
Vol.:(0123456789)

Precision Agriculture
https://doi.org/10.1007/s11119-024-10114-3

1 3

Using mid‑infrared spectroscopy as a tool to monitor 
responses of acidic soil properties to liming: case study 
from a dryland agricultural soil trial site in South Australia

Ruby Hume1  · Petra Marschner1  · Sean Mason1,3 · Rhiannon K. Schilling1,2,4  · 
Luke M. Mosley1 

Accepted: 9 January 2024 
© The Author(s) 2024

Abstract
Soil acidification is an issue for agriculture that requires effective management, typically 
in the form of lime (calcium carbonate,  CaCO3), application. Mid infrared (MIR) spec-
troscopy methods offer an alternative to conventional laboratory methods, that may enable 
cost-effective and improved measurement of soil acidity and responses to liming, including 
detection of small–scale heterogeneity through the profile. Properties of an acidic soil fol-
lowing lime application were measured using both MIR spectroscopy with Partial Least 
Squares Regression (MIR-PLSR) and laboratory measurements to (a) compare the abil-
ity of each method to detect lime treatment effects on acidic soil, and (b) assess effects of 
the different treatments on selected soil properties. Soil properties including soil pH (in 
 H2O and  CaCl2), Aluminium (Al, exchangeable and extractable), cation exchange capac-
ity (CEC) and organic carbon (OC) were measured at a single field trial receiving lime 
treatments differing in rate, source and incorporation. Model performance of MIR-PLSR 
prediction of the soil properties ranged from  R2 = 0.582, RMSE = 2.023, RPIQ = 2.921 
for Al (extractable) to  R2 = 0.881, RMSE = 0.192, RPIQ = 5.729 for OC. MIR-PLSR pre-
dictions for pH (in  H2O and  CaCl2) were  R2 = 0.739, RMSE = 0.287, RPIQ = 2.230 and 
 R2 = 0.788, RMSE = 0.311, RPIQ = 1.897 respectively, and could detect a similar treatment 
effect compared to laboratory measurements. Treatment effects were not detected for MIR-
PLSR-predicted values of CEC and both exchangeable and extractable Al. Findings sup-
port MIR-PLSR as a method of measuring soil pH to monitor effects of liming treatments 
on acidic soil to help inform precision agricultural management strategies, but suggests 
that some nuance and important information about treatment effects of lime on CEC and 
Al may be lost. Improvements to prediction model performance should be made to realise 
the full potential of this approach.

Keywords Infrared · Soil acidity · Acidification · Partial least squares regression · Soil 
spectroscopy · Agricultural lime

Extended author information available on the last page of the article

http://orcid.org/0000-0001-9384-5210
http://orcid.org/0000-0001-6808-0244
http://orcid.org/0000-0001-8853-6878
http://orcid.org/0000-0002-7446-8955
http://crossmark.crossref.org/dialog/?doi=10.1007/s11119-024-10114-3&domain=pdf


 Precision Agriculture

1 3

Introduction

Soil acidity is a globally-significant issue for agriculture and may reduce crop production if 
not managed (Sumner et al., 2003). Acidification increases  H+ and  Al3+ ion concentrations 
in the soil while reducing other exchangeable cations  (Ca2+,  Mg2+,  K+, and  Na+) and cat-
ion exchange capacity ( Xu et al., 2002). This can lead to various soil nutrient imbalances, 
deficiencies and toxicities which may result in reduced crop growth (Condon et al., 2021). 
Soil pH can vary vertically and horizontal through the soil profile, and so targeted meas-
urement and management of acidity is important. Acidification of soils in the subsurface, 
typically between 50 and 150 mm below the soil surface, is increasing in farming systems 
and, similarly to surface acidity, is detrimental to crop productivity (Mclay et  al., 1994; 
Paul et al., 2003; Whitten et al., 2000). Acid layers in the subsurface have adverse impacts 
on root growth, nodule numbers and efficacy of nitrogen  (N2)-fixing rhizobia, and overall 
plant vigour (Rengel et al., 2000a; Tang, 2004).

The most common and effective amelioration technique for soil acidity is the addition 
of neutralising agents, typically lime (calcium carbonate,  CaCO3), to raise the soil pH to 
suitable levels (typically pH 6–7) (Goulding, 2016; Li et al., 2019). Studies (Chimdi et al., 
2012; Paradelo et al., 2015; Saarsalmi et al., 2011) have demonstrated that the liming can 
influence the soil chemical properties. The change in pH is currently the most commonly 
measured soil property in acid remediation. However, there are other metrics by which 
acid remediation are assessed, including Aluminium concentration (Anderson et al., 2021; 
Chimdi et  al., 2012), Cation Exchange Capacity (Chimdi et  al., 2012; Saarsalmi et  al., 
2011) and Organic Carbon content (Grover et al., 2017; Paradelo et al., 2015).

