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Abstract
Early monitoring of within-field yield variability and forecasting yield potential is critical 
for farmers and other key stakeholders such as policymakers. Remote sensing techniques 
are progressively being used in yield prediction studies due to easy access and affordability. 
Despite the increasing use of remote sensing techniques for yield prediction in agriculture, 
there is still a need for medium-resolution satellite imagery when predicting canola yield 
using a combination of crop and soil information. In this study, we investigated the utility 
of remotely sensed flowering information from PlanetScope (at 4 m) satellite imagery com-
bined with derived soil and topography parameters to predict canola yield. Our yield pre-
diction model was trained and validated using data from 21 fields managed under variable 
rate seed and fertilizer application, including cleaned harvester yield maps, soil, and topog-
raphy maps. To quantify the flowering intensity of canola, 9 vegetation indices (VIs) were 
calculated using spectral bands from PlanetScope imagery acquired for the reproductive 
stages of canola. We created five random forest regression models using different subsets 
of covariates, including VIs, soil, and topography features, to predict canola yield within 
the season. Using a random forest regression algorithm, we recorded accuracies ranging 
from poor to best performing using coefficient of determination and root mean squared 
error  (R2: 0.47 to 0.66, RMSE: 325 to 399 kg  ha−1). The optimal subset of covariates iden-
tified electrical conductivity (EC), Normalized Difference Yellowness Index, and Canola 
Index as the key variables explaining within-spatial variability in canola yield. Our final 
model exhibited a validation  R2 of 0.46 (RMSE = 730 kg  ha−1), demonstrating the potential 
of medium-resolution satellite imagery during the flowering stage to detect and quantify 
sub-field spatial and temporal floral phenology changes when predicting canola yield.
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Introduction

Canola is the third-largest oil crop in the world and widely used as edible oil, animal feed, 
and biofuel (Canola Council of Canada, 2021; Zhang et al., 2020). Canada, being the lead-
ing global producer of canola, achieved a peak revenue of 19.4 million metric tons in 2020 
(Statistics Canada, 2021), with Saskatchewan contributing approximately 55% of Canada’s 
total production. Thus, canola yield forecasts are imperative to making more informed 
decisions on a farmer, regional, or national level.

Remote sensing technologies have revolutionized yield estimation approaches by pro-
viding fast, accurate, and cost-effective datasets, surpassing traditional methods like sur-
veys or crop cuttings (Lobell et al., 2019). Satellite imagery enables the estimation of field 
parameters such as soil properties, topographic indicators, and crop responses, facilitating 
the simulation of within-field spatial variability for optimized farm management practices 
(Liaghat & Balasundram, 2010). However, using remotely sensed imagery (i.e. multi-
ple spectral bands) for within-field spatial variability assessments of crop yields require 
improved calibrations of spatial, radiometric, and temporal resolutions (Enclona et  al., 
2004).

Vegetation indices, which are derived from multiple spectral bands, are widely utilized 
in remote sensing studies to establish functional relationships with biophysical variables 
using empirical, mechanistic, or combined approaches (Chlingaryan et  al., 2018; Weiss 
et al., 2020). Vegetative indices such as Normalized Difference Vegetation Index (NDVI) 
cannot be used to map canola flowers due to their distinctive spectral properties (Sulik 
& Long, 2015). For instance, a reflectance curve of a flower pixel—within a yellow can-
opy—is distinctively different from a similar pixel within a green canopy (Fernando et al., 
2022). To address this limitation, several studies have developed new vegetation indices 
to map yellow flowers, such as Normalized Difference Yellowness Index (NDYI), Blue-
NDVI (BNDVI), High-resolution Flowering Index (HrFI) and Canola Index (CI) (Ash-
ourloo et al., 2019; Chen et al., 2019; Fernando et al., 2022; Sulik & Long, 2016; Zhang 
et al., 2021). For instance, Ashourloo et al (2019) employed Sentinel-2 time series curves 
to automatically map and detect flowering dates. A common feature among these studies is 
the utilization of the unique spectral properties of yellow flowers to capture crucial pheno-
logical information required for predicting yield potentials before harvest (Fernando et al., 
2021; Sulik & Long, 2016; Zhang et al., 2021). The peak flowering period of canola has 
also been demonstrated to have a strong relationship with its seed yield (d’Andrimont et al., 
2020; Fernando et  al., 2021; Sulik & Long, 2016). Additionally, cumulative flowering 
intensity has been identified as a strong indicator of yield potential compared to a single-
date regression approach (Zhang et al., 2021).

