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Abstract
Irrigation is key to increasing crop yield and meeting the global demand for food. This 
study reports the assessment of tomato water consumption by bioristor, a new in vivo an 
Organic ElectroChemical Transistor-based biosensor. Bioristor enables direct, real-time 
acquisition of biophysical information about the plant’s water requirements directly from 
the plant sap, and thus the water input can be adjusted accordingly.
The aim of this study is to demonstrate the efficacy of bioristor in rapidly detecting changes 
in the plant’s water status enhancing water use and irrigation efficiency in tomato cultiva-
tion with significant savings in the water supply. To this end, experiments were carried 
out in 2018 and 2020 in Parma (Italy) in tomato fields under different water regimes. The 
sensor response index (R) produced by bioristor recorded the real time plant health status, 
highlighting an excess in the water supplied as well as the occurrence of drought stress dur-
ing the growing season. In both years, bioristor showed that the amount of water supplied 
could have been reduced by 36% or more. Bioristor also measured the timing and duration 
of leaf wetting: 438 h and 409 h in 2018 and 2020, respectively. These results open up new 
perspectives in irrigation efficiency and in more sustainable approaches to pesticide appli-
cation procedures.
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Introduction

Agriculture must provide food for the 10  billion people expected to inhabit the planet 
by 2050, despite the decreased availability of land and water and the competition from 
other uses, such as non-food crops, urbanization, or industrial development (FAO, 2021). 
To date, around 70% of the freshwater available on the planet goes into irrigation (FAO, 
2021), yet only a fraction of this is used by crops; the rest is lost via evaporation or con-
sumed by competing weeds.

Crop yields are greatly affected by temperature and rainfall, to the point that water short-
age represents the most important environmental factor limiting crop growth, development, 
and yield (Ben Mariem et al., 2021; Polinova et al., 2019; Wing et al., 2021). Optimiza-
tion of water use efficiency is key to addressing climate change and food security. Tomato 
(Solanum lycopersicum L.), a high-value crop for the Italian market, is mainly cultivated 
under irrigation (Corbari et al., 2021), and a non-controlled reduction in water availability 
could lead to yield losses of up to 50% (Cantore et al., 2016; Takács et al., 2020).

To improve crop yields and optimize farm management, precision agriculture and assist 
management decisions can concretely enhance sustainability in agriculture. Sensors allow 
farmers to map the topography and resources in detail (water, nutrient availability, soil 
topology), as well as variables such as soil pH and temperature (Yin et al., 2021). Several 
technologies, mainly based on proximal and remote sensing approaches, are currently used 
to develop, and test multiple indices and techniques for precision water management. Veg-
etation indices such as the Normalized Difference Vegetation Index (NDVI, Wong et al., 
2022) and precision agriculture tools such as unmanned aerial vehicles, are currently being 
used to develop decision support systems to achieve optimized resource inputs (Loures 
et al., 2020, p. 202).

The need to establish the plant water content has prompted the development of sev-
eral approaches to detect the physiological status of the plant and of the surrounding envi-
ronment (Shafi et al., 2019). These approaches are based on terahertz radiation combined 
with psychrometry to determine the leaf pressure-volume (Browne et al., 2020; Li et al., 
2020). Such approaches entail using VIR/NIR spectroscopy (Jiang, 2020; Zhang et  al., 
2012); electrical impedance spectroscopy (Ben Hamed et al., 2016; Jamaludin et al., 2015; 
Janni et  al., 2021; Jócsák et  al., 2019); infrared technology (Kaiser et  al., 2022; Parihar 
et al., 2021); ultrasonic techniques (Fariñas et al., 2022; Sancho-Knapik et al., 2013); and 
leaf patch clamps (Cabrita, 2022; Ehrenberger et al., 2012). In addition, soil moisture sen-
sors and electrical conductivity sensors are used to monitor soil temperature and struc-
tures (Bonfante, 2019; Polinova et al., 2019), salinity and conductivity, air temperature and 
humidity, air pressure and wind speed (Shafi et  al., 2019). However, these technologies 
have three main limitations: (i) lack of dynamic and continuous monitoring, (ii) indirect 
acquisition of the plant water status, and (iii) need for time-consuming data processing.