Conventional laboratory soil testing methods are often time-, energy- and cost-intensive 
when high throughput sampling is required. Infrared spectroscopy (IR) offers an alterna-
tive to laboratory methods that is fast, accurate for various soil properties, and relatively 
low cost (Lelago & Bibiso, 2022; Soriano-Disla et al., 2014; Stenberg et al., 2010). Recent 
advances in precision agriculture and the need for high throughput assessment of soil 
properties have led to development of spectroscopy as a valuable tool in this space (Geb-
bers & Adamchuk, 2010). IR analyses are characterised by the spectral region of radiation 
involved, with near IR (NIR; wavelength 700–2 500 nm, wave number 14,000–4 000  cm−1) 
and Mid-IR (MIR; wavelength 2 500–25,000 nm, wave number 4 000–400  cm−1) being 
two commonly used spectral regions for soil analysis (Bellon-Maurel and McBratney, 
2011; Soriano-Disla et al., 2019). Studies have demonstrated that MIR tends to offer more 
accurate predictions of soil OC, pH and CEC than NIR (McCarty et  al., 2002; Soriano-
Disla et al., 2014; Vohland et al., 2014).

For soil acidification, the use of MIR has been tested as an alternative method to deter-
mine liming requirement. Metzger et al. (2020) achieved a  R2 of 0.76 and RMSE of 1.68 
in their investigation of MIR-PLSR LR predictions for tilled soils in Ireland. Leenen 
et  al. (2019) evaluated LR derivation based on MIR-PLSR predictions of OC, clay con-
tent, and pH, as well as direct LR prediction with MIR-PLSR and found satisfactory per-
formance for both approaches  (R2 = 0.54–0.82; RMSE = 857–1414 and  R2 = 0.52–0.77; 
RMSE = 811–1420 respectively). To our knowledge, the potential use of MIR for the pur-
pose of monitoring acidic soil responses to liming has not yet been demonstrated.

The aims of this study were to measure and monitor acidic soil properties following 
lime application to (a) compare the ability of MIR spectroscopy with conventional labora-
tory methods to detect treatment effects of lime on selected properties of an acidic soil, 
and (b) assess the effects of different amelioration treatments on selected soil properties. 
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Several key soil properties including soil pH (in  H2O and  CaCl2), Aluminium (Al, both 
exchangeable and extractable), cation exchange capacity (CEC) and Organic carbon (OC) 
were measured at a single, replicated field trial in a dryland agricultural cropping region 
of South Australia, receiving different lime treatments. The statistical analyses of MIR- 
PLSR predicted properties were compared with statistical analyses of laboratory measure-
ments of the same properties. We hypothesized that (a) MIR-based measurements would 
have a similar ability to detect a lime treatment effect as laboratory measurements and (b) 
selected soil properties would be most affected by treatments involving high lime rates and 
incorporation.

Methods

Sample site and sample collection

Soils were collected from one field trial site at Sandilands, located on the Yorke Penin-
sula in South Australia (34°33’15.4"S 137°42’09.6"E) in 2021. The trial was established 
in 2019 on an acidic soil (pH 4.29 +/− 0.24 in a 1:5 soil:0.01M  CaCl2 extract) that is used 
for dryland agricultural cropping, and comprised 4 replicate blocks (20 m × 40 m) contain-
ing different treatments and lime sources, rates and incorporation methods (Table 1). All 
Lime sources used were from deposits located in South Australia. The most commonly 
used lime source (LS1) was Angaston Penlime, from Penrice Quarries. The Agricola lime 
source (LS2) was sourced from Agricola Mining, and Kulpara lime (LS3) was a dolomitic 
lime sourced from Hallett Resources. The Warooka lime source (LS4) was a calcareous 
sand product collected from a calcareous sand hill on the Yorke Peninsula, South Aus-
tralia. The soil at this location is a sandy loam (16% clay to 250 mm) over medium clay 
(Chromosol in the Australian Soil Classification (Isbell 2016), Luvisol in World Refer-
ence Base for Soil Resources (Food and Agriculture Organization of the United Nations, 
2006)) and was limed 26 months prior to sampling. The treatments selected for sampling 
were limed at three rates (2, 4 or 6 t/ha) (surface application or tilled with a tyned cul-
tivator to a depth of 75mm) with lime comprising both calcium carbonate  (CaCO3) and 
dolomite (CaMg(CO3)2), and one treatment including a surface application of gypsum at 
5t/ha (Table 1). Across each of the four replicate blocks, ten cores (0–200 mm) were col-
lected within each treatment, and sub-sampled at 0–50 mm, 50–100 mm and 100–200 mm 
with pseudoreplicate samples (n = 10) of the same depth increment combined within each 
replicate block for laboratory analysis. This set of soils (Set A) was used in all statistical 
analysis presented in this work. An additional set of soils (Set B) from the same trial site 
across selected treatments and at a depth interval of 25 mm, was also collected. Set B soils 
did not undergo laboratory analysis except for MIR spectra measurements. All soils were 
oven dried at 40 °C for 12 h and sieved to < 2mm prior to laboratory analysis, then further 
ground using a pestle and mortar to < 0.1 mm for MIR analysis.

Soil property analysis

Soil (Set A only) property data were determined using methods outlined in Rayment and 
Lyons (2011). Briefly, pH was measured in both a 1:5 soil:water extract (pH  (H2O)) and 1:5 
soil:0.01M calcium chloride extract (pH  (CaCl2)), organic carbon was measured following 
the Walkley and Black method, and CEC measured using an ammonium acetate extract 
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at pH 7. Exchangeable Al was determined via an ammonium acetate extract (Rayment & 
Lyons 2011) while extractable Al was determined using an extractant of 0.01M  CaCl2 in a 
1:10 soil to extract ratio. Aluminium in all soil extracts was measured via ICPAES (Smith 
et al. 1994)—Perkin Elmer model 8300DV at a wavelength of 396.153 nm with a multi-
component spectral fitting (MSF) correction for Ca.

