field 
specific texture). This approach still has to be tested with more detailed ground-truth data 
as soil water measurements were not available. As designed in the current version, the SPO 
algorithm can be used for optimising specific parameters based on time-series data (includ-
ing soil water content) (Trenz et  al., 2023), and as soon as data is available, it will be 
tested. However, on a field-scale, it is not realistic to expect the availability of time-series 
data collected with soil moisture sensors on a site-specific level, wherefore the potential of 
inverse modelling has to be further investigated with end-of-season yield in combination 
with field-scale measured texture in the process of site-specific soil profile derivation.

In the process of deriving site-specific soil profiles in Trenz et al. (2023) aiming at 
investigating the concept of overall yield explanatory power of specific soil parameters 
and the ability of SPO algorithm to assist in that task, HD optimization strategy was 
pursued. The HD strategy resulted in optimization runs that lasted hours with high com-
putational demand. For this study various SD scenarios were tested and the one used 
and demonstrated in this study (Table 1) show good balance in trade-off with required 
time and results accuracy. The SD strategy used in this study required 94% less executed 

Table 4  Simulation outputs of 
MNR maximising N application 
rate yearly averages for two 
different scenarios with grain 
and N prices 0.17 and 0.3 €  kg−1, 
respectively

Crop model-based grain yield predictions do not contain protein con-
tent. The model-based N application favoured N-1 higher values for 
total biomass accumulation and grain yield without insight into pro-
tein content. It is possible that, during grain filling period, there was 
not enough N to enable higher concentration of protein in grain
a Common agricultural practice (uniform N rate)

Scenario Year N-1 N-2 N-sum Yield Revenue Cost MNR
(kg  ha−1) (€  kg−1)

G 2006a 30 130 160 6128 1042 48 994
2006 81 29 110 6410 1090 33 1057
2007a 30 130 160 6285 1068 48 1020
2007 100 13 113 6913 1175 34 1141
2008a 30 130 160 5571 947 48 899
2008 96 40 135 6084 1034 41 994
Avg.a 30 130 160 5995 1019 48 971
Avg 92 27 119 6469 1100 36 1064

− 25% + 10%
G&T 2006a 30 130 160 5948 1011 48 963

2006 75 29 103 6269 1066 31 1035
2007a 30 130 160 6262 1064 48 1016
2007 100 15 115 6959 1183 34 1149
2008a 30 130 160 5211 886 48 836
2008 85 43 128 5810 988 38 949
Avg.a 30 130 160 5807 987 48 938
Avg 87 29 115 6346 1079 34 1044

− 28% + 11%
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scenarios when compared to HD with minor impact on resulting statistics. If this SPO 
algorithm is to be used in the future in combination with season-based measurements in 
some kind of “real time” approach of optimizing soil profiles, there must be a compro-
mise between speed and accuracy. The HD scenario tend to over-fit the data. However, 
this aspect of HD and SD optimization strategies was not investigated in detail in this 
study.

As already mentioned, crop model parametrization is extremely important if crop 
growth model is going to be used as decision support tool for future management of 
crops. If crop growth model is “correctly” parametrized it is expected to be able to accu-
rately simulate yield response to system inputs such as N-based fertilizer. The problem 
is that crop growth models can rarely be accurately parametrized and because of that 
model evaluation cannot be conducted only with end-of-season yield, due to complexity 
of in-season physical and physiological process involved in plant growth. To investi-
gate the implications of different plant aspects additional parameters such as tops weight 
(total above-ground biomass) was included in the process of deriving site-specific soil 
profiles as it provides additional insight into the in-season plant biomass dynamics. Ide-
ally, if crop growth model was accurately parametrized additional in-season informa-
tion about above-ground biomass should contribute to better representation of in-season 
dynamics enabling more accurate recommendation of in-season plant N demand.

Based on the results of the different optimization strategies used in this study, the 
season 2006 was underperforming. There are two potential reasons for low predicta-
bility power of site-specific soil profiles for season 2006: (1) SPO designated minima 
and maxima-based discretization scenarios were not effective and (2) seasonality fac-
tor (temporal variability—weather related) was not explainable by soil profile input 
parameters selected within this study. To understand point one (effectiveness of SPO) 
20 site-specific soil profiles (n = 20) were estimated based only on the site-specific yield 
variability from season 2006 (n = 20) for grain (G) (Fig. 13). Based on the perfect fit of 
2006 yield variability-based optimization with  R2 of 0.99 and RMSE 151 kg  ha−1 it can 

Fig. 13  Simulated and measured 
yield based on site-specific 
soil profiles derived from one 
season of yield (n = 20)
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be concluded that SPO was very effective technically. Unfortunately, technical effective-
ness of a specific algorithm if not supported by agronomic conditions is meaningless.

As it can be seen in Fig. 1 in 2006 there was less rain from end of juvenile phase to 
anthesis. This might have had an impact on plant growth that was not captured well by the 
crop growth model (e.g. lower pollen fertility due to water stress), and subsequently was 
not explainable via SPO based soil profiles. More detailed analysis has to be conducted 
into temporal variability within one season, in order to understand implications of specific 
weather patterns throughout various plant growth stages (impact of temporal variability 
with respect to plant phenological development).

Common optimisation of N fertiliser under rainfed conditions causes difficulties due to 
the interplay of yield limiting factors such as N and water. Wang et al. (2020) conducted a 
study in maize with two different soil types and investigated the effect on economic opti-
mal N rate with respect to weather and planting density. It was found that N rates opti-
mised for soil, year and planting density would reduce applied N and improve N use effi-
ciency without significant impact on yield (Wang et al., 2020). Different studies indicated 
the importance of soil type on optimal economic N management, but without additional 
analysis of available water in different plant growth stages, they might be misleading. Post 
processing analysis indicating the importance of plant, soil, weather and management for 
deriving MNR maximising N rates do not seem to be a straightforward solution for site-
specific management of N in future, as major factors like precipitation are difficult to pre-
dict in rainfed crop production. One of the greatest problems of ceteris paribus analysis in 
which only one parameter is analysed, such as yield response to N, is that it does not prop-
erly reflect the interaction of yield limiting factors such as soil water and N.

Conclusion

The study evaluated a combination of the recently developed software solutions SPO and 
NPM aiming at creating a base for user-friendly crop model-based site-specific field delin-
eation (site-specific soil profiles) and N optimization. Within this post-processing analysis, 
the results indicated that variable N management would have led to higher MNR for the 
field investigated in this study when compared to uniform N application, due to existing in-
field site-specific soil heterogeneity.

The potential of site-specific N management can only be fully realised if in-field het-
erogeneity exists, and further if it can be accurately quantified, and causes correctly identi-
fied. The crop model-based inverse modelling approach (SPO) was used for identifying 
potential “causes” of spatial yield variability based on three years of data to estimate plant 
requirement-based fertilizer recommendations. The use of an inverse modelling approach 
for estimating site-specific soil parameters based on end-of-season yield and tops weight 
(in-season measurements) clearly showed potential for deriving site-specific soil profiles 
that can be used for the optimization of N fertilizer rates on site-specific levels.

More “accurate” in-season crop model parameterization can be achieved by including 
additional canopy-related in-season measurements and might lead to more consistent N 
recommendations. Future work will focus on understanding the impact of in-season pre-
cipitation patterns on in-season plant growth and NPM N prescriptions based on SPO soil 
profiles.
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