Bioelectronics is emerging as a powerful approach to monitor plant morphological traits 
and physiological processes as well as plant-environment interactions. It has been used to 
monitor or stimulate biological processes (Coppedè et al., 2017; Diacci et al., 2021) and 
has proved successful in plant sensing and actuation (Bernacka-Wojcik et al., 2019; Diacci 
et  al., 2021; Poxson et  al., 2017; Stavrinidou, 2022; Stavrinidou et  al., 2015, 2017). An 
implantable organic electronics ion pump for in vivo delivery of abscisic acid has also been 
proposed (Bernacka‐Wojcik et al. 2019). Several examples of exploiting bioelectronics in 
precision agriculture, in particular organic electronics (Gebbers & Adamchuk, 2010; Kim 
& Lee, 2022), have been reported in Dufil et  al. (2022) and in Kim and Lee (2022). In 
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recent years, an in vivo Organic ElectroChemical Transistor (OECT)-based sensor, namely 
“bioristor” was developed and applied as biosensor for agricultural applications (Coppedè 
et al., 2017). The sensor can detect the changes in the composition of the plant sap in grow-
ing tomato plants (Solanum lycopersicum), in  vivo and in real time, without interfering 
with plant functions. Previous work demonstrated its ability to operate directly within the 
plant stem, thereby enabling in vivo observations of a plant’s physiological mechanisms 
related to ion movements and compartmentalization, under normal as well as stress condi-
tions such as drought (Janni et al., 2019) and salt stress (Janni et al., 2021), or under envi-
ronmental variations such as vapor pressure deficit (Amato et al., 2021; Vurro et al., 2019) 
and increase in relative air humidity RH.

The aim of this study is to demonstrate how a bioristor in open field conditions can 
detect changes in plant water status, thereby enhancing water use and irrigation efficiency 
in tomato cultivation with significant savings in the water supply.

The novelty of this study lies in the application of bioristor for tomato field monitoring, 
demonstrating concretely the potential water saving achievable through bioristor support-
ing its use in pathogen detection and pests’ management. Results are discussed in terms of 
sensor operability and bioristor index acquisition.

Materials and methods

Plant growth and field conditions

Heinz 340 tomato plants were grown up to 2nd stage flowering in two seasons, 2018 and 
2020, in two locations in the Parma area of northern Italy, and monitored with bioristors. 
The climate of both experimental areas is classified according to the Koppen–Geiger clas-
sification as Cfb (https:// doi. org/ 10. 5194/ hess- 11- 1633- 2007).

The two trial seasons were comparable, but not identical, in terms of number of 
deployed sensors, days of monitoring, and adopted control units. The differences were due 
to constraints in the plots available and in the overall setup. The bioristor control units 
used in the second trial had also been improved to make them more suitable to operate in 
the open field and less dependent upon laboratory instrumentation. In addition, variability 
between seasons and sites in terms of weather, soil, and experimental setup is clearly una-
voidable during field validation of sensors in open field conditions.

In 2018, the experiment was carried out in Azienda Stuard, Parma (60 m a.s.l., 44° 48′ 
29.888″ N 10° 16′ 29.074″ E) in collaboration with Mutti SpA (https:// mutti- parma. com/). 
Three experimental plots, consisting of three rows for each irrigation regime, were moni-
tored (Fig.  1A). To avoid any water leakage compromising the validity of the measure-
ments, only the middle row of each plot was used for bioristor measurements. Ten plants 
for each irrigation condition, distributed across an area of about 50  m2, were equipped 
and monitored continuously with a bioristor for 62 days, from flowering to harvest. Three 
irrigation regimes were applied. The control was set as 100% in line with recommenda-
tions by the regional irrigation advisory service Irriframe. It evaluates weather, soil and 
groundwater data obtained from farmers and from regional agencies and provides crop-
specific irrigation regimes (https:// www. irrif rame. it/ Irrif rame). Two regimes were set to 
receive 80% and 60% of the full irrigated plot (100%). In the 2018 experiment, differential 
irrigation started eight days after the bioristor installation, while in 2020, the experiment 

https://doi.org/10.5194/hess-11-1633-2007
https://mutti-parma.com/
https://www.irriframe.it/Irriframe
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was performed in collaboration with Yaxe Srl for 54 days in a commercial tomato field in 
Parma (44° 49′ 02.4″ N 10° 14′ 37.5″ E).