Infrared spectral measurements

Four sub-samples (approx. 1 g) of each finely ground dry soil sample from both Set A 
(n = 120) and Set B (n = 96) were placed into a 20 mm diameter stainless steel auto-sam-
pler cup and the surface levelled in preparation for MIR spectral acquisition. Spectra were 
acquired using a Thermo Nicolet 6700 Fourier transform infrared spectrometer (fitted with 
a diffuse reflectance attachment) (Thermo Fisher Scientific Inc., MA, USA). Each sam-
ple was scanned 25 times with a KBr beam-splitter and a deuterated triglycine sulphate 
(DTGS) detector, with a spectral range of 7800−400  cm−1 at a 4  cm−1 resolution. Spectra 
are expressed in absorbance (A) units where A = 1/(log reflectance). An initial background 
reference scan was made prior to each sample run using an easiDiff Aluminium alignment 
mirror disc. The four separate spectra of each sample were analysed for uniformity, and 
outliers and non-uniform spectra were removed, before being averaged to reduce signal-
to-noise ratio, with the averaged spectra used for pre-processing and analysis as described 
below.

Partial least squares modelling: data preparation, preprocessing 
and transformation

In order to translate highly multivariate spectral data into meaningful values for soil moni-
toring, spectral processing and multivariate analysis was required. Chemometric meth-
ods are often used for calibration and validation analysis (e.g. using Partial Least Squares 
Regression, PLSR) from reference laboratory chemistry data and corresponding spectra 
(Nocita et al., 2015; Soriano-Disla et al., 2014; Wijewardane et al., 2018). Predictions rely 
on the presence of characteristic features (e.g. peaks indicative of clay or carbonate func-
tional groups) within the IR absorbance spectra that are directly due to, or highly correlated 
with, the property being measured (McCarty et al., 2002; Janik et al., 2007; Soriano-Disla 
et al., 2014).

Spectral pre-processing and chemometric modelling were undertaken in this study using 
Unscrambler 10.2 software (CAMO Software AS, Oslo, Norway) and OPUS software. 
The MIR spectra and corresponding chemical data were imported into the software pro-
grams prior to analysis. Spectra were truncated to 4000–700  cm–1 before Principal Com-
ponent Analysis (PCA) was performed to identify and remove any outliers, and to assess 
the uniformity of each data set. PLSR modelling was used for property prediction, and 
this method was optimised via the pre-treatment of raw spectra. The aim of this was to 
retain sufficient information from the spectra and reduce the influence of random noise 
and scattering. Common pre-treatment measures were used prior to PLSR including: 
smoothing of the spectra, using first or second derivatives of the spectra (Savitzky et al., 
1964), standard normal variate (SNV) (Barnes et  al., 1989), multiplicative scatter cor-
rection (MSC) (Geladi et al., 1985) and baseline correction. Pre-treatment methods were 
applied to maximise the variance explained by the model  (R2) and to minimise the pre-
diction error (root mean square error, RMSE) with an optimal number of latent variables 
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or factors. Spectra were analysed in the OPUS software program, using the ‘Optimise’ 
function in order to determine the appropriate spectral preprocessing selections to achieve 
optimal model performance for the MIR-PLSR prediction of pH, Al, CEC and OC. This 
function runs multiple PLSR models with varying combinations of spectral pre-treatments 
and spectral regions, to find the combination of results in the highest  R2 and RMSE. The 
top three results of the Optimise test were then implemented in the Unscrambler software, 
and all further analysis was undertaken here. For each of the four prediction models, base-
line offset correction with Standard Normalised Variance was the highest performing pre-
processing option, and use of the 4000–700  cm−1 MIR region gave the results in both the 
OPUS and Unscrambler software. Initially, models were built using the full data set and 
a leave-2 or leave-3 out cross-validation to establish model performance. The data were 
then separated into a cross validation calibration (n = 60, 50%) and predictive validation 
(n = 60, 50%) data set for property prediction. A Kennard Stone (K-S) algorithm was used 
to select samples from the cross-validation calibration set for predictive validation (Ken-
nard and Stone 1969) as K-S has performed best when compared with other algorithms for 
a soil IR property predictions, including for CEC and pH (Ng et al. 2018). Samples with Al 
(exchangeable and extractable) < LOD were treated as having no Al present, and included 
in the regression models. Model performance was evaluated by means of the coefficient of 
determination  (R2), RMSE, and by ratio of performance to the interquartile range (RPIQ). 
Once MIR-PLSR property prediction models were established, full predictions were run on 
Set B soils using the prediction models generated from Set A soils. The purpose of this was 
to explore the ability of MIR to produce soil information at a finer scale than traditional 
laboratory analyses, and avoid the extra cost and time required to undertake traditional 
laboratory analyses. Calibration and validation was not performed on Set B soils as Set B 
acted a test set for independent prediction. Model performance was assumed to be the same 
as the Set A soils as all soils were collected from the same profile and depth range.

Statistical analysis

Initially, a paired t test was used to determine whether the mean difference between paired 
observations (laboratory-measured and MIR-PLSR measured) on Set A soils differed sig-
nificantly from zero. A significance level of P = 0.05 was selected, to support or reject the 
null hypothesis that there was no significant difference between the means of pairs of data.

