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Abstract
The crop water stress index (CWSI) is widely used for assessing water status in vineyards, 
but its accuracy can be compromised by various factors. Despite its known limitations, 
the question remains whether it is inferior to the current practice of direct measurements 
of Ψstem of a few representative vines. This study aimed to address three key knowledge 
gaps: (1) determining whether Ψstem (measured in few vines) or CWSI (providing greater 
spatial representation) better represents vineyard water status; (2) identifying the optimal 
scale for using CWSI for precision irrigation; and (3) understanding the seasonal impact 
on the CWSI-Ψstem relationship and establishing a reliable Ψstem prediction model based 
on CWSI and meteorological parameters. The analysis, conducted at five spatial scales in a 
single vineyard from 2017 to 2020, demonstrated that the performance of the CWSI- Ψstem 
model improved with increasing scale and when meteorological variables were integrated. 
This integration helped mitigate apparent seasonal effects on the CWSI-Ψstem relationship. 
R2 were 0.36 and 0.57 at the vine and the vineyard scales, respectively. These values rose 
to 0.51 and 0.85, respectively, with the incorporation of meteorological variables. Addi-
tionally, a CWSI-based model, enhanced by meteorological variables, outperformed cur-
rent water status monitoring at both vineyard (2.5 ha) and management cell (MC) scales 
(0.09 ha). Despite reduced accuracy at smaller scales, water status evaluation at the man-
agement cell scale produced significantly lower Ψstem errors compared to whole vineyard 
evaluation. This is anticipated to enable more effective irrigation decision-making for 
small-scale management zones in vineyards implementing precision irrigation.

Keywords  Crop water stress index (CWSI) · Stem water potential · Modeling · Thermal 
imagery · Precision viticulture

Introduction

Accurate control of vine water status during the growing season is required to promote fruit 
quality in red wine production (Van Leeuwen et al., 2009). Stem water potential (Ψstem) is 
a sensitive indicator for vine water status (Choné et al., 2001) and should be frequently and 
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accurately monitored when used to drive vineyard irrigation management (Acevedo-Opazo 
et al., 2010; Netzer et al., 2019; Van Leeuwen et al., 2009). At the vineyard scale, Ψstem 
assessment requires laborious and time-consuming measurements. In earlier studies and 
in some more recent ones, leaf water potential (Ψleaf) stood out as the primary approach 
for assessing plant water status. However, in recent years, it has been demonstrated that 
Ψstem is more precise, albeit with the caveat of necessitating preparatory steps that prolong 
the measurement duration (Choné et  al., 2001; Naor, 1998; Santesteban et  al., 2019). In 
current water status monitoring practice, Ψstem is measured only on a few representative 
vines. As this method suffers from spatial under-representation, it is prone to major errors 
in assessing water status when scaled up to an entire vineyard. Aerial remote sensing has 
been widely utilized to illustrate spatial variations in various crop conditions, including 
crop water content (e.g. Ndlovu et al., 2021). Nevertheless, reports in the literature suggest 
limited effectiveness in remotely estimating Ψstem or Ψleaf using remote sensing in the vis-
ible and the near-infrared (VIS–NIR) regions. This limitation is attributed to the fact that 
these spectral regions predominantly convey the physical status of water potential within 
plant tissues (Cohen & Alchanatis, 2018). The alternate electromagnetic spectrum sensi-
tive to plant water status is the far or thermal infrared. A significant outcome of stomatal 
closure under water stress conditions is the reduction in energy dissipation, leading to an 
increase in leaf temperature (Jones, 1999). Subsequently, aerial thermal imaging served as 
an alternative method for assessing the spatial variability of water status (e.g. Matese et al., 
2018; Santesteban et al., 2017) and for irrigation scheduling at the vineyard scale (Bellvert 
et al., 2016a; Matese & Di Gennaro, 2018; Santesteban et al., 2017).

The crop water stress index (CWSI), a relative measure of plant transpiration rate, is 
the most widely used thermal-based index for assessing plant water status (Idso et al., 
1981). Previous studies have shown water status assessment inaccuracies using CWSI 
derived from thermal imaging. Errors can be grouped into four major types: (1) Errors 
arising from the varying influence of physiological conditions on the relationships 
between CWSI and water status. Möller et  al. (2007) reported CWSI-Ψstem correla-
tions with a lower coefficient of determination at the end of the season because of par-
tial leaf senescence within the vineyard canopy. Bellvert et al. (2016a) reported little 
response of leaf water potential (Ψleaf) to changes in CWSI in early phenological stages 
and also for different grapevine varieties. An improvement in the CWSI-Ψstem rela-
tionship was shown for specific phenological and varietal relationships compared to 
general relationships (Bellvert et al., 2014a). These findings were supported by trends 
observed in vineyards in Israel, where CWSI-Ψstem relations at early phenological 
stages of the season were not well-correlated (Fig. 7). (2) Errors arising from the vary-
ing influence of atmospheric conditions on the relationships between CWSI and water 
status. Sepúlveda-Reyes et al. (2016) obtained the best relationship of CWSI-Ψstem on 
days with maximum seasonal atmospheric demand. Air temperature (Ta) is considered 
a major error contributor as ± 1 °C error in Ta led to 28–82% disparity for CWSI calcu-
lation in orange trees (Gonzalez-Dugo & Zarco-Tejada  2022) (3) inconsistency arising 
from the selection of the method employed for computing CWSI. There are several 
methods to estimate CWSI, either analytical, empirical (Maes & Steppe, 2012), or sta-
tistical approaches (e.g. Alchanatis et al., 2010; Rud et al., 2014) using different pro-
cedures for the calculation of the parameters representing the range of possible high 
(Tdry) and low (Twet) temperatures used to normalize measured canopy temperature. 
Comparisons between different approaches illuminated major disparities (Agam et al., 
2013a, 2013b; Cohen et  al., 2015). (4) Errors arising from the characteristics of the 
aerial thermal images and the conditions in which they were acquired. Bellvert et al. 
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(2016b) demonstrated in vineyards that the best results were obtained at the smallest, 
0.3 m pixel size, due to improvement in extraction of pure canopy pixels. The process 
of mosaicking (stitching single images to capture the total area of interest) could also 
cause a decrease in image quality due to various factors such as registration errors, 
geometric distortion, and radiometric differences between images (Ghosh & Kaabouch, 
2016). Time of image acquisition was found to be best at solar noon (12:30) compared 
to morning (Alchanatis et al., 2010; Bellvert et al., 2014b; Fuentes et al., 2012).