Spatial variability within large agricultural areas, influenced by climate, topography, 
soil, and biotic factors, (Jiang & Thelen, 2004), significantly impacts average seed yield 
(Sakamoto, 2020; Sulik & Long, 2016). In light of the growing adoption of precision 
agriculture, identifying within-field spatio-temporal variability to manage variable rate 
applications to facilitate optimum timely resource allocations are important. Accurate esti-
mation of within-field variability requires multiple layers of precise geo-spatial data. Data-
driven processes utilizing machine learning algorithms (MLAs) can leverage large volumes 
of data to identify patterns and relationships that may not be easily discernible through 
human analysis alone (Géron, 2019). Continuously refining models based on new data not 
only improves accuracy over time but also enable better decision-making and automation 
of data processing and analytic pipelines, which reduces the risk of human error while 
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facilitating faster and more efficient decision-making processes. MLAs have proven to be 
highly valuable in predicting crop yields by analyzing the complex relationships between 
various environmental factors that affect crop growth (Chlingaryan et al., 2018). Random 
forest regression (RFR) is a MLA widely used in the domain of agricultural remote sensing 
studies, as it simultaneously analyzes a large number of input variables compared to simple 
empirical approaches such as multiple regression. RFR is also computationally less expen-
sive than complex empirical models such as neural networks (Marques Ramos et al., 2020).

To the best of our knowledge, within-season yield prediction of canola seed yield has 
not been attempted on a sub-field scale using medium-resolution satellite imagery, soil, and 
ancillary data. We hypothesize that (1) the temporal and spatial heterogeneities of canola 
flowering intensity within a field can be indicative of seed yield and (2) indices derived 
from medium-resolution satellite imagery is a reasonable predictor of the sub-field grain 
yield. Thus the objective of this study was to; (1) develop spectral index-based time series 
curves to analyze the variability of canola flowering intensity within and between fields, 
(2) create a random forest model that uses quantified floral intensity, soil, and topography 
data to predict canola seed yield, and (3) assess the significance of input variables in pre-
dicting seed yield through three RFR models and variable importance plots.

Materials and methods

Study area

The study area is located within Rose Valley, Saskatchewan, Canada (52° 28ʹ N, 103° 80ʹ 
W), which included 21 canola fields covering approximately 20  km2 (Fig. 1). Yield maps 
for 2019 for these fields were acquired from a precision agriculture company, with a spatial 
resolution of 2 m. Additional information about canola, including variety, planting, and 
harvesting dates, is provided in Table 1. The fields were managed with variable rate ferti-
lizer applications (Fig. 2).

Data

Spatial data maps

Spatial data layers, including canola seed yield, electrical conductivity (EC) (surface soil 
and deep soil), elevation, and topography index, were obtained from CropPro (a precision 
agriculture company) in Canada. Topography index indicates the curvature of the topology, 
and is developed through the use of proprietary methods of ADMS 64 software version 9.9 
(GK Techonology Inc., 2017). Harvest data, collected using a combined harvester with a 
GPS-tagged yield monitor, was pre-processed to generate an artifact-free yield map. Ele-
vation data was acquired using a mobile vehicle equipped with real-time kinematic posi-
tioning (RTK) technology, which logged elevation measurements. Additionally, an EM38-
MK2 scanner was employed to capture data for the development of EC maps. (Geonics 
Limited, 2013). The vehicle surveyed each field with a 24.4 m swaths taking measurement 
every 10 s with a maximum speed of 45 km  hr−1. These spatial data layers were pre-pro-
cessed and resampled to a resolution of 2 m using ADMS 64 software version 9.9 (GK 
Techonology Inc., 2017).
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Satellite datasets

Image acquisition In this study, we used 3B analytic 4-band (Blue 455–515 nm; Green 
500–590 nm; Red 590–670 nm; NIR 780–860 nm) surface reflectance (SR) products from 
the 1st generation PlanteScope constellation (PS2: Dove classic) (Frazier & Hemingway, 
2021). The SR imagery were acquired as 16-bit GeoTIFF scenes, with the values scaled by 
10 000 and a ground sampling distance of 3.7 m. These multispectral images were corrected 
for geometric, radiometric, and atmospheric distortions indicated by the image provider 
(Planet Labs Inc, 2021). A total of 434 scenes were initially collected for the canola growing 
period, i.e. from May 12 to September 06, 2019. Ortho scenes with > 80% cloud cover were 
not acquired for this study. The PS2 imagery were then processed using ArcGIS Pro 10.6 to 
derive specific vegetation indices.