Based on the results obtained in 2018, the irrigation was set at full water regime (100%, 
as in Irriframe recommendations), and 70 and 50% of the fully irrigated plot (Fig. 1B). One 
bioristor was installed in four plants for the 100% regime, four plants for the 70 and 50% 
regimes. The plants were monitored in total for 54 days. In the 2020 experiment, due to a 
delay in the implementation of the irrigation system, differential irrigation started after 21 
days.

A drip watering system was used for irrigation in both years, where the regimes were 
differentiated according to the time of water flow. All plots were regularly irrigated accord-
ing to 100% of Irriframe advice prior to the start of the differential irrigation. The full list 
of phytosanitary treatments and operations is reported in Suppl. Table 1.

In both years, in all plots subjected to multiple water regimes the bioristor’s response 
(R) was compared to identify differences between the different irrigation regimes in terms 
of bioristor output. The effects of the treatments on the bioristor response were then ana-
lyzed to further understand the bioristor’s ability to monitor plant eco-physiology.

The bioristor sensors, principles and preparation

The bioristor is an OECT-based biosensor made up of two functionalized textile fibers 
(polypropylene) serving as the channel and the gate of a transistor.

The bioristor is directly inserted into the plant stem (Janni et al., 2019), and it measures 
the changes in ion concentration in the plant sap which is continuously read via an IoT 
system (Finco et al., 2022). The working principle is based on doping-state changes in the 

Fig. 1  Sketch and real-field image of the field trial. A 2018, B 2020
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semiconductor channel material due to electrolyte-ion injections which modify the electri-
cal conductivity (Marquez et al., 2020; Tarabella et al., 2012). A positive input voltage at 
the gate electrode modulates the channel current by pushing cations from the electrolyte 
into the PEDOT:PSS matrix, thus modifying channel conductivity (Friedlein et al., 2018; 
Janni et al., 2021).

The sensor’s response is the result of the relationship between the sensor and the 
changes occurring in the plant sap composition and ion concentration during growth, 
development and under abiotic stress. Under drought stress, the sensor response drops sig-
nificantly because of the diminished ion concentration in the plant sap derived from low 
plant transpiration and root water absorption (Janni et al., 2019). A significant increase in 
the R was observed (Amato et al., 2021; Vurro et al., 2019) in high relative humidity con-
ditions (RH) and low vapor pressure deficit (VPD).

Bioristor preparation

Prior to functionalization, each thread was cleaned with a plasma oxygen cleaner (Femto, 
Diener electronic, Ebhausen/Germany) to improve the thread’s wettability and facilitate the 
adhesion of the aqueous conductive polymer solution. This step enhances the performance 
of the sensors by removing any impurities or contaminants on the fibers, and increases the 
surface area for the polymer adhesion. An aqueous solution containing PEDOT:PSS (Cle-
vios PH1000, Starck GmbH, Munich, Germany) and dodecyl benzene sulfonic acid (2% 
v/v) was prepared and stirred for five minutes to ensure homogeneity.

The solution obtained was deposited onto polypropylene fibers using a drop-casting 
technique in an amount of 50 µL/cm. This resulted in the formation of a thread with a 
cross-sectional area of 1.42 mm × 0.25 mm. This approach means that the thickness and 
shape of the sensor can be controlled precisely, polypropylene fibers can be used as a sub-
strate which offers biocompatibility and mechanical stability, and the fibers can be infused 
with the conductive polymer, which is essential for the sensors to function effectively.

The entire process is repeated three times to complete the preparation of the sensors. 
Next, the fibers were treated with highly concentrated sulfuric acid (95%) for 20 min. This 
improves the crystallinity, electrical properties, and durability of the polymer by replacing 
the use of ethylene glycol (10% v/v) treatments to improve the electrical conductivity and 
long-term stability of the polymer. Finally, the fibers were washed with water, and sub-
jected to annealing for 1 h at 130 °C (Coppedè et al., 2017).

The bioristor is covered by patents in Europe (IT201600130803A1) and the USA (Pat. 
n. WO2018116149A1).

Bioristor integration in plants and signal acquisition

After functionalization, 2 cm of the prepared fibers were inserted into the plant stem, with 
a distance between the two threads of 5 mm in tomato plants at 15 days after transplant 
(5–6 leaves) at 10 cm above the soil surface (Janni et al., 2019) (Fig. 2A and B). The chan-
nel is connected by bonding two thin electrical wires to both sides, while the gate is con-
nected only on one side to the electrical wire. These wires are fixed on a 3D printed holder 
made of blue polymeric material, to improve bioristor stability (Fig. 2A) and connected by 
wires to the digital motherboard (Fig. 3A) or to the control unit (Fig. 3B, C).