Although CWSI-Ψstem model accuracy might be compromised by the above-men-
tioned error sources, the question remains whether it is inferior to existing water status 
monitoring alternatives based on direct measurements of Ψstem of a few representative 
vines. Comparison between the two approaches can only be conducted using extensive 
Ψstem measurements on multiple vines representing the entire vineyard’s spatial vari-
ability. To the best of our knowledge, such a comparison has not yet been conducted. 
As described above, relationships between CWSI and Ψstem can differ as a function of 
phenological growth stage and change under different physiological and meteorological 
conditions. The extent to which these relationships change while moving from single-
vine to management zone (MZ) and to the vineyard scale has yet to be investigated. The 
fundamental hypothesis guiding this study posited that, under a fixed image resolution, 
a smaller area of interest—like a single vine with fewer pixels—would correspond to 
decreased efficacy in CWSI’s ability to estimate water status, consequently leading to 
heightened errors. Examining a broader area of interest, such as a vineyard or a manage-
ment zone (MZ), enhances the CWSI’s capacity to estimate water status, as it involves 
a larger number of pixels for its representation. Most prior thermal-based water assess-
ment studies were focused on the vineyard scale (Table 1). To apply precision irriga-
tion, large vineyards are delineated into smaller MZs, with unequal sizes. The ability to 
estimate water status using thermal images is assumed to be affected by the size of the 
MZ, thus influencing the efficiency of variable rate irrigation decisions at small scales. 
In this study, the effectiveness of CWSI as a predictor of Ψstem across decreasing sizes 
of areas of interest within a vineyard was assessed. The aim was to determine the mini-
mum scale size for its potential application in precision irrigation. 

Apart from the absence of consideration for the spatial scale effect, there appears to 
be a predominant oversight regarding temporal effects influencing the efficacy of CWSI 
in predicting Ψstem. Previous studies showed that seasonality was a major factor in the 
prediction of water consumption and yield components of grapevines (Ohana-levi et al., 
2020; 2022; 2024). Nevertheless, despite the demonstrated errors originating from vari-
ous sources in CWSI-Ψstem relationships, there has been limited investigation into the 
robustness of the model in multi-year studies (Bellvert et al., 2014a). This study aims 
to address this gap by examining the robustness of CWSI-Ψstem relationships over four 
seasons.

To encapsulate, the study aimed to fill three pivotal knowledge gaps: (1) determin-
ing the superior representation of vineyard water status—whether it is Ψstem, character-
ized by high accuracy but low sample size as employed in current practical water status 
monitoring, or CWSI, possessing lower accuracy but greater spatial representation; (2) 
identifying the optimal scale for effectively representing vine water status using CWSI 
for precision irrigation; and (3) understanding the impact of the season on the CWSI-
Ψstem relationship, as well as determining the number of seasons required to establish a 
reliable and robust Ψstem prediction model based on CWSI and additional meteorologi-
cal parameters.



	 Precision Agriculture

1 3

Ta
bl

e 
1  

P
re

vi
ou

s s
tu

di
es

 p
re

se
nt

in
g 

ae
ria

l b
as

ed
 C

W
SI

 a
nd

 Ψ
ste

m
 o

r Ψ
le

af
 re

gr
es

si
on

s i
n 

vi
ne

ya
rd

s

*G
ra

pe
vi

ne
 v

ar
ie

tie
s:

 T
em

pr
an

ill
o 

(T
em

p)
, P

in
o-

no
ir 

(P
N

), 
C

ha
rd

on
na

y 
(C

ha
r)

, C
ab

er
ne

t s
au

vi
gn

on
 (C

ab
)

Re
fe

re
nc

es
Re

gi
on

, c
ou

nt
ry

Re
se

ar
ch

 p
lo

t 
si

ze
 (h

a)
V

in
es

 p
er

 h
a

Va
rie

ty
*

M
ea

s-
ur

em
en

t 
ty

pe

V
in

es
 m

ea
su

re
d

V
in

es
 

m
ea

su
re

d 
(%

)

M
ea

su
re

-
m

en
t 

da
ys

Se
as

on
s

Ir
rig

at
io

n 
tre

at
m

en
t

Ψ
ste

m
 

ra
ng

e 
(M

Pa
)

R
2

B
al

uj
a 

et
 a

l.,
 

(2
01

2)
R

io
ja

, S
pa

in
5

29
76

Te
m

p.
Ψ

ste
m

30
0.

20
1

1
N

o
1–

1.
5

0.
5

B
el

lv
er

t e
t a

l.,
 

(2
01

4a
, 2

01
4b

)
Ll

ei
da

, S
pa

in
11

18
97

PN
Ψ

le
af

18
0.

09
6

2
N

o
0.

55
–1

.7
0.

57
22

16
66

C
ha

r.
Ψ

le
af

18
0.

05
6

2
N

o
0.

55
–1

.7
0.