Image preprocessing and cloud masking Pre-processed orthorectified individual ortho 
scenes were mosaicked to produce a single image for the study area. Cloud Index (CdI) 
was calculated for every image date to threshold cloud and shadow affected pixels within 
individual images (Zhai et al., 2018). CdI-based thresholds were used to develop a binary 
image, which was then used to filter clouds from the corresponding raster.

Fig. 1  Layout map indicating the study area with the spatial variability of canola seed yield of one field. 
The colour scale indicates the canola seed yield in Bu/Ac
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Calculation of  spectral indices Nine vegetation indices (VIs; Table  2) were utilized to 
quantify canopy reflectance and establish an empirical relationship with canola flower-
ing intensity. These indices were categorized as yellowness indices (YI) including NDYI, 
CI, BI, RBNI, MYI, and HrFI and Greenness Indices (GIs) including NDVI, BNDVI, 
and VARI. Yellowness indices allow us to assess floral dynamics while GIs were used to 
evaluate vegetation dynamics. The VIs were calculated based on cloud-masked mosaicked 
images, resulting in a data stack of nine spectral index layers for a single imaging date. Time 
series VI curves were first generated for the entire growing season, and the reproductive 
stage identified using NDYI. Floral phenology was analyzed by the temporal patterns of VIs 
to measure the strength of yellow flowers. To determine the overall intensity of flowering, 
we computed the cumulative intensity by calculating the integrated area under the temporal 
curve (AUC). This was achieved by using the ‘trapezoid’ function (MLmetrics) in RStudio 
(Makowski et al., 2019). The highest value of the index during the reproductive season was 
used to identify the peak flowering intensity.

Data extraction

To extract predictor variables, a vector polygon of each field was created using the yield 
map as a reference layer. The mosaicked yield map, consisting of 21 fields, was subdivided 
into four classes based on quartile values: Class 1 (201–2690 kg/ha), Class 2 (2690–3564 

Table 1  Information on 21 canola fields for year 2019 used in the study

Field ID Crop Area (ha) Date seeded Date harvested

01 Canola-Liberty (L233P) 146 14-May Harvested Oct 9
02 Canola-Liberty (L233P) 69 13-May Harvested Oct 9
03 Canola-RR (DKTF 92 SC) 168 09-May Harvested Oct 18
04 Canola-RR (DKTF 92 SC) 170 10-May Harvested Oct 20
05 Canola-RR (DKTF 92 SC) 47 09-May Harvested Oct 18
06 Canola-RR (DKTF 92 SC) 67 10-May Harvested Oct 9
08 Canola-Liberty (L233P) 65 15-May Harvested Oct 18
09 Canola-Liberty (L233P) 486 15-May Harvested Oct 20
10 Canola-RR (DKTF 92 SC) 24 09-May Harvested Oct 9
11 Canola-RR (DKTF 92 SC) 61 09-May Harvested Oct 9
12 Canola-RR (DKTF 92 SC) 73 09-May Harvested Oct 10
13 Canola-Liberty (L233P) 138 09-May Harvested Oct 9
18 Canola-Liberty (L233P) 148 10-May Harvested Oct 17
19 Canola-Liberty (L233P) 57 12-May Harvested Oct 10
20 Canola-Liberty (L233P) 154 12-May Harvested Oct 17
23 Canola-Liberty (L233P) 156 11-May Harvested Oct 17
24 Canola-Liberty (L233P) 63 11-May Harvested Oct 11
43 Canola-Liberty (L233P) 42 10-May Harvested Oct 20
50 Canola-Liberty (L233P) 119 11-May Harvested Oct 11
55 Canola-RR (DKTF 92 SC) 63 09-May Harvested Oct 10
10 Canola-Liberty (L233P) 55 10-May Harvested Oct 6
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kg/ha), Class 3 (3564–4640 kg/ha), and Class 4 (4640–7733 kg/ha). 2500 points were 
assigned to each class using stratified random sampling. A 10 m buffer was applied to each 
point, resulting in square-shaped polygons with an area of 10  m2. A vector layer containing 
10 000 square polygons was then used to extract zonal statistics from the input data layers.