A constant voltage  (Vds = − 0.1 V) was applied between the source and drain terminals 
of the channel, resulting in a continuous current flow, and a positive voltage at the gate 
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 (Vg = 0.6 and 1 V in 2018;  Vg = 0.5 V in 2020) was applied thus leading to a decrease in 
the channel conductivity due to the cations pushed from the electrolyte into the channel. 
The current  (Ids) was monitored continuously.

The sensor response (R) is the main index acquired and is proportional to the sap cation 
concentration. It is given by the expression:

where  Ids0 represents the current across the channel when  Vg = 0. The sensor response R 
was recorded for the entire productive cycle.

The  Igs was also monitored and is the current flowing through the solution from the gate 
to channel when a positive gate bias is applied. The difference ΔIgs = Igs − Igs0 is related to 

(1)R =
||Ids − Ids0

|
|

Ids0
,

Fig. 2  Bioristor implementation in plants. A Example of bioristor inserted into tomato plants in open field. 
The bioristor is composed of a channel and a gate connected to electrical wires in its current version. A 
holder ensures that no damage is caused to the plant stem due to the weight of the wires; B the channel and 
gate connected with wires without the holder

Fig. 3   A 2020 Bioristor application. B 2020 Field, C 2020 bioristor control unit
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the sensor wetting status, where  Igs0 is the current across the solution when  Vg = 0 (Gentile 
et al., 2020).

The acquisition of the sensor response R is based on the relative change in the channel 
current. No calibration is required. The current flowing through the channel when the gate 
is off  (Ids0) is used to calculate the R at each time point continuously.

Two time constants τ and τgs of the sensor were also evaluated in a multivariate analy-
sis. τ and τgs, computed by fitting the non-linear drain and gate current curves, are related 
to the time that ions take to enter the polymer, τ, and the ions diffusivity in the solution, 
τgs, respectively (Coppedè et al., 2014, 2017; Vurro et al., 2019). The first derivatives as a 
function of time of R, ∆Igs, τ, and τgs parameters (dR, d∆Igs, dτ, and dτgs) were also calcu-
lated to highlight specific trends (Vurro et al., 2019).

R is the result of the relationship between the sensor and the changes in the plant sap 
composition and ion concentration during growth, development and under abiotic stress. 
Under drought, R drops significantly because of the reduced ion concentration in the plant 
sap due to the low plant transpiration and root water absorption (Janni et al., 2019). Moreo-
ver, in high relative humidity conditions and low vapor pressure deficit (VPD), a signifi-
cant increase in R was observed (Amato et  al., 2021; Vurro et  al., 2019). Rainy events 
increase the air relative humidity (RH%) and decrease the VPD and a rapid increase in the 
R was observed.

Based on these considerations, to demonstrate the reproducibility of the sensor’s 
response, an in  vitro experiment was performed. The results of the sensor response of 
seven replicates of bioristor, in the range  10− 4–10−2  M NaCl solution, were reported 
(Suppl. Table 2).

Bioristor IoT control unit

The bioristor control unit was optimized across the two field trials to improve its perfor-
mance and enable the use of the device in open fields.

In the 2018 setup, each bioristor sensor was connected to a digital acquisition board 
NI USB-6343 multifunction I/O device (National Instruments, Austin, TX, USA) through 
electrical wires. It is a multi-channel analog-to-digital converter connected to a PC, where 
the readout data is processed using custom and then saved in the cloud. The sensor cur-
rents were converted to voltage, which is more easily readable by the NI board, through a 
resistor. The board is equipped with a 16 bit ADC (5 V full-scale), and currents are read 
through a 10 Ohm resistor. The current resolution is about 8 µA. The data from each con-
nected bioristor was acquired every second, locally saved on the PC, and then sent to the 
cloud.

In the revised 2020 setup, the IoT control unit was based on the Arduino DUE system 
and connected to a 12 V 12 Ah lead battery powered by a 10 W photovoltaic panel. Bioris-
tor data was locally saved on a micro-SD memory card and transferred to the cloud via a 
4G connection. This setup allowed for the maximization of the signal to noise ratio using 
customized electronic circuits to amplify the bioristor signals, as well as local analysis of 
the raw data.