72
18

.4
16

66
Sy

ra
Ψ

le
af

18
0.

06
6

2
N

o
0.

55
–1

.7
0.

75
14

.5
16

66
Te

m
p.

Ψ
le

af
18

0.
07

6
2

N
o

0.
55

–1
.7

0.
56

B
el

lv
er

t e
t a

l.,
 

(2
01

6a
, 2

01
6b

)
Ll

ei
da

, S
pa

in
16

16
67

C
ha

r.
Ψ

le
af

48
0.

18
14

1
ye

s
0.

5–
1.

3
0.

61

Se
pú

lv
ed

a–
Re

ye
s e

t a
l.,

 
(2

01
6)

M
au

lle
, C

hi
le

0.
00

07
5

26
66

C
ar

m
én

è
Ψ

ste
m

32
10

0
8

1
ye

s
0.

65
–1

.9
0.

36

Sa
nt

es
te

ba
n 

et
 a

l.,
 (2

01
7)

N
av

ar
ra

, S
pa

in
7.

5
33

33
Te

m
p.

Ψ
ste

m
70

0.
28

1
1

N
o

0.
45

–0
.9

0.
69

B
ah

at
 e

t a
l. 

(c
ur

-
re

nt
)

Ju
da

ea
n 

hi
lls

, 
Is

ra
el

0.
00

09
22

22
C

ab
.

Ψ
ste

m
2

10
0

22
4

N
o

0.
55

–1
.9

9
0.

51
0.

09
6

3
0.

65
–1

.9
0.

65
0.

61
–0

.9
6

20
–5

6
2.

1
0.

8–
1.

5
0.

67
0.

9
60

3
0.

8–
1.

55
0.

82
1.

8
12

0
3

0.
85

–1
.5

5
0.

88



Precision Agriculture	

1 3

Materials and methods

Study site

The study was conducted from 2017–2020 in a commercial vineyard of Vitis vinifera 
L. ‘Cabernet Sauvignon’ grafted onto 101–14 rootstock in Mevo-Beitar, Israel (31°43’ 
N; 35°06’ E; Fig. 1). The vine spacing was 1.5 m within rows and 3 m between rows 
(2222 vines per hectare), and the whole vineyard consisted of 5522 vines. The vines 
were planted in 2011, with a row direction of 117°–297°, and were trained to a vertical 
shoot positioned trellis system with two foliage wires on each side.

The vineyard was delineated into 20 management cells (MCs; referred by the letters 
A-T), and three pairs of vines per MC (60 pairs; 120 vines in total) were selected as 
measurement vines.

Description of scales

Five different scales with increasing polygon sizes were selected for this study: (1) 
Measurement vines (MV)—two adjacent vines, (2) Management cells (MC)—a polygon 
of 30 × 30 m consisting of ∼ 200 vines, (3) Management zones (MZ)—a natural deline-
ation of the vineyard based on topography attributes (Bahat et  al., 2021), (4) Irriga-
tion blocks—2 sub-units of the vineyard irrigated by different valves, and (5) The entire 
vineyard. Scales are further detailed in Table 2.

Fig. 1   Mevo-Beitar experimental vineyard. Measurement vines are represented by blue dots (n = 60), man-
agement cells are represented by black squares with different letters (n = 20), management zones are repre-
sented by the colored (red, green, and blue) polygons overlaying the vineyard, irrigation blocks are a divi-
sion of the western and eastern sections of the vineyard, and the total vineyard area is represented by a blue 
polygon. In brackets is the number of repetitions per measurement day for each scale (Color figure online)
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Data collection and analysis

Twenty-two campaigns were undertaken during the 2017–2020 seasons (Table  3). All 
measurements were done on sunny, cloudless days during the growing season. Measure-
ments were taken simultaneously around noon between 11:45–14:30, including mid-day 
stem water potential (Ψstem) of 120 vines using a pressure chamber and remote sensing 
measurements using a UAV with a triple payload of thermal camera, multispectral camera 
and RGB camera. The spatially intensive Ψstem measurements of 120 vines was regarded as 
the benchmark ("gold-standard"), intended for comparison with alternative measurements 
and modeling approaches.

Vine water status

In Israeli commercial vineyards, Ψstem is typically measured on four or six vines per plot, 
at two or three spots within the vineyard (Helman et al., 2018). As previously stated, this 
study involved measuring Ψstem for all 120 measurement-vines (denoted as Ψstem120) 
to provide a comprehensive representation of the water status across the entire vine-
yard and serve as a benchmark ("gold-standard"). Ψstem was measured around solar noon 
(12:00–14:30 Israel standard time). The measurements were conducted using pressure 
chambers (model Arimad 3000, MRC, Holon, Israel) according to the procedure of Boyer 
(1995). A mature, fully expanded leaf from each measurement vine was bagged 2 h prior to 
acquisition with aluminum and plastic bags. The time elapsing between leaf excision and 
chamber pressurization was less than 20 s.

Crop water stress index

Crop water stress index (CWSI) was based on canopy temperature (Jackson et al., 1981). 
Thermal data were acquired between 11:45–12:00 Israel standard time at the same day 
of Ψstem measurements. An airborne FLIR SC655 thermal camera was used to evaluate 
the vineyard’s canopy surface temperature. The camera (FLIR® Systems, Inc., Bilerica, 
MA, USA) provided images of 640 pixels × 480 pixels, with a spectral range sensitivity of 
7.5–13 µm and a measurement accuracy of ± 0.5 °C in the temperature range of the vine-
yard. The images were acquired from 100 m above ground level with a 24 mm lens, result-
ing in a ground spatial resolution of 6.7 cm/pixel. The flight plan included 70% overlap 
between adjacent legs, and 90% overlap in the flight direction. Seven ground control points 
were placed within the scanned area, and their geographical coordinates were measured 
using an RTK GPS, with 1 cm accuracy. The mosaic produced was georeferenced from the 
acquired images using Pix4d commercial software (Pix4D, Prilly, Switzerland).