Yield model

The dataset was divided into a training subset (80%, n ≈ 8000) and an external validation 
subset (20%, n ≈ 2000) for the prediction model (Gholamy et al., 2018). A ten-fold cross-
validation random forest regression model was utilized. Two hyperparameters, namely the 
number of trees (ntree) and the number of features considered at each split (mtry), were opti-
mized based on the lowest root mean squared error (RMSE). The covariates were categorized 
into three groups: YI, GI, and Soil. The BI, despite being a yellowness index, was excluded 

Fig. 2  The workflow of image processing, data analysis, and yield modeling procedure used for developing 
a random forest regression model for yield prediction
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from the model development as it exhibited an inverse relationship with flowering intensity. 
To evaluate the contribution of each data group, five RFR models were constructed (Table 3) 
and compared using coeffieicient of determination  (R2). All the models were trained and vali-
dated via the ‘caret’ R package (Kuhn, 2008) within RStudio Version 3.6.1 (RStudio, 2018).

In addition to comparing data types (VIs, and soil variables) through different RFR models, 
the importance of each variable in the finalized model was assessed using the “VarImp” func-
tion from ‘caret’ R package (Kuhn, 2008). This function calculates the contribution of each 
predictor by recording the mean squared error of out-of-bag data for each tree, after permut-
ing each predictor variable. The differences are then averaged and normalized by the stand-
ard error. To facilitate comparison between input features, the variable importance plots were 
scaled as relative importance from 0 to 100, where a score of 100 represents the most impor-
tant variable, and a score of 0 represents the least important variable. Detailed descriptions of 
the input variables can be found in the supplementary materials Table S1. Furthermore, the 
importance and stability of information obtained from VIs and soil data were additionally ana-
lyzed using the “holding-out” method. This involved iterating model3 (Soil Model), model4 
(Flower and Soil Model), and model5 (Flower Model), a number of times (in this case 21 
times), with each iteration holding out a different field for validation and utilizing the remain-
ing fields for training. The resulting distribution of correlation (R) values was examined to 
assess the stability of these models. After selecting the optimal model, a feature reduction step 
was performed by eliminating variables with correlations exceeding 0.9. For further explora-
tion, the relationship of individual variables to canola seed yield was explored using simple 
linear regression for each of the 21 fields.

Table 2  Equations used for the estimation of various vegetation indices. NDYI, CI, BI, RBNI, MYI, HrFI 
are grouped as yellowness indices (YI). BNDVI, NDVI, VARI are grouped as vegetation indices (VI)

Spectral Index Equation References

Normalized Difference Yellowness Index 
(NDYI)

(Green−Blue)

(Green+Blue)
(1) Sulik and Long (2016)

Canola Index (CI) NIR(Red + Green) (2) Ashourloo et al. (2019)
Blooming Index (BI) (Red+Green)∕Blue

Green

Blue
X(Red−Blue+104)

(3) Chen et al. (2019)

Red Blue Normalizing Index (RBNI) (Red−Blue)

(Red+Blue)
(4) Fernando et al. (2022)

Modified Yellowness Index (MYI) (RedxGreen)

Blue

(5) Fernando et al. (2022)

High-resolution Flowering Index (HrFI) (Red − Blue)x(Green − Blue) (6) Fernando et al. (2022)
Blue–NDVI (BNDVI) (NIR−Blue)

(NIR+Blue)
(7) Sulik and Long (2016)

Normalized Difference Vegetation Index 
(NDVI)

(NIR−Red)

(NIR+Red)
(8) Tucker (1979)

Visible Atmospherically Resistant Index 
(VARI)

(Green−Red)

(Green+Red−Blue)
(9) Gitelson et al. (2002)

Cloud Index (CdI) (3xNIR)

(Green+Blue+Red)
(10) Zhai et al. (2018)
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Results

Yield model

All RFR trained models, except for Soil-Only model (RFR3), were able to explain 
approximately 65% of the variability in yield  (R2) with similar RMSE, averaging at 
350 kg  ha−1(Table 4). The Soil-Only model, explained 47% of the yield variability with 
RMSE of 918 kg  ha−1. During model validation, Flower-Soil model (RFR4) exhibited 
the highest correlation  (R2 0.46, RMSE 730 kg  ha−1), closely followed by the Flower-
Green-Soil model (RFR1;  R2 0.45, RMSE 760 kg  ha−1). Despite the similar predictive 
power  (R2) between these two models, the number of inputs differed significantly. The 
Flower-Soil model, with 14 predictors, demonstrated a slightly better performance to 
the Flower-Green-Soil model, which utilized 23 predictors.