The effects of liming on soil pH (in  H2O and  CaCl2), Al (exchangeable and extractable), 
CEC and OC at each of the three depth intervals and across different treatments were ana-
lysed using a two-way analysis of variance (ANOVA). Significant (P ≤ 0.05) differences 
between means were identified using the Least Significant Difference (LSD) test. Tukey’s 
HSD test was used in post hoc pairwise multiple comparisons. In all statistical tests the 
level of significance was set at P ≤ 0.05. All analyses were computed using the R software 
(R Core Team, 2022).

Results and discussion

Control (unlimed) soil properties

Descriptive statistics for the laboratory-measured pH (in  H2O and  CaCl2), Al (exchange-
able and extractable), CEC and OC of the control soil (untreated) are presented in Table 2. 
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pH  (H2O) values ranged from 4.51 to 5.29 and pH  (CaCl2) values ranged from 4.03 to 
4.6 across all depths. At pH  (H2O) of less than 4.5,  Al3+ concentrations increase in soil 
and may reduce plant root growth depending on the tolerance of the plant species (Kidd 
& Proctor, 2000). The levels of Al exchangeable (3.5–28  cmolc/kg) and of Al extracta-
ble (1.5–14 mg/kg) in the control soil were both above recommended limits in Australia 
(Gazey and Azam 2018), which indicates remediation via liming is required at both the 
surface and subsurface. CEC values ranged from 3.92 to 8.9  cmolc/kg with a mean of 5.93 
+/− 1.43  cmolc/kg. These low CEC values fall within the typical range of a soil with a 
sandy texture (Rayment and Lyons 2011). OC content ranged from 0.43 to 2.25% and had a 
mean value of 1.29 +/− 0.57%, typical of Australian cropping soils (Viscarra Rossel et al., 
2014). All laboratory-measured average values are presented in Fig. 1.

Laboratory‑measured soil properties

Figure 1 depicts the soil properties of interest at the three depths as measured by conven-
tional laboratory methods. Data presented are averaged values for each depth (0–50 mm, 
50–100 mm and 100–200 mm) from all four replicate blocks that were sampled, and indi-
cate how each of the liming treatments differ from the control (in red).

MIR‑PLSR prediction of soil properties

MIR-PLSR model performance of all soil samples in Set A is shown in Table 3 and Fig. 2 
(see Table S1 for statistical summary of data), with predicted values for the various treat-
ments presented in supplementary material (Figure S1). The prediction of pH in both  H2O 
and  CaCl2 with MIR-PLSR (RMSE = 0.287,  R2 = 0.739 RPIQ = 2.230 and RMSE = 0.311, 
 R2 = 0.788, RPIQ = 1.897 respectively) are similar to those observed in other MIR studies. 
For example, Pirie et al. (2005) predicted pH with  R2 of 0.71, while Viscarra Rossel et al. 
(2006) obtained similar accuracy for the prediction of pH in water  (R2 = 0.69) and  CaCl2 
 (R2 = 0.7). Janik et al. (2009) achieved  R2 of 0.75 and 0.69 for the prediction of pH in water 
and  CaCl2 suspension, respectively. Although pH does not have a direct spectral response, 
it is related to other factors such as organic acids, exchangeable cations and carbonates 
(Reeves, 2010; Sarathjith et al., 2014, Minasny et al., 2009). This has been termed ‘surro-
gate’ or ‘secondary’ correlation. It is also noted the results in the current study have higher 
predictive capability than previous research using NIR to measure the pH of acidic soils for 
precision agricultural management (Sleep et al., 2021).

Table 2  Statistical summary of laboratory-measured soil (Set A) data (pH (in  H2O and  CaCl2), cation 
exchange capacity (CEC,  cmolc/kg), exchangeable Aluminium (Al,  cmolc/kg), extractable Aluminium (Al, 
mg/kg)) and organic carbon (OC, %) of control samples (untreated soil) across four replicate blocks

Soil property Min. 1st qu. Median Mean 3rd qu. Max. SD

pH (1:5  H2O) 4.51 4.75 4.90 4.91 5.09 5.29 0.24
pH (1:5  CaCl2) 4.03 4.21 4.29 4.34 4.52 4.60 0.18
Exchangeable Al  (cmolc/kg ) < 0.02 0.19 0.51 0.52 0.78 1.3 0.37
Extractable al (mg/kg) < 0.1 2.82 4.35 5.78 8.73 14.00 3.96
CEC  (cmolc/kg) 3.92 5.03 5.88 5.93 6.50 8.93 1.43
OC(%) 0.43 0.78 1.37 1.29 1.70 2.25 0.57
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Exchangeable Al was also well-predicted in the MIR-PLSR model (RMSE = 3.308, 
 R2 = 0.714, RPIQ = 4.917) which is consistent with findings in some previous studies (  R2 
of 0.81–0.98, Minasny et al., 2009; Ng et al., 2022). Jones (1984) showed Al saturation on 
exchange sites can be predicted from other (non-acidic) exchangeable cation saturation, 
organic carbon content, and pH. This suggests exchangeable Al may also be predicted via 