Equation 1 was used to calculate CWSI (Jackson et al., 1981):

where Tcanopy is the temperature of the canopy, Twet is the temperature of a theoretical fully 
transpiring canopy and Tdry is the temperature of a theoretical non-transpiring canopy. 
Tcanopy was acquired for polygons at all five scales (Table 2), and the coolest 33% of the 
pixels within each of the polygons were averaged following Meron et al. (2010). Twet was 
calculated at the vineyard scale using the average temperature of the coolest 5% of the can-
opy pixels (Cohen et al., 2017; Rud et al., 2014). For Tdry calculation, the warmest 15% of 

(1)CWSI =
Tcanopy − Twet

Tdry − Twet
,
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the canopy pixels were averaged at the vineyard scale following Bian et al. (2019). Tcanopy, 
Twet and Tdry were calculated using the “raster” package in R (Hijmans et al., 2020).

Image processing for pure canopy extraction included the following three major steps: 
(1) A temperature threshold of 45 °C was determined by visual analysis of the temperature 
bimodal histogram to remove soil-associated pixels. (2) The irrigation lines GIS layer was 
used to create a 0.8 m width linear layer around the vine rows using the buffer tool in Arc-
Map 10.6 (ESRI Inc. Redlands, CA, USA). (3) An NDVI threshold was used to mask non-
crop pixels other than soil. For that, multi-spectral images in the VIS–NIR were acquired 
using a MicaSense multispectral camera RedEdge MX (MicaSense® Inc, Seattle, WA, 
USA) with five sensors (blue: 465–485  nm, green: 550–570  nm, red: 663–673  nm, red 
edge: 712–722 nm, and near infrared: 820–860 nm). An external irradiance sensor with 
GPS and inertial measurement unit (IMU) was placed on top of the UAV to capture sensor 
angle, sun angle, location, and irradiance for each image during flight. The normalized dif-
ference vegetation index (NDVI) was calculated using red and near infrared (NIR) bands 
according to:

where ρ(NIR) is the reflectance value for near infrared band (center wavelength 0.840 µm) 
and ρ (Red) is the reflectance value for the visible red band (center wavelength 0.668 µm). 
NDVI values range between 0 and 1. For masking other non-canopy pixels (mostly shade 
and grass), an NDVI image was used from the same campaign to indicate pixels with val-
ues above an empirical threshold of 0.3. All three steps were performed automatically 
using the ModelBuilder programing tool in ArcMap 10.6 (ESRI Inc. Redlands, CA, USA).

Meteorological data

Reference evapotranspiration (ET0) was calculated according to the FAO Penman–Mon-
teith equation (Allen et al., 2006) from a meteorological station located six km from the 
vineyard (Tzuba meteorological station, 31.78° N; 35.12° E). In addition, a portable mete-
orological station was positioned at canopy height within the vineyard, which recorded the 
temperature, relative humidity, and solar radiation during all hours of data collection to 
a data logger (Campbell Scientific, Logan, UT, USA). The presented solar radiation was 
averaged from data acquired between 11:45–12:00 Israel standard time.

CWSI‑Ψstem regression models

Ψstem was assessed by either single linear regression based on CWSI, or by multi-variate 
linear regression based on CWSI and additional meteorological parameters. To assess the 
accuracy of the models at five different scales, statistical data including adjusted deter-
mination coefficient (R2 adj) and root mean square error (RMSE) were obtained for the 
predicted Ψstem values. A stepwise regression model was implemented with a mixed, mini-
mum AICc stopping rule to create a four-parameter model.

To assess the influence of each individual independent variable on Ψstem estimation a 
dominance analysis was performed. Dominance analysis estimates the relative importance 
of predictors by examining the change in R2 of the regression model from adding one pre-
dictor to all possible combinations of the other predictors (Budescu, 1993). In our case 15 

(2)NDVI =
�(NIR) − �(Red)

�(NIR) + �(Red)
,
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subset regressions were examined for each of the scales, to decompose the effect of each 
variable. The final four-parameter model consisted of: CWSI as a spatial variable, solar 
radiation as a temporal variable, accumulated ET0 from anthesis as a long-term seasonal 
drought stress variable, and accumulated ET0 of the last 7 days before the campaign as a 
short-term drought stress variable.

Model performance

The accuracy of the model was evaluated by forming sub-models with partial data sets 
(one, two or three seasons) and implementing them on a test set from another season (or 
seasons). In most studies, cross validation is applied by randomly dividing data into cali-
bration, validation and test (Gutiérrez et al., 2018; Romero et al., 2018). In this study, a 
conservative method was used by taking complete seasons as test cases. Fifty models were 
created and were separated into six calibration/test ratios (Table  6). For example, in the 
case of three seasons (calibration set) that predicted a single season (test set; 3p1), four 
different models were formed (2017, 2018, 2019 predicting 2020; 2018, 2019, 2020 pre-
dicting 2017; 2017, 2018, 2020 predicting 2019; and 2017, 2019, 2020 predicting 2018). 
Model performance was evaluated and tested at the MC scale using averaged R2 and aver-
aged RMSE. To compensate for the decreasing number of observations between scales and 
variables number between models, an adjusted R2 was calculated.