Despite the lower performance of the Soil-Only model, incorporating soil-related 
parameters alongside spectral predictors improved the model’s predictive power. 
This is evident from the higher validation metrics observed in the Flower-Soil model 
 (R2 = 0.46) and the Flower-Green-Soil model  (R2 = 0.45) compared to the Soil-Only 
model  (R2 = 0.18). The Flower-Green model (RFR2) and the Flower-Only model 
(RFR5), which solely utilized spectral information as predictor variables, achieved 
a validation  R2 of 0.27 and 0.29, respectively, between the actual and predicted seed 
yields.

Cross-validation results reveal that small changes in the training data can signifi-
cantly influence the model power (Fig. 3). The Soil-Only model shows a wide range of 
R values (− 0.3 to 0.70), while the Flower-Soil model, exhibits a narrower range of R 
values (0.3 to 0.8).

In Flower-Soil model, the number of predictors were reduced from 14 to 9 by elimi-
nating highly correlated variables (R > 0.9) ‘Max.CI’, ‘EC_Deep’, ‘CI_AUC’, ‘MYI_
AUC’, and ‘Max.MYI’. The correlation matrix of the variables is presented in Supple-
mentary Materials Fig. S1. This variable reduction reduced the R of the validation plot 
by 19% from 0.46 (14 predictors) to 0.37 (9 predictors) and increased the RMSE from 
730 to 824 kg  ha−1. Thus, in the final yield model, all 14 variables were used. The vali-
dation plot of the RFR4 model is presented in Fig. 4a.

Table 4  Comparison of performance metrics of the random forest regression models

Models Number of 
predictors

mtry/ntree Training
R2

Training 
RMSE
(kg  ha−1)

Validation
R2

Valida-
tion 
RMSE
(kg  ha−1)

RFR1: Flower-Green-Soil 23 12/500 0.66 318 0.45 761
RFR2: Flower-Green 19 10/500 0.65 343 0.27 872
RFR3: Soil-Only 4 2/500 0.47 399 0.18 918
RFR4: Flower-Soil 14 8/500 0.66 325 0.46 730
RFR5: Flower-Only 10 2/500 0.64 358 0.29 865



 Precision Agriculture

1 3

Variable importance

The three most important variables identified were Shallow EC (topsoil electrical conduc-
tivity), Max.CI (peak flowering intensity captured by the Canola Index), and NDYI_AUC 
(cumulative flowering intensity measured through NDYI) (Fig. 4b). Significance of shal-
low EC as a predictor is further supported by variable importance plots in the Flower-
Green-Soil, Soil-Only, and Flower-Soil models, where it consistently ranks as the most 
important variable (Figures not included). In models incorporating spectral indices, Max.
CI and NDYI_AUC also ranked among the top three variables, albeit with slight variations 
in ranking across different models. The importance of using different data types (Flower, 
Leaf and Soil) is further highlighted by the variable importance plots, where Shallow EC 
ranked 1st followed by either peak flowering intensity or cumulative intensity. Notably, the 
EC of the subsoil was found to be less important (Fig. 4b). The relationship between EC_
Shallow and canola seed yield across different fields is presented in Supplementary Materi-
als Fig. S2. The figures show moderate correlations ranging from 0.5 to 0.7. Similarly, the 
relationship between Max.CI and canola seed yield across different fields is presented in 
Supplementary Materials Fig. S3. Max.CI, representing peak flowering intensity, exhibits 

Fig. 3  Violin plots illustrating the distribution of validation R obtained from the leave-one-field out cross 
validation (Pearson’s correlation coefficient) for RFR3, RFR4, and RFR5 models. The models were iterated 
21 times, each time holding out an individual field out for validation. Wider vertical distribution in R value 
implies that the exclusion of a single field during model iteration can result in substantial changes in model 
performance
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a positive correlation with seed yield, ranging from 0.16 to 0.86 with most fields having a 
R of above 0.45, indicating the importance of the peak flowering intensity variable in yield 
prediction. AUC_NDYI, representing cumulative flowering intensity, shows a similar rela-
tionship to Max.CI, with most R values above 0.45.