Signals were read through an amplification system that gave a more accurate measure-
ment of the currents. The sampling rate was 1 Hz, and each control unit was able to read 
up to four sensors. The control unit has a 12 bit ADC (5 V full-scale); the maximum cur-
rent full-scale is 7 mA, the current resolution is about 1.5 µA. A micro-weather unit was 
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also incorporated into the control unit (DHT11 module, Seeed Technology Inc., Shenzhen, 
China) to monitor air temperature (T°C) and relative humidity (RH).

In both experiments, the gate was turned ON  (Vg = 0.6 V in 2018 season;  Vg= 0.5 V in 
2020 season) for 15 min and OFF (0 V) for 15 min. At every gate that was switched on, R 
was calculated every 15 min considering the last two values of  Ids and  Ids0,.

Environmental conditions and soil characteristics

In 2018 rain abundance, as well as temperature and relative humidity at 2  m above the 
ground, were recorded by ARPAE agrometeorological station (https:// simc. arpae. it/ 
dext3r/). Soil sensors from Agricultural support (http:// www. agric ultur alsup port. it/ prodo 
tti- coltu re- ortic ole) were also exploited to verify the changes in the soil moisture.

In 2020, the environmental conditions were monitored via Pycno sensors (https:// pycno. 
co/), which monitor soil volumetric water content and temperature at 10, 25, 40 and 55 cm 
depth, and air temperature, humidity, and solar radiation.

Based on the parameters recorded with the datalogger, the VPD value was calculated as 
follows (Vurro et al., 2019):

where RH is relative humidity and SVP is saturated vapour pressure.
The SVP was calculated with the following equation (Murray 1967):

where T is the temperature measured in the growth chamber.

Ground physiological measurements

In 2018, to validate bioristor in monitoring plant health and water use efficiency in field, 
classical physiological measurements were performed. Three plants for each regime were 
analyzed to calculate the relative water content (RWC) of the leaves (Buffagni et al., 2020).

Leaf RWC (%) was measured in control and stressed leaves. Two leaves were clipped 
from five plants from each regime and placed in 50 mL tubes. Fresh weight (FW) was 
immediately recorded, then leaves were soaked in distilled water for 4 h at room tempera-
ture under constant light. The turgid leaf disks were then rapidly blotted to remove surface 
water and weighed to obtain the turgid weight (TW). Leaves were dried in the oven at 
80 °C for 24 h to record the dry weight (DW). The RWC was calculated according to the 
formula (Barrs & Weatherley, 1962):

Chlorophyll content was assessed with a SPAD 502 m (Konica Minolta, Ramsey, USA). 
Ten measurements for each plant of three expanded leaves were recorded along the leaf 
length in five plants for each regime. The relative SPAD values were recorded.

(2)VPD =

(
1 −

RH

100

)
× SVP,

(3)SVP = 610.7 × 10
7.5T

237.3+T ,

(4)RWC(%) =
FW-DW

TW − DW
× 100.

https://simc.arpae.it/dext3r/
https://simc.arpae.it/dext3r/
http://www.agriculturalsupport.it/prodotti-colture-orticole
http://www.agriculturalsupport.it/prodotti-colture-orticole
https://pycno.co/
https://pycno.co/
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The stomatal conductance of the leaves was measured using an SC1 leaf porometer 
(Decagon Devices, Pullman, WA, USA) to evaluate the transpiration process. Five plants 
(one leaf for each plant) were recorded from 06:00 am to 08:00 am.

Data analysis and statistics

R data were analyzed with MATLAB (https:// uk. mathw orks. com/) and Microsoft Excel 
2016 to smooth out variations related to the circadian cycle (Coppedè et al., 2017; Janni 
et al., 2019) by calculating the rolling mean. The aim was to reduce background noise and 
thus highlight the variations due to drought.

The R data were then subjected to ANOVA using MATLAB (https:// uk. mathw orks. 
com/) .In addition, the p-value was calculated and is reported in Suppl. Tables 3 and 4. The 
standard error was calculated on plant physiological data using Excel 365 ProPlus (Micro-
soft Corporation, Redmond, WA, United States). Data were analyzed from five plants with 
one, two and three replicates for stomatal conductance, RWC and SPAD measurements, 
respectively. The current data from the bioristors were fitted using least square minimiza-
tion performed with the “fminuit” function in MATLAB.