Prediction of irrigation decisions and Ψstem

The models were validated using two methods: (1) calculation of the averaged absolute 
distance of predicted Ψstem values to the measured Ψstem values (RMSE), and (2) analysis 
of irrigation decision errors using a "what-if-analysis" of the irrigation model with increas-
ing irrigation levels based on Ψstem thresholds. The irrigation model was based on lysim-
eter-derived crop evapotranspiration (ETc), weekly field LAI measurements (Munitz et al., 
2019; Netzer et  al., 2009), and ET0. At all fruit development stages, the basic irrigation 
factor was 0.2 of the calculated ETc. Ψstem measurements were used to adjust the irrigation 
factor as described by Bahat et al. (2019).

Three different methods were used to predict Ψstem at the vineyard scale for each meas-
urement day.

1)	 Ψstem4, involves measuring Ψstem in 4 vines from 2 locations in the vineyard selected by 
the viticulturist. This method simulated water status monitoring typically practiced in 
large wineries.

2)	 Ψstem6, involves measuring Ψstem in 6 vines from 3 locations in the vineyard selected by 
the viticulturist. This method simulated water status monitoring typically practiced in 
boutique wineries.

3)	 The 3p1 model was based on thermal and meteorological parameters.

All three methods were compared to the mean Ψstem120 "gold-standard".
Further analysis assessed the potential for accurately estimating Ψstem at the manage-

ment cell (MC) scale to determine the feasibility of implementing precision irrigation 
and its potential advantages over uniform irrigation practiced by thermal-based estimated 
Ψstem. The CWSI-based model at the MC scale, enhanced with meteorological variables, 
was utilized to predict Ψstem for each MC on every imaging date. Subsequently, the mean 
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estimated Ψstem for each MC on each date was compared to the corresponding mean Ψstem 
directly measured in 6 vines per MC (used as a benchmark). The Absolute error for each 
MC was then calculated and mapped. Additionally, the estimated Ψstem (Ψstem120est) values 
based on the whole vineyard model for each date were compared to the benchmark, i.e., the 
mean Ψstem values directly measured in 6 vines per MC, and the absolute error for each MC 
was calculated and mapped. Finally, the two error maps were compared.

Statistical data analysis was performed using JMP software (Pro 16, SAS Institute, Cary, 
NC, USA) and R software (R Core Team, 2019).

Results

CWSI‑Ψstem regression models

Results of predicted (based on CWSI) vs. observed Ψstem are shown in Fig.  2 for each 
scale, and their R2 and RMSE are shown in Fig. 2f. Model RMSE decreased as scale size 
increased, yet showing no variation between the two largest scales. i.e., irrigation blocks 
and the whole vineyard. R2 ranged between 0.36 and 0.57.

Adding meteorological parameters to the prediction of Ψstem based on CWSI 
improved model performance compared to the model based solely on CWSI (Figs. 2 and 
3). RMSE decreased from a range of 0.12–0.24 for the CWSI based model to 0.07–0.18 
for the four-parameter model. R2 improved from 0.36–0.57 to 0.51–0.85, respectively. 
The slope of the regression curve was closer to 1 for the four-parameter model indicat-
ing better model calibration compared to the model based solely on CWSI. The accu-
racy of the four-parameter model improved with increasing scale size, from MV scale 

Fig. 2   Observed Ψstem against predicted Ψstem (using only CWSI) in 2017–2020 for a measurement vines 
(MV), b management cells (MC), c management zones (MZ), d irrigation blocks and e entire vineyard. f R2 
and RMSE for each of the scales
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to the irrigation block scale. Similarly to the trend that was observed with the model 
based solely on CWSI (Fig. 2), no improvement was shown from irrigation blocks to the 
vineyard scale.

In the four-parameter model, CWSI had the highest contribution to the prediction 
of measured Ψstem, ranging from 33 to 78% across the different scales (Fig.  4). Solar 
radiation contributed 10–34%, and this contribution, like that of CWSI, was statistically 
significant at all five scales. ET0 cuml contributed significantly to the prediction of Ψstem 
at the three smallest scales and ET0 7d only at the smallest, MV scale.

Fig. 3   Actual Ψstem against predicted Ψstem in 2017–2020 for a measurement vines (MV), b management 
cells (MC), c management zones (MZ), d  irrigation blocks and e entire vineyard. The variables that were 
considered in the model were CWSI, solar radiation, cumulative ET0 of previous 7 days and the cumulative 
ET0 from anthesis. f R2 and RMSE for each of the scales presented.

Fig. 4   Dominance analysis and 
root mean square error (RMSE) 
for the variables used in the 
four-season regression model. 
The X-axis is arranged from the 
smallest to the biggest scale (i.e., 
MV is the smallest and vineyard 
is the largest scale). RMSE is 
shown in black triangles, bars 
with different colors represents 
the relative importance of the 
variables. Asterisks represent the 
level of statistical significance 
(p-value < .05)
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Model validation at the vineyard scale

Substantial differences were observed among Ψstem6, Ψstem4, and the 3p1 model (Table 4). 
Ψstem6 and Ψstem4 exhibited 5 and 6 irrigation errors, respectively, whereas the 3p1 model 
experienced only 3 irrigation errors. The disparities among them extended as indicated 
by the RMSE. The 3p1 model demonstrated a mean error of 0.07 MPa, while Ψstem6 and 
Ψstem4 showed errors of 0.18 and 0.24 MPa, respectively.

Model validation at the MC scale

Model performance estimation

Sets of three (3p1) or two (2p2, 2p1) seasons better predicted Ψstem in an additional season 
(Fig. 5) as indicated by their relatively high R2 and low RMSE compared to other combina-
tions (1p2, 1p1, 1p3). The 3p1 combination was most accurate (Table 6, Appendix).

Model prediction of irrigation decisions and Ψstem

On each campaign date, a validation was performed by comparing the irrigation decision 
based on the 3p1 model to that based on the measured Ψstem120. Irrigation decisions were 
accurate 79.3% of the time (Table 5). Overall, 15.5% of the model decisions led to under-
irrigation and 5.2% of the decisions led to over-irrigation. Most of errors occurred at cam-
paign dates early in the season.