The correlation coefficients between the input variables and canola seed yields across 
all 21 fields demonstrated a consistent trend in decreasing R values as the variable impor-
tance decreases (Fig. 5). This trend holds true until the 11th ranked variable, which corre-
sponded to topography. Surprisingly, despite topography exhibiting the lesser overall cor-
relation with seed yield, it is assigned a greater variable importance compared to variables 
like ‘AUC_RBNI’, ‘Max.RBNI’, and ‘AUC_HrFI’, which showed stronger correlations 
with seed yield.

Spatial and temporal variability of spectral information

The temporal dynamics of nine VIs, as depicted in Fig.  6, coincide with the changes 
in flowering intensity over time. At the onset of flowering, indices such as BI, NDVI, 
and VARI exhibited a decline in values as flowering intensity increases, reaching a 
depression at the peak flowering period (Julian Date 200). Subsequently, these indices 
gradually increased as the plants progressed into the pod stage. Notably, among the 
yellowness indices, only BI demonstrated a negative correlation with flowering. The 
depressions observed in BI and VARI are more pronounced compared to NDVI across 
all fields. Conversely, the greenness index BNDVI and other yellowness indices (CI, 

Fig. 4  a Validation plot of the theoretical performance of the random forest regression model built using 
yellowness indices, soil, and topography variables (RFR4) for the canola seed yield with selected features. 
The validation resulted in an  R2 of 0.46 and an RMSE of 730 kg  ha−1, b Normalized variable importance 
RFR4. The values are scaled from 0 to 100 (most important). EC_Shallow: Electrical Conductivity of the 
topsoil, Max.CI: Maximum flowering intensity quantified through CI, NDYI_AUC: Cumulative flowering 
intensity quantified through NDYI, EC_Deep: Electrical Conductivity of the subsoil, CI_AUC: Cumula-
tive flowering intensity quantified through CI, Max.HrFI: Maximum flowering intensity quantified through 
HrFI, MYI_AUC: Cumulative flowering intensity quantified through MYI, Max.NDYI: Maximum flower-
ing intensity quantified through NDYI, Elevation: Elevation measured in feet, Max.MYI: Maximum flower-
ing intensity quantified through MYI, Topography: Topography index, RBNI_AUC: Cumulative flowering 
intensity quantified through RBNI, Max.RBNI: Maximum flowering intensity quantified through RBNI, 
HrFI_AUC: Cumulative flowering intensity quantified through HrFI
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HrFI, MYI, NDYI, RFI) exhibited a positive relationship with flowering, wherein higher 
flowering intensity corresponded to elevated index values, peaking around Julian Date 
200. Furthermore, the differences in index values between the four yield classes were 

Fig. 5  Variability in Pearson’s correlation coefficient between the input feature and the canola seed yield for 
21 canola fields. EC_Shallow: Electrical Conductivity of the topsoil, Max.CI: Maximum flowering intensity 
quantified through CI, NDYI_AUC: Cumulative flowering intensity quantified through NDYI, EC_Deep: 
Electrical Conductivity of the subsoil, CI_AUC: Cumulative flowering intensity quantified through CI, 
Max.HrFI: Maximum flowering intensity quantified through HrFI, MYI_AUC: Cumulative flowering inten-
sity quantified through MYI, Max.NDYI: Maximum flowering intensity quantified through NDYI, Eleva-
tion: Elevation measured in feet, Max.MYI: Maximum flowering intensity quantified through MYI, Topog-
raphy: Topography index, RBNI_AUC: Cumulative flowering intensity quantified through RBNI, Max.
RBNI: Maximum flowering intensity quantified through RBNI, HrFI_AUC: Cumulative flowering intensity 
quantified through HrFI
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most distinct during the peak flowering period, particularly in class 1, and this pattern 
was consistent across most yellowness indices.