Fig. 1  Laboratory measured soil (Set A) properties collected at 50 mm intervals and averaged across rep-
licates of A pH 1:5  (H2O), B pH 1:5  (CaCl2), C exchangeable Aluminium  (cmolc/kg), D extractable alu-
minium (mg/kg) E cation exchange capacity and F organic carbon % of samples collected

Table 3  MIR-PLSR model performance of best-performing cross validation calibration and predictive 
validation prediction for each pH in water and  CaCl2, cation exchange capacity (CEC), exchangeable and 
extractable Aluminium, and Organic Carbon (OC) content in Set A soils

Soil property Cross validation calibration Predictive validation

RMSE R 2 RPIQ RMSE R2 RPIQ

pH (1:5  H2O) 0.233 0.825 2.747 0.287 0.739 2.230
pH (1:5  CaCl2) 0.247 0.866 2.389 0.311 0.788 1.897
Exchangeable Al  (cmolc/kg) 0.166 0.788 3.584 0.121 0.719 4.917
Extractable Al (mg/kg) 1.658 0.714 3.565 2.023 0.582 2.921
CEC  (cmolc/kg) 1.213 0.833 1.212 1.479 0.760 0.994
OC (%) 0.171 0.905 6.433 0.192 0.881 5.729
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a secondary correlation to soil properties that are spectrally active. Extractable Al was less 
well-predicted in the present study, and had the poorest model performance of all the pre-
diction models (RMSE = 2.023,  R2 = 0.582, RPIQ = 2.921). Ng et al. (2022), in their recent 
assessment of the ability of MIR to accurately measure numerous soil properties, found 
that, although many extractable elements were poorly predicted, the prediction of extract-
able Al performed well  (R2 = 0.95, RMSE = 3.34). This may be due partly to the larger 
number of soil types (e.g. higher clay content) used in their study, enabling a broader range 
of Al extractable values.

The relatively strong regression between predicted versus laboratory CEC values 
 (R2 = 0.760, RMSE = 1.479, RPIQ = 0.994) plotted in Fig.  2E, is likely due to the high 
sensitivity of the MIR for clay type, clay content, sand content and organic matter, which 
are all strong determinants of soil CEC. A review by Soriano-Disla et  al (2014) found 
inconsistent but generally well-predicted results from 13 studies that tested MIR for CEC 

Fig. 2  Regression models of laboratory measured vs. MIR-PLSR predicted A pH  (H2O), B pH  (CaCl2), 
C exchangeable aluminium  (cmolc/kg), D extractable aluminium (mg/kg) E cation exchange capacity and 
F organic carbon (%) content of soil samples (Set A)
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prediction, with  R2 values ranging from 0.34 to 0.98 (median = 0.85). Possible explana-
tions given for this variability were the wide range of laboratory methods used to deter-
mine CEC, and low  R2 values were attributed to insufficient samples. A number of studies 
included in the review achieved  R2 values of higher than 0.9, and the review concluded that 
MIR is useful for the accurate prediction of CEC.

The prediction model for soil OC had an RMSE = 0.192,  R2 = 0.881 and RPIQ = 5.729, 
and this result supports an increasing body of literature highlighting the successes of IR 
in measuring soil OC (Baldock et al. 2014; Calderón et al. 2011; Janik et al. 2007). This 
success is likely due to the chemical groups comprising soil organic matter being nearly all 
infrared active (Leifeld 2006).

Fine scale prediction of soil properties using MIR‑PLSR models

Predicted soil properties for Set B soils based on MIR-PLSR prediction models from Set 
A soils are shown in Fig. 3. Using these higher resolution (i.e. 25 mm increments) MIR 
scans, the main zone of influence of the liming appears to extend from the surface to 100 
mm depth in the soil profile, which was not clear in the coarser resolution sampling (Figs. 2 
and 3). This serves as a demonstration of the potential of MIR to provide higher throughput 
soil information where a finer scale of detail is beneficial. Given the spatial heterogeneity 

Fig. 3  MIR-PLSR –predicted soil (Set B) properties collected at 25 mm intervals, averaged across repli-
cates of A pH  (H2O), B pH  (CaCl2), C exchangeable Aluminium  (cmolc/kg), D extractable Aluminium 
(mg/kg) E cation exchange capacity and F Organic carbon (%) content of samples collected
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of soil pH and associated properties down a soil profile, and potential for different lime 
incorporation and movement patterns, this approach may prove useful to inform targeted 
and effective management.

Comparison of laboratory measured and MIR‑PLSR predicted soil properties

To assess difference between laboratory and MIR-PLSR results, a paired sample t-test was 
run with a confidence interval of 95% and the results are presented in Table  4. Results 
showed a p value of > 0.05 for all variables, indicating that the null hypothesis (mean dif-
ference between all laboratory-measured and PLSR-MIR predicted soil properties (pH, 
OC, CEC and Al) is zero) was supported. This indicates that, on average, there was no sig-
nificant difference between means of paired laboratory measured and MIR-PLSR predicted 
soil properties.