Spatial representation of Ψstem at the MC scale

Using the 3p1 MC models (Fig. 3b) for Ψstem prediction on each date yielded more accu-
rate water status estimations at the MC scale (lower absolute error; Fig. 6, left) compared 
to the Ψstem120est uniform means from the 3p1 whole-vineyard models (Figs.  3e and  6, 
right). The enhanced prediction is particularly significant given the inferior performance 
of the 3p1 MC models compared to the 3p1 whole-vineyard models. Note that the absolute 
errors for the western block (A–J) tended to be higher than that of the eastern block (K–T).

Discussion

Current best management practice to evaluate water status in a commercial vineyard to 
support irrigation decisions is done by direct measurement of Ψstem in a few, supposedly 
representative, number of vines (Helman et al., 2018). As expected, this current water sta-
tus monitoring under-represented the spatial variability of the vineyard in the current study. 
An alternative is to use remotely-sensed products depicting indirect, and necessarily less 
accurate and less reliable information, but from all vines. This trade-off exists in a variety 
of sensing utilizations in many disciplines, as well as in agriculture and in particular in 
precision agriculture (Cai & Zhu, 2015; Kamilaris et al., 2017). Previous studies examined 
various sources of errors that compromise the ability of CWSI to estimate water status 
(Gonzalez-Dugo & Zarco-Tejada, 2022; Jones & Sirault, 2014; Pou et al., 2014). Yet, based 
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on a literature review, no previous study examined whether CWSI-generated products were 
better or worse than current water status manual monitoring alternatives. Additionally, no 
study determined the minimal size for which the CWSI product would be reliable. Fur-
thermore, from a temporal aspect, the robustness of the relationships of CWSI and Ψstem, 
which determine the quality of the water status estimation, has hardly been addressed.

Vineyard water status: UAV‑thermal‑based maps vs. laborious monitoring of a few 
vines

The thermal based model tested in the current study was found to provide better estimation 
of vineyard water status compared to standard Ψstem measurements from either four or six 
vines when compared to the extensive highly dense Ψstem measurements from 120 vines 
(Table  4). In this study, a model was created using a conservative validation, in which 
three seasons were used for data calibration and another season served as a test set (3p1). 
The 3p1 model presented higher accuracy (RMSE = 0.07), compared to current water sta-
tus manual monitoring accuracy (RMSE = 0.18–0.24) and had only three irrigation errors 
compared to five to six errors for the current water status manual monitoring Ψstem meas-
urement (Table 4). It should be stressed that Ψstem prediction was done using data from 
different seasons that was compared to current daily Ψstem measurements, reinforcing the 
model’s robustness. This comparison is part of the inherent trade-off between a rapid, spa-
tial water status measurement of the entire vineyard (i.e., all vines), and an accurate, pin-
pointed, low sample size water status measurement. The superiority of the Ψstem estimated 
by thermal imaging at stages II and III of fruit development means that it can be incorpo-
rated first and foremost for an in-season water status assessment program at the vineyard 
scale and improve commercial uniform irrigation. At early phenological stages, however, 
the model accuracy was found significantly lower (Fig. 7, Appendix) possibly due to errors 
stemming from varying atmospheric conditions (Sepúlveda-Reyes et al., 2016), and from 
seasonal modification of the relationships between leaf stomatal conductance and Ψstem 
(Herrera et al., 2022). It may be argued that inferiority of the manual monitoring of Ψstem 
that resulted in subpar spatial representation is attributed to the sampling locations (i.e. 2 
or 3 pairs of vines in close proximity) and enhancement potentially be achieved through 
optimizing the distribution of sampling. Several recent studies have proposed methodolo-
gies to optimize sampling locations by integrating ancillary data. These studies have imple-
mented such optimization across diverse domains, including multifunctional-matching-
based approach for any target value or measurement (Ohana-Levi et al., 2021), the strategic 
deployment of moisture sensors (Arno et al., 2023), and for yield sampling in vineyards 
(Oger et al., 2021). However, in our opinion, these methods are more aptly suited for deter-
mining sensor locations, and may be less applicable to periodic measurements that neces-
sitate physical presence within a short timeframe, as is the case with Ψstem measurements.

What is the smallest scale that at which CWSI effectively represents vine water 
status for precision irrigation?

Beyond the ability to well represent water status at the vineyard scale this study also 
aimed at identifying the optimal scale for effectively representing vine water status using 
CWSI for precision irrigation. The rationale to reduce the measured area from a vineyard 
scale to the single vine scale stems from the precision agriculture approach that promotes 
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Fig. 5   Model accuracy attributes 
with different number of seasons 
used for calibrating and testing 
Ψstem values. The calibration/
test ratio is shown on the X-axis. 
E.g., 3p1 means that three sea-
sons of data were used to predict 
a single season of Ψstem values. 
The total number of model com-
binations was four. The Y-axis 
depicts the averaged R2 (orange 
rectangles) and the RMSE (blue 
triangles) (Color figure online)

Table 5   RMSE of Ψstem and irrigation decisions errors at the management cell scale (n = 440 combinations 
of 20 MCs and 22 measurement days), using the 3p1 model

For each date, 20 irrigation decisions, separated into correct, under-irrigation and over-irrigation decisions 
compared to the irrigation decision based on Ψstem 120
 RMSE of predicted Ψstem was calculated as the average of 20 management cells for each date

Date Ψstem predicted 
RMSE (MC)