To evaluate the effect of differential treatment and the contribution of each parameter 
to the plant health under drought stress, PCA was performed using all the bioristor param-
eters collected from plants at 30–34 days in 2018 and at 32–39 days in 2020. PCA was 
performed using the R “prcomp” function and represented as a biplot using the R package 
“factoextra”. The first two principal components PC1 and PC2 and the corresponding com-
ponent loading vectors were visualized and summarized in a biplot, in which component 
scores (indicated with dots) were colored in relation to the specific regime (Kassambara & 
Mundt, 2016).

Results

Bioristor monitoring in multisite experiments

The bioristor transfer characteristics were verified by measuring  Ca2+,  K+, and  Na+in vivo, 
with reference to concentrations included in the range found in leaves. This demonstrated 
that a bioristor can detect small changes in the salt-related ion concentrations in the plant 
sap (Janni et al., 2021).

In 2018, the R index trend showed no significant difference between water regimes for 
almost the entire season. The first 5–7 days after bioristor integration in plants correspond 
to the implantation and stabilization phase of the sensor, also previously reported in con-
trolled conditions (three days in pots, Janni et al., 2019). The R observed during the sta-
bilization phase was not used to calculate the theoretical water savings (TWS). In fact, in 
2018 several rain events characterized the growing season and substantially nullified the 
effect of differential irrigation for almost the entire duration of the experiment. The differ-
ence among the regimes was only observed in the interval between days 28 and 35, when a 
severe drought occurred (Supplementary Fig. 1, Supplementary Table 3).

A major and rapid peak in the R signal (200–400%) was observed in correspondence 
with each rain event (days 5–7, 12, 13, 16, 18, 23, 25, 42, 47, 58, 59, Suppl. Figure 1 A) 
due to the increases in relative humidity (RH%) and, in turn, a decrease in the VPD (Fig. 4 
in Vurro et al., 2019).

https://uk.mathworks.com/
https://uk.mathworks.com/
https://uk.mathworks.com/
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A considerable decrease in the R signal was observed in all plots between days 5 and 20 
in relation to the treatment with ACT ARA  25WG, which was administered to counteract 
an aphid infestation. In fact, a key time window for the entire experiment was observed 
between days 22 and 44, when the reduction in rain events and the increase in temperature 
meant that the R index response was different for each regime.

Between days 25 and 35, a significant difference in R was observed among the regimes 
(p ≤ 0.05, Supplementary Table 3).

The sensor response drops significantly under drought due to the block of transpiration 
which then leads to a reduction in the ion concentration in the xylem sap and their redistri-
bution to maintain the plant osmoregularity (Janni et al., 2019).

From days 31 to 35, the R of the 80% regime showed a 40–60% decrease in the sensor 
response compared with the 100% regime, and a 10–40% reduction in the R of the 60% 
regime was also observed. Data suggest the occurrence of more severe drought stress in the 
80% regime compared to the 60% regime, in accordance with measurements recorded by 
the soil sensors (Fig. 4).

Between days 40 and 62, there was a gradual decrease in R in all the regimes, except 
for days 42, 47, 58 and 59 when heavy rains occurred and the R trend rapidly increased 
as expected. In fact, fruit ripening causes leaf senescence and a reduction in transpiration 
(Mundim & Pringle, 2018). This leads to a subsequent decrease in the concentration of 
ions in the plant sap, which explains the decrease in the R signal observed (Fig. 4).

The 2018 field pilot allowed to successfully validate the efficacy of the bioristor to 
detect physiological changes in plants as confirmed by the physiological data collected. 
The stomatal conductance trend showed a significant reduction in the transpiration process 
between regimes starting from day 22 up to day 27 (Fig. 5A), whereas neither the RWC nor 
the SPAD values showed a significant difference between regimes. This, confirms the high 
sensitivity of the bioristor’s index in the early detection of drought stress (Fig. 5B, C, Janni 
et al., 2019).