Discussion

The combination of soil and spectral information in predicting canola yield demonstrate 
superior predictive power compared to their individual usage (Table 4). The limited verti-
cal distribution observed in the Flower-Soil model (Fig. 3) further confirms the stability 
of the model when both soil and yellowness spectral information are utilized, in contrast 
to using either Flower-Only or Soil-Only models. The performance of the Flower-Only 
model was comparable or slightly better when combined with the Greenness model. The 
underperformance of using only greenness indices during flowering can be attributed to the 
weak relationship between vegetation indices and canopy reflectance during peak flower-
ing (Sulik & Long, 2016).

Fig. 6  Example time series curves of VIs depicting the index value change with flowering phenology for 
Field ID 19. The lines are smoothed using the “Loess” function from Library “ggplot2”. Four yield classes: 
Class 1 (201–2690), Class 2 (2690–3564), Class 3 (3564–4640), and Class 4 (4640–7733)
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The validation plot of the Flower-Soil model (Fig. 4a) exhibited a trend of underestimat-
ing canola seed yield values exceeding 4500 kg/ha. This can be attributed to the saturation 
effect observed in vegetation indices at higher biomass levels, where the increase in flow-
ering intensity does not correspond proportionally to an increase in the yellowness index 
value. Furthermore, most of the training data being concentrated around or below the aver-
age yield of 4500 kg  ha−1 contributes to the model’s limited ability to extrapolate to yield 
values outside the range of the training data. This is a common drawback of machine learn-
ing algorithms, where their predictive performance may be constrained by the training data 
distribution. To improve the model’s performance in estimating high-yield scenarios, it is 
essential to consider the representativeness of training data and explore approaches that 
address the saturation effect and enable better extrapolation capabilities.

Spectral information demonstrated stronger predictive capabilities for canola yield com-
pared to the soil information used in this study. This observation can be attributed to the 
distinct nature of these data types. Soil information represents the pre-growing season con-
dition of the soil, providing insight into its suitability for plant growth. In contrast, spec-
tral information captures the dynamic response of plants throughout the growing season, 
encompassing the influence of soil, genetics, and environmental factors. Consequently, 
spectral information indirectly reflects the soil conditions and the canola’s response to its 
growing environment. Thus, it is reasonable to conclude that spectral covariates enhance 
predictive power more effectively than soil variables.

The canola fields used in this study were subject to variable rate applications, but the 
specific input rates were not utilized as variables in the model development. It is impor-
tant to note that management decisions regarding crop inputs can influence crop yield, and 
thus, they may have impacted the performance of the model. In a comprehensive 40-year 
study by Wang (2021), a knowledge-driven model called GEM (Genetic, Environment, and 
Management) was developed to emphasize the significance of incorporating management 
information for accurate yield predictions. However, even in the absence of site-specific 
rate information in the present study, the developed model achieved a  R2 value of 0.46 in 
predicting yield. In using MLAs in forecasting yield, there is a primary focus on improv-
ing interpretability and explainability of the algorithmic processes (Gilpin et  al., 2018). 
RFR models offer the advantage of ranking variables based on their importance, which 
contributes to a better understanding of the data. For instance, the variable importance plot 
revealed the significance of shallow EC and peak and cumulative flowering intensities in 
predicting canola yield.

Shallow EC, CI.Max (Peak flowering intensity captured by the CI), and AUC_NDYI 
(Cumulative flowering intensity captured by the NDYI) were identified as the most impor-
tant features consistently across different model iterations, highlighting their significance 
for predicting canola seed yield. EC shallow reflects the suitability of soil for optimum 
plant growth as saline soils hinders water movement into plant roots (Machado & Serral-
heiro, 2017). CI.Max and AUC_NDYI represents reproductive potential of the crop, where 
each flower produces one silique that produce multiple canola seed, hence a direct indica-
tor of yield. Similar results have been reported in the literature, where it was demonstrated 
that canola seed yield prediction is improved when spectral information is used with pre-
cipitation and soil data (Wen et al., 2021).

Feature selection in MLAs reduces the dimensions and enhances computational effi-
ciency (Goodfellow et al., 2016). Removing highly correlated variables (R > 0.9) reduced 
the model power by 19%, suggesting correlated predictors have some impact on random 
forest models as the data is randomly selected when developing decision trees. Highly 
correlated variables can affect the ranking of feature importance, wherein despite high 
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correlation of AUC_HrFI with the yield (Fig. 5), it is ranked as the least important vari-
able. The time series curve of HrFI is very similar to other yellowness indices, especially 
with NDYI, which ranked as the 3rd most variable (Fig. 6).