Irrigation decisions

Correct Under Over

19 Jul 2017 0.112 19 1 0
9 Aug 2017 0.102 14 4 2
5 Sep 2017 0.134 11 7 2
4 Jul 2018 0.069 20 0 0
18 Jul 2018 0.061 20 0 0
31 Jul 2018 0.083 20 0 0
29 Aug 2018 0.129 13 6 1
5 Jun 2019 0.074 11 5 4
24 Jul 2019 0.151 20 0 0
21 Aug 2019 0.103 18 2 0
28 Aug 2019 0.107 16 4 0
4 Sep 2019 0.119 16 4 0
11 Sep 2019 0.111 19 1 0
17 Jun 2020 0.073 9 8 3
1 Jul 2020 0.093 13 2 5
15 Jul 2020 0.135 15 2 3
22 Jul 2020 0.135 14 5 1
5 Aug 2020 0.102 17 3 0
19 Aug 2020 0.143 14 6 0
26 Aug 2020 0.116 18 2 0
2 Sep 2020 0.135 16 4 0
8 Sep 2020 0.129 16 2 2
RMSE 0.11 Sum of deci-

sions
349 (79.3%) 68 (15.5%) 23 (5.2%)
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site-specific solutions. It can be expected that the ability to predict Ψstem at the smallest 
scale (MV), where the percentage of the measured vines in the imaged polygon was 100% 
(Table 2) will be more precise than scales with substantially lower representation rate of 
vines. For example, several studies (e.g., Cohen et  al., 2005; Moller et  al., 2007; Grant 
et al., 2007) compared Ψleaf or Ψstem of the same leaves used in high-resolution thermog-
raphy to calculate CWSI to avoid variations stem from the intra-canopy variability. In the 
current study it was found that at the MV scale, model accuracy was the lowest. The reason 
for this is likely the smaller of what can be called "signal-to-noise ratio" (SNR; Atkinson 
et al., 2007) compared to the other scales. At the MV scale, Tcanopy was assessed using only 
few hundred pixels, while on the next size scale, the MC, about 50,000 pixels were used. 
Moving to the largest vineyard scale, yielded roughly 1 million pixels that were used. It 
is assumed that the large number of pixels allowed greater noise reduction by removing 
more of the non-canopy pixels. In this way, a larger proportion of pure canopy pixels was 
accounted for in the final determined value of Tcanopy. It should be mentioned that, at each 
of the scales, a separate calculation of CWSI was performed and the pure canopy pixel 
selection was made independently.

These results contradict Cohen et al. (2005) who measured single cotton leaves and pre-
sented high CWSI- Ψleaf model accuracy, probably due to the fact that they used very high 
spatial resolution of thermal pixels (0.5  cm per pixel) allowing precise measurement of 
a single leaf, thus increasing the signal within the image. Similarly, Grant et  al. (2007) 
measured vines canopy using a thermal camera mounted on a tripod perpendicular to the 
imaged area at a very high (sub-centimeter) spatial resolution to distinguish between irriga-
tion treatments. There is room for more in-depth research on the subject that will further 
evaluate similar scale sizes with different pixel numbers.

Fig. 6   Absolute error of Ψstem at the MC scale for all dates across the four seasons – 2017 (a1–a3), 2018 
(b1–b4), 2019 (c1–c6) and 2020 (d1–d8). In the left side is the absolute error of differential Ψstem for every 
MC estimated by the MC 3p1 model. In the right side is the absolute error of a uniform Ψstem120est used 
for all 20 MCs estimated by the whole vineyard 3p1 model. Ψstem values measured at 6 vines per MC were 
used as benchmarks to calculate the absolute error
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Despite the reduction in model accuracy as a function of decreasing scale size (Fig. 3) 
water status evaluation at the small MC scale using the MC scale model (Fig. 3b) produced 
a substantially lower Ψstem error compared to whole vineyard scale single rate evaluation 
(Fig.  6). This is expected to allow superior irrigation decisions for small-scale manage-
ment zones in vineyards practicing precision irrigation. These findings align with results 
observed in other precision irrigation experiments. (Cohen et al., 2021) demonstrated that 
variable rate drip irrigation (VRDI) in cotton improved water use efficiency without com-
promising yield. Ortuani et al. (2019) illustrated a reduction of water use when comparing 
a reference plot (following traditional farmer practices) in vineyards. Sanchez et al. (2017) 
similarly showed that VRDI management led to increased yield and water use efficiency in 
vineyards, and Katz et al. (2022) found that Ψstem was better maintained under VRDI com-
pared to uniform irrigation in peaches. Comprehensive insights into the challenges associ-
ated with implementing precision drip irrigation were provided by Ben-Gal et al. (2022). 
However, recently possible technological solutions have been developed including the 
development of a smart dripper with multiple statuses (Alchanatis & Shkolnik, 2023), and 
implementation of wireless communication among water valves, each controlling specific 
sub-areas in the field (Shaked, 2023). Although these technologies are still in their infant 
stages, they lay the groundwork for the prospective application of VRDI in the near future, 
enhancing the practical relevance of the findings from this study.

This study investigated how altering the target area of interest—without changing the 
original high resolution of the UAV image and without considering the spatial structure of 
water status as reflected by the Ψstem —affects the accuracy of estimating Ψstem using ther-
mal UAV. Tisseyre et al. (2018) have found that the grid size is dependent on the resolution 
of the available information and the spatial structure of the raw data. Our research demon-
strated the feasibility of accurately representing the water status down to a minimal area of 
a management cell that in our study was set to 30 × 30 m. Nevertheless, the absolute mag-
nitude appears to be influenced by both the image resolution and the spatial structure of the 
water status. There is potential to explore combinations of resolutions and spatial structures 
to determine the minimum absolute size for each combination but it was beyond the scope 
of this study. However, it is reasonable to assume that the identified trend persists; with a 
specific resolution of the UAV image, reducing the target area leads to a decrease in the 
signal-to-noise ratio until the point where the assessment of water status falls below the 
desired accuracy.