The PCA performed on bioristor data showed that the first two principal components 
(PC1 and PC2) explained 72.4% of the total variance and highlighted a clear division of 
variables into three different groups along the first component (PC1), thereby confirming 
that the effects of drought stress on plant physiology are correctly tracked by the sensor 
(Fig. 6). The first PC (PC1) alone explains 47.3% of the phenotypic variation with con-
trols and drought-stressed plants well separated in the biplot, thus indicating the efficacy of 

Fig. 4  R monitored in 2018 for 
62 days (100% regime: blue line, 
80% regime: dark red line, 60% 
regime: dark gray line) and vapor 
pressure deficit (VPD, black line) 
in the 2018 season. R plots are 
the average response of 10 plants 
for each regime (Color figure 
online)
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the various irrigation regimes. The sensor response R, ∆Igs and their first derivative (dR, 
d∆Igs) are negatively correlated with τgs and τ.

In 2020, the R index trend was comparable for all plots, as expected, which were irri-
gated regularly up to day 21 (Fig. 7). The deviation in the R response of the 50% regime 
from day 7 to day 15 is discussed in the next section. Starting from day 21, irrigation 
was managed differently for each regime and a significant difference in the R signal was 
observed (Supplementary Table  4). A severe drought stress was detected in the 50% 

Fig. 5  Physiological analyses performed in real time (dpi = days post insertion) in 2018. A Stomatal con-
ductance, B  relative water content (RWC), C  chlorophyll fluorescence expressed as relative SPAD units. 
Error bars represent standard error
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Fig. 6  PCA of the parameters acquired via bioristor in the 2018 trial. The component scores (shown in 
points) are colored according to the regime (blue 100%; red 80%; gray 60%). The component loading vec-
tors (represented in lines) were superimposed proportionally to their contribution. ∆Igs: difference between 
minimum and maximum gate current values. τ and τgs: time constants. From the acquired data, the first 
derivatives of R, ∆Igs, τ and τgs (dR, d∆Igs, dτ and dτgs) were calculated. PC1 and PC2 explain 72.4% of the 
variability observed. Each dot represents the daily mean for each detected stress day (30–34) (Color figure 
online)

Fig. 7  Plot of R monitored in 
2020 for 54 days (100% regime: 
blue line, 70% regime: red line, 
50% regime: gray line) and vapor 
pressure deficit (VPD, black line) 
during 2020 trial. R plots are the 
average response of four plants 
for each regime (Color figure 
online)
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regime (33% R reduction, p-value ≤ 0.05), whilst the 70% regime showed an interme-
diate decrease (17% R reduction). As observed by other authors, under fruit ripening 
the R signal declined as an effect of the reduction in transpiration (Mundim & Pringle, 
2018).

There was a rapid increase in the R index also due to rain in 2020. The R index var-
ied from 26 to 122% with rain on days 5, 6, 15–18, 32, 37, 38, 43–45, 47, 48 and 52 
(Supplementary Fig.  1B). This observation further supports the ability of bioristor to 
detect leaf wetting due to increased environmental VPD (Fig. 7).

A PCA of the 2020 data confirmed the observations made in the 2018 trial. The 
first two components (PC1 and PC2) explain 64.2% of the total variance. The variance 
among the groups is more closely associated with the variance captured by PC2 than 
by PC1. The three regimes are well separated in the biplot, highlighting how the bioris-
tor can detect physiological changes due to drought stress (Fig.  8). However, the dis-
tribution of the groups was not homogenous, as observed in our previous trial in 2018. 
Specifically, the groups associated with the 100% and 70% regimes form a cluster-like 
pattern, whilst the scores for the 50% regime were more separated. When all variables 

Fig. 8   A PCA of the parameters acquired via bioristor in the 2020 trial. The component scores (shown in 
points) are colored according to the agronomic groups (blue, 100% regime; red, 70% regime; gray, 50% 
regime). The component loading vectors (represented in lines) were superimposed proportionally to their 
contribution: ∆Igs; difference between minimum and maximum current gate values, τ and τgs; time con-
stant. From the acquired data, the first derivative of R, ∆Igs, τ and τgs (draw, d∆Igs, dτ and dτgs) were cal-
culated. PC1 and PC2 explain 64.2% of the variability observed. Each dot represents the daily mean for the 
principal detected stress days (32–39)
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were considered, the 100% and 70% regimes of the 2020 trial clustered closer than the 
100% and 80% regimes of 2018, suggesting that all the bioristor variables should be 
considered.