The time series curves of the vegetation indices also exhibited the expected patterns, 
demonstrating slight differences among the four yield classes. Time series curves of aver-
age normalized difference yellowness index (NDYI) for four yield classes are presented in 
Supplementary Materials Fig. S4. It is worth noting that the impact of radiometric calibra-
tions may be insignificant since the canola fields are in the same area. However, when using 
PlanetScope imagery across a larger area, the lack of agreement between individual satel-
lites could affect data quality. Nonetheless, several studies have shown that despite quality 
differences between scenes, PlanetScope imagery can produce similar or even improved 
results compared to Landsat and Sentinel-2 imagery (Mansaray et al., 2021; Moon et al., 
2021; Shimizu et al., 2020).

The use of PlanetScope satellite imagery in this study enabled the identification of tem-
poral and spatial variability in flowering within the canola fields, despite the variation in 
radiometric and geometric quality compared to Landsat and Sentinel imagery (Frazier 
& Hemingway, 2021). The developed yellowness indices showed a moderate correlation 
with canola yield at the individual field level (Figs. S2 and S3), also showing slight differ-
ences between the four yield classes When using PlanetScope imagery across a larger area, 
the lack of agreement between individual satellites could affect data quality. Nonetheless, 
several studies have shown that despite quality differences between scenes, PlanetScope 
imagery can produce similar or even improved results compared to Landsat and Sentinel-2 
imagery (Mansaray et al., 2021; Moon et al., 2021; Shimizu et al., 2020).

Canola is harvested about 50 days after flower initiation (Canola Council of Canada, 
2011), and this allows farmers with a window for decision-making regarding harvesting or 
swathing and pest management, optimizing yield potential. Obtaining the input data lay-
ers (elevation, EC, topography) used in this study would no longer be difficult since more 
farmers are moving toward the practice of precision agriculture. Additionally, using veg-
etation indices from satellite data to determine reproductive potential is far less labour-
intensive and time-consuming than manually counting canola flowers. While this study 
only used the information from the flowering stage, it is highly possible that the informa-
tion from both the vegetative and pod maturity stages could have improved the predictive 
power of the model. Nevertheless, it is critical to map and quantify canola reproductive 
stage as an indicator of yield potential, as the unique spectral reflectance of canola flowers 
provides an invaluable opportunity to distinguish between the reproductive stage and its 
vegetative stage readily.

The accuracy of yield estimation was found to be higher when using integrated flower 
accumulation in UAV imagery compared to a single image at a specific time-step (Zhang 
et al., 2021). This is similar in satellite imagery as well, since regressing spectral indices 
to yield on individual dates had lower  R2 (< 0.3) (Fig. not included) than the developed 
random forest model.

A One potential avenue for improvement in future studies is the utilization of freely 
available satellite imagery sources such as Landsat and Sentinel-2 data, which can be 
directly accessed through cloud-based platforms like Google Earth Engine (GEE). This 
would alleviate the current limitation of restricted access to PlanetScope imagery and 
reduce computational time, making it more convenient for researchers. Additionally, pre-
vious research has demonstrated successful identification of peak flowering dates using 
Sentinel-1 and Sentinel-2 imagery with an accuracy of 1–4 days, providing further possi-
bilities for enhancing the methodology (d’Andrimont et al., 2020). Furthermore, expanding 
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the current process to include a larger dataset across multiple provinces would enable the 
incorporation of variations in weather and phenology, leading to more robust and general-
izable results.

Supplementary materials

The following are available online. Table S1 Input variables used in building the random 
forest regression. Figure S1 Correlation matrix of the input variables used in developing 
the random forest regression. Figure S2 Scatter plots and linear regression line between 
the canola seed yield and electrical conductivity of the topsoil. Figure S3 Scatter plots and 
linear regression line between the canola seed yield and the peak flowering intensity quan-
tified through Canola Index (CI). Figure S4 Time series curves of average normalized dif-
ference yellowness index (NDYI) for four yield classes.

Supplementary Information The online version contains supplementary material available at https:// doi. 
org/ 10. 1007/ s11119- 024- 10116-1.
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