Effects of lime treatment on soil chemical properties

Two-way ANOVA was also undertaken on both sets of data to determine if the significance 
of either lime treatment, depth or the interaction of both, differed depending on the data 
set used (either laboratory or MIR) in the statistical analysis. The results on the laboratory 
data indicated that the interaction effect of treatment x depth on the selected soil properties 
was significant for soil pH  (H2O and  CaCl2) and CEC. Treatment and depth effects were 
significant for Al (extractable and exchangeable) individually, but the interaction of the 
two was not significant. Soil OC only differed significantly with depth. ANOVA data for 
the MIR predicted properties indicate that interaction effect of treatment × depth on the 
selected soil properties was significant for soil pH  (H2O and  CaCl2) but with a lower level 
of significance than that of the laboratory measured properties. For soil Al (extractable and 
exchangeable), CEC and OC, only the effect of depth was significant (Table 5).

Effects of lime on soil pH

For soil pH in  H2O values predicted via MIR-PLSRindicate that, at 0–50 mm, three 
treatments (LS1 4T + gypsum, LS1 4T + till and LS1 6T + till) differed significantly 
from the untreated control soil. Treatment LS1 6T was not significant whereas treatment 

Table 4  Paired t test comparing means of soil properties (pH (in  H2O and  CaCl2), cation exchange capacity 
(CEC,  cmolc/kg), exchangeable aluminium (Al,  cmolc/kg), extractable aluminium (Al, mg/kg)) and organic 
carbon (OC, %), between MIR-PLSR and laboratory measured samples showing the T, and P values, and 
degrees of freedom (Df)

Variable T Df p

pH (1:5  H2O) 0.211 119 0.833
pH (1:5  CaCl2) 0.032 119 0.975
Exchangeable Al  (cmolc/kg) − 0.729 119 0.467
Extractable Al (mg/kg) − 0.989 119 0.325
CEC  (cmolc/kg) − 0.195 119 0.846
OC(%) 0.245 119 0.8072



 Precision Agriculture

1 3

Ta
bl

e 
5 

 T
w

o 
w

ay
 A

N
O

VA
 re

su
lts

 c
om

pa
rin

g 
di

ffe
re

nc
e 

in
 in

flu
en

ce
s 

of
 li

m
e 

tre
at

m
en

t, 
de

pt
h 

or
 th

e 
in

te
ra

ct
io

n 
of

 b
ot

h,
 o

n 
so

il 
pr

op
er

tie
s 

(p
H

 (i
n 

 H
2O

 a
nd

  C
aC

l 2)
, o

rg
an

ic
 

ca
rb

on
 (O

C
, %

), 
ca

tio
n 

ex
ch

an
ge

 c
ap

ac
ity

 (C
EC

,  c
m

ol
c/k

g)
, e

xc
ha

ng
ea

bl
e 

al
um

in
iu

m
 (A

l, 
 cm

ol
c/k

g)
, a

nd
 e

xt
ra

ct
ab

le
 a

lu
m

in
iu

m
 (A

l, 
m

g/
kg

))
, b

et
w

ee
n 

M
IR

-P
LS

R
 a

nd
 la

bo
-

ra
to

ry
 m

ea
su

re
d 

sa
m

pl
es Fa

ct
or

SS
D

f
M

S
F

P

(L
ab

)
(M

IR
)

(L
ab

)
(M

IR
)

(L
ab

)
(M

IR
)

(L
ab

)
(M

IR
)

(L
ab

)
(M

IR
)

pH
 (1

:5
  H

2O
)

D
ep

th
23

.4
8

15
.3

4
2.

00
2.

00
11

.7
4

7.
67

20
5.

43
92

.3
4

**
*

**
*

Tr
ea

tm
en

t
4.

23
2.

04
9.

00
9.

00
0.

47
0.

23
8.

22
2.

73
**

*
**

D
ep

th
 ×

 tr
ea

tm
en

t
4.

42
3.

32
18

.0
0

18
.0

0
0.

25
0.

18
4.

30
2.

22
**

*
**

Re
si

du
al

s
5.

14
7.

48
90

.0
0

90
.0

0
0.

06
0.

08
pH

 (1
:5

  C
aC

l 2)
D

ep
th

35
.7

4
25

.4
0

2.
00

2.
00

1.
87

12
.7

0
22

0.
11

94
.6

2
**

*
**

*
Tr

ea
tm

en
t

6.
91

1.
92

9.
00

9.
00

0.
69

0.
21

8.
47

1.
59

**
*

N
s

D
ep

th
 ×

 tr
ea

tm
en

t
6.

33
4.

40
18

.0
0

18
.0

0
0.

35
0.

24
4.

33
1.

82
**

*
*

Re
si

du
al

s
7.

31
12

.0
8

90
.0

0
90

.0
0

0.
08

0.
03

Ex
ch

an
ge

ab
le

 A
l

(c
m

ol
c/k

g)
D

ep
th

33
96

.0
0

24
48

.8
0

2.
00

2.
00

16
98

.2
0

12
24

.4
0

80
.3

2
93

.9
3

**
*

**
*

Tr
ea

tm
en

t
53

9.
00

10
6.

60
9.

00
9.

00
59

.9
0

11
.8

0
2.

83
0.

12
**

N
s

D
ep

th
 ×

 tr
ea

tm
en

t
43

0.
00

27
2.

40
18

.0
0

18
.0

0
23

.9
0

15
.3

0
1.

13
1.

16
N

s
N

s
Re

si
du

al
s

19
03

.0
0

11
73

.2
0

90
.0

0
90

.0
0

21
.1

0
1.

37
Ex

tra
ct

ab
le

 A
l

(m
g/

kg
)

D
ep

th
66

6.
20

35
7.