Model accuracy and robustness over time

Model accuracy and robustness can be evaluated using a separate dataset comprised of 
samples from different place and time. Several methods are available with cross-valida-
tion, leave-one-out, and k-fold frequently used for model validation (Berrar, 2018). Annual 
oscillations of grapevine physiology and wine quality are commonly reported in vineyards 
(Jones et  al., 2005; Ohana-Levi, et  al., 2020) and therefore should be accounted for in 
model building and validation. In this study, the models were created using a conservative 
validation, in which whole seasons were used for data calibration and for testing. The ther-
mal-based water status model was assumed to be not scalable (i.e., a valid model of one 
vineyard will not necessarily fit another vineyard), therefore we evaluated the number of 
seasons required for establishing a valid model in a single vineyard (Fig. 5). The minimal 
time required for establishing such a model was found to be two seasons.
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The findings regarding improved model prediction due to addition of meteorological 
parameters (Figs. 2 and 3) suggest that the seasonality effect of water status prediction was 
mitigated by considering the changes in conditions between campaign days and the cumu-
lative evaporative demand that differed between seasons (Table 3). Solar radiation was the 
most important contributor to the prediction of Ψstem after CWSI (Fig. 4). The approach 
adopted in this study, and commonly used in other studies (Gonzalez-Dugo & Zarco-
Tejada, 2022; Grant et al., 2007; Möller et al., 2007), majorly aims at calibrating the effects 
of air temperature and vapor pressure deficit on canopy temperature. Maes and Steppe 
(2012) have shown that the effect of radiation on canopy temperature is higher on canopies 
with high stomatal conductance (Twet) compared to canopies with low stomatal conduct-
ance (Tdry). Since in this study solar radiation measured at the different seasons ranged 
from 831 to 1012 w/m2, CWSI was significantly affected by it, thus explaining the major 
contribution of solar radiation on the four season’s regression model. Agam et al., (2013a, 
2013b) have shown a major effect of clouds on CWSI calculation. However, more study on 
the effect of solar radiation on CWSI calculations should be invested under clear sky condi-
tions. Meanwhile, our results suggest that in multi-season calibration CWSI-Ψstem models, 
radiation should be considered. The contribution of seasonal cumulative variables, together 
with the effect of solar radiation, on Twet was not quantified by the model based solely on 
CWSI, and thus elucidates the higher proportion of the variation of Ψstem explained by the 
four-parameter model. Spatial factors such as CWSI are expected to play a substantial role 
in accurately forecasting Ψstem in smaller-scale models that offer detailed spatial represen-
tation, such as MZ and MC. However, their contribution is likely to be less pronounced in 
models predicting Ψstem at a larger scale, such as the vineyard scale. Nevertheless, CWSI, 
which was the only parameter that represented the spatial variability of the canopy water 
status within the vineyard, contributed most to the prediction of the measured Ψstem at all 
scales (Fig. 4).

Conclusions

The results presented in this study demonstrate the complexity in using thermal imagery 
for water status estimation in vineyards and its consequential use in irrigation decision-
making. First, CWSI-Ψstem relationships were found to be affected by scale size that should 
be accounted for when establishing thermal-based water status assessments in vineyards. 
The accuracy of the thermal-based model increased with increasing size of scale. Second, 
the CWSI-Ψstem relationships were not stable over time. Model robustness required a mini-
mum of two training seasons and benefited from incorporation of additional meteorologi-
cal parameters, especially radiation and accumulative ET0. Despite CWSI limitations, it 
was shown for the first time that at both the vineyard (2.5 ha) and MC (0.09 ha) scales, the 
thermal-based model predicted Ψstem better than best management water status monitoring 
practice, i.e., direct measurements of a few representative vines. Further, the study’s results 
suggest that Ψstem predicted by CWSI (based on UAV thermal imagery) could benefit both 
uniform and precision irrigation. Future studies should evaluate precision irrigation in 
on-farm experimentation to explore its actual effect on yield parameters and on irrigation 
water use efficiency. Utilizing the insights from the spatial and temporal aspects explored 
in this study relating to CWSI-Ψstem relationships may pave the way for expanding the utili-
zation of thermal imagery in irrigation decision support systems.
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Appendix

See Table 6 and Fig. 7. 
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Table 6   Model accuracy attributes with different number of seasons required for calibrating (cal) and test-
ing Ψstem values (test)

The calibration/test ratio is shown in bold. e.g., 3p1 – three seasons used to predict single season of Ψstem 
values with four different combinations
Each season had a different number of campaign dates (Table 3), causing them to have different repetition 
number for calibration and test.

Model 3p1 2p2 2p1 1p2 1p1 1p3

No. of Combinations 4 6 12 12 12 4
Cal (n) 260–380 140–300 140–300 60–180 60–180 60–180
Test (n) 60–180 140–300 60–180 140–300 60–180 260–380
Mean RMSE 0.1336 0.1426 0.1411 0.1601 0.1580 0.1611
Std RMSE 0.0148 0.0131 0.0156 0.0171 0.0215 0.0156
Mean R2 0.6029 0.5867 0.5543 0.4304 0.4407 0.4888
Std R2 0.0881 0.0926 0.1067 0.0639 0.1421 0.0890

Fig. 7   CWSI and Ψstem correlations in studied vineyard (in Mevo-Betar) at three phenological growth stages 
(Coombe & McCarthy, 2000) in 2018. Stage I – 23/5 – 6/6, stage II – 20/6 – 18/7, stage III – 31/7 – 29/8. 
Each dot represents management cell (n = 20 for each measurement day)
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