10
2.

00
2.

00
33

3.
10

17
8.

50
11

3.
21

81
.3

0
**

*
**

*
Tr

ea
tm

en
t

13
8.

80
30

.8
0

9.
00

9.
00

3.
42

15
.4

0
5.

24
1.

56
**

*
N

s
D

ep
th

 ×
 tr

ea
tm

en
t

81
.9

0
49

.0
0

18
.0

0
18

.0
0

4.
50

2.
72

1.
55

1.
24

N
s

N
s

Re
si

du
al

s
26

4.
80

19
7.

60
90

.0
0

90
.0

0
2.

90
2.

20
C

EC
(c

m
ol

c/k
g)

D
ep

th
60

7.
10

45
6.

90
2.

00
2.

00
30

3.
50

22
8.

40
10

8.
32

71
.0

4
**

*
**

*
Tr

ea
tm

en
t

96
.6

0
21

.0
0

9.
00

9.
00

10
.7

3
2.

34
3.

83
0.

04
**

*
N

s
D

ep
th

 tr
ea

tm
en

t
10

7.
40

65
.6

0
18

.0
0

18
.0

0
5.

97
65

.6
0

2.
13

1.
13

*
N

s
Re

si
du

al
s

25
2.

20
3.

22
90

.0
0

90
.0

0
2.

80
22

8.
44



Precision Agriculture 

1 3

Ta
bl

e 
5 

 (c
on

tin
ue

d)

Fa
ct

or
SS

D
f

M
S

F
P

(L
ab

)
(M

IR
)

(L
ab

)
(M

IR
)

(L
ab

)
(M

IR
)

(L
ab

)
(M

IR
)

(L
ab

)
(M

IR
)

O
C

 (%
)

D
ep

th
30

.1
1

11
4.

22
2.

00
2.

00
15

.0
6

57
.1

1
17

9.
40

11
4.

21
**

*
**

*

Tr
ea

tm
en

t
0.

44
2.

78
9.

00
9.

00
0.

05
0.

31
0.

58
0.

62
N

s
N

s

D
ep

th
 ×

 tr
ea

tm
en

t
1.

65
12

.6
8

18
.0

0
18

.0
0

0.
09

0.
70

1.
10

1.
41

N
s

N
s

Re
si

du
al

s
7.

55
45

.0
0

90
.0

0
90

.0
0

0.
08

0.
50

SS
 S

um
 o

f S
qu

ar
es

, D
F 

D
eg

re
es

 o
f F

re
ed

om
, M

S M
ea

n 
Sq

ua
re

s
F 

=
 F

-v
al

ue
, P

 =
 P-

va
lu

e.
 S

ig
ni

fic
an

ce
 c

od
es

: ‘
ns

’ >
0.

05
, ‘

*’
 <

0.
05

, ‘
**

’ <
0.

01
, ‘

**
*’

 <
0.

00
1



 Precision Agriculture

1 3

LS 4T + gypsum was significant when MIR-PLSR-predicted pH(H2O) values were used 
instead of laboratroy measured values. MIR_PLSR predictions based on pH measured 
in  CaCl2 indicate that only two treatments (LS1 4T + till and LS1 6T + till) were signifi-
canlty different from the control. This shows a decrease in the detection of significant 
treatement effects when compared with laboratory based measurements of pH in  CaCl2, 
which showed significant differences between lime treatment and the control in all but 
two treatments (LS1 2T and LS3 4T) (Table 1).

At both 50–100 mm and 100–200 mm, there was no significant difference between 
lime treatments and the control and this finding agrees with the laboratory-measured 
results. This indicates that, 2 years following liming, and even where lime has been 
incorporated into subsurface layers, the effects of lime on soil pH was only significant 
in the surface soil where the lime was applied. The two tillage treatments were signifi-
cantly different from the control treatment in both MIR-PLSR predicted pH in both  H2O 
and  CaCl2 and the pH of these two treatments were highest in the 0–50 mm layer for 
both laboratory meausred and MIR-PLSR predicted results (Fig.  4). Thus, hypothesis 
(a), that MIR-based measurements would have a similar ability to detect a lime treat-
ment effect as conventional laboratory-based measurements was partially supported, 
but nuance and potentially important information was lost about other treatment effects. 
This, however, may be partially offset by potential of MIR-PLSR to obtain higher reso-
lution information as shown in the Set B results (Fig. 3). Hypothesis (b) was supported 
as the treatments involving high lime rates and incorporation significantly affected soil 
pH in all instances in the 0–50 mm surface layer. No significant differences in pH were 
detected amongst treatments in the 50–100 or 100–200 mm layers, even when incorpo-
ration of lime was used (Figs. 4, 5, 6).

Fig. 4  Results of Tukey’s HSD test for treatment × depth interaction responses to lime treatments based on 
MIR-PLSR predicted soil pH. graph headings specify liming treatment as described in Table 1. Different 
letters within each treatment indicate significant differences among depths at 5%



Precision Agriculture 

1 3

Effects of lime on soil Al (exchangeable and extractable)

The two-way ANOVA output of the interaction effects of lime Treatment × Depth, indi-
cated that laboratory-measured exchangeable and extractable Al was affected significantly 
by liming treatment and depth individually, whereas no treatment effects were detected 

Fig. 5  Results of Tukey’s HSD test for treatment × depth interaction responses to lime treatments based 
on MIR-PLSR predicted soil pH (1:5 in  CaCl2). Graph Headings specify liming treatment as described in 
Table 1. Different letters within each treatment indicate significant differences among depths at 5%

Fig. 6  Results of Tukey’s HSD test for Depth responses to lime treatments based on Laboratory- measured 
soil CEC. Graph Headings specify liming treatment as described in Table 1. Different letters within each 
treatment indicate significant differences among depths at 5%
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in the MIR-PLSR-predicted Al concentrations in the soil samples. The significant treat-
ment effects on exchangeable Al observed for LS1 6T, LS1 6T + till and LS14T + gypsum 
(Figure S4), and significant treatments effects on extractable Al observed for all treatments 
except LS2 4T (Figure S6) were all lost with MIR-PLSR values. In each of these Al meas-
urements, the inability of MIR-PLSR to detect significant differences between treatments is 
a disadvantage, as  Al3+ toxicity is widely regarded as the most detrimental consequence of 
low pH soils to plant growth.

Effects of lime on soil CEC

The comparison of laboratory measurements with MIR-PLSR measurements of CEC to 
assess effects of lime gave similar results to the Al analyses: treatment effects of lime on 
soil CEC that were present in the laboratory results were lost when MIR-PLSR was used. 
Post hoc analysis of laboratory-measured CEC shows that, at 0–50 mm, 4 (LS 1 4T, LS1 
4T + gypsum, L1 6T and LS16T + till) of the 9 lime treatments differed significantly from 
the control soil (Fig. 6). At 50–100 mm and at 100–200 mm, there was no significant dif-
ference in CEC between treatments and the control. Lime source 1 significantly affected 
CEC in most instances at 0–50 mm except at the low 2 t/ha lime appliation rate,. Tukey’s 
HSD results for MIR-PLSR-predicted CEC indicate that only CEC in the top 0–50 mm 
differed significantly from the CEC at both 50–100 mm and 100–200 mm (Figure S6) and 
did not show the significant treatment effects that were evident when lab data were used. It 
may be because the RMSE was too high in the predicted CEC values to reflect differences 
between treatments and, as a result, detail and important information is lost from the use of 
MIR-PLSR-predicted properties in this instance.

Effects of lime on soil OC

Results from two-way ANOVA indicated that the treatments did not differ in total SOC 
(Table 5). Differences in SOC were observed at different depths, and the post hoc results 
indicate similar groupings between laboratory-measured and MIR-PLSR predicted results 
(Figure S7). OC was highest (1.8% and 1.71%) in the 0–50 mm layer, and decreased with 
depth. The effects of lime on OC levels in soil have been investigated and results vary, 
as liming has been shown to increase, decrease and have no effect on soil OC minerali-
sation, depending on the primary process involved. (Haynes and Naidu, 1998; Paradelo 
et al. 2015). Furthermore, soil OC comprises various forms of organic matter that differ in 
decomposability, chemical stability, and reactivity with the soil matrix and lime additions 
(Wang et al, 2016). The net effects of liming on OC due to combined influenced of soil 
processes and forms of OC are not yet fully understood, and require further investigation 
(Paradelo et al. 2015). This study did not explore the various forms of OC in soil, but does 
indicate that MIR-PLSR predicted OC is an accurate alternative to laboratory measure-
ments in a liming context.

Conclusions

This study assessed the use of MIR-PLSR prediction as a tool to measure and monitor soil 
properties pre- and post-lime application compared to laboratory-measurements. Results 
indicate that MIR-PLSR performed well for predictions of soil pH  (H2O and  CaCl2) and 



Precision Agriculture 

1 3

was able to detect a similar treatment effect to that of laboratory measurements for how-
ever, some treatment effects were lost. Performance was less effective for CEC and Al 
as all treatment effects were not detected when MIR-PLSR-predicted values were used. 
While this study demonstrates the success of MIR-PLSR to predict select soil properties 
within a combined data set, results indicate that nuance may be missed with this method 
in terms of some treatment effects. When larger differences were present between treat-
ments, MIR-PLSR was able to detect these, most importantly for soil pH, which is the most 
commonly used metric of acid soil remediation success. Organic Carbon was predicted 
well, although treatment effects were not present in either laboratory based or MIR-PLSR 
predicted results. When soil property responses to lime were relatively small (i.e. for Al 
and CEC), the error of MIR-PLSR prediction was likely too high to detect these differ-
ences, and so important statistically significant treatment effects were not detected when 
MIR-PLSR was used. It should be noted that this study was conducted at one site with a 
relatively limited number of samples. Increasing the sample number to may improve the 
performance of prediction models in the future. Additionally, this method could be tested 
in a range of soil types and in situations where treatment effects may be more significant, 
to explore if the limitations of MIR-PLSR are applicable in other contexts. Overall, this 
study supports the ability of MIR-PLSR to cost effectively and rapidly provide informa-
tion on some properties of limed soils, but prediction models should be improved in order 
to access information about the treatment effects of lime and enhance the potential of this 
method for management of soil acidification with precision agriculture. MIR-PLSR has 
potential, once a suitable calibration is established, to reduce the cost associated with test-
ing for soil acidity and provide information at a higher spatial resolution, when compared 
to traditional laboratory chemistry analyses.
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