The R trend recorded for each plant is highly reproducible (Supplementary Fig. 2). In open 
field, the sensor response is strongly dependent on the interaction of each plant with the envi-
ronment. Consequently, the sensor’s performance should be considered in terms of the signal 
trend variation, rather than the R value of an individual plant.

This was confirmed in  vitro, where plant physiological and morphological mechanisms 
have no influence, and the environment has no impact. The sensor response reproducibility 
was extremely high, calculating the R on seven sensor replicates, in a range of  10−4–10−2 M 
NaCl solution (Supplementary Table 2).

Estimation of potential water saving using the bioristor

The R index was also compared with the tomato yield and quality indices recorded at harvest 
(Table 1).

In both trials (2018 and 2020), the tomato yield differed only slightly between the regimes. 
This resulted in a comparable percentage in terms of commercial yield. In 2018, only the 60% 
regime exhibited a significant reduction in the commercial production due to an increase in 
rotten fruit, most probably due to the drought suffered during flowering (Millones-Chanamé 
et al., 2019).

Based on the R index variations recorded during the experiment, in both trials, the theo-
retical water saving (TWS) was calculated and is reported in Tables 2 and 3. In the 2018 trial, 
all regimes performed similarly during the entire season. The R index slope was significantly 
different for few days only (28–35) between the different water regimes (P ≤ 0.05) and was 
dependent on the amount of water input. Based on the yield recorded for all regimes, it was 
assumed that the amount of water provided in the 60% regime would be sufficient to achieve 
the good final yield expressed in marketable fruit percentage, except for the 28–35 day win-
dow, when the full amount of water applied to the 100% regime was required to overcome the 
severe drought.

For the 2018 trial, the percentage of theoretical water saving reported as achievable using 
the bioristor signal as a guide for irrigation was computed using the formula:

(5)TWS(%) =
Vt100% − VtTBI

Vt100%
× 100,

Table 1  Tomato yields in the 2018 and 2020 trials

*Significant different (P ≤ 0.05)

Season Regime (%) Marketable 
fruit %

Unripe fruit % Rotten fruit % Apical rot n°

2018 100 89.6 5.1 5.3 0.0
80 89.7 5.1 5.1 0.0
60 87.7 2.5* 9.8* 0.0

2020 100 91.7 6.7 1.6 1.0
70 75.6 19.8 4.6 5.5
50 86.3 8.4 5.3 4.0
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where  Vt100% represents the total volume of water used for irrigation (100% control 
regime), as determined by the Irriframe service (Table 2), and  VtTBI indicates the total vol-
ume of water that would have been used if irrigation had been managed with the bioristor, 
based on the signal recorded for the other regimes (Table 2).

Based on the above formula, if the bioristor had been used in 2018 to guide the irriga-
tion system, the average water saving would have been 36% (Tables 1 and 2).

In the 2020 trial, yield was not in line with irrigation. In fact, the 70% regime showed 
a significant, larger decrease in yield (marketable fruit) compared with the 50% regime, 
whereas a smaller decrease in yield was observed in the 50% water regime compared with 

Table 2  Irrigation volumes and water savings (TWS) calculated based on the response of the bioristor sen-
sor in 2018

Days 100% Irrigation 
 (m3/ha)

80% Irrigation 
 (m3/ha)

60% Irrigation 
 (m3/ha)

Theoretical bioristor 
irrigation  (m3/ha)

Theoretical 
water saved 
(%)

8 88.80 71.04 53.28 53.28 40.0
15 111.00 71.04 53.28 53.28 52.0
25 66.60 53.28 39.96 39.96 40.0
26 88.80 71.04 33.30 33.30 62.5
28 66.60 39.96 26.64 66.60 –
30 222.00 177.60 133.20 222.00 –
32 155.40 124.32 93.24 155.40 –
34 199.80 159.84 119.88 119.88 40.0
37 133.20 106.56 79.92 79.92 40.0
39 133.20 106.56 79.92 79.92 40.0
40 133.20 79.92 53.28 53.28 60.0
51 133.20 79.92 53.28 53.28 60.0
54 133.20 79.92 53.28 53.28 60.0

Table 3  Irrigation volumes and water savings (TWS) calculated based on the response of the bioristor sen-
sor in 2020

Days 100% Irrigation 
 (m3/ha)

70% Irrigation 
 (m3/ha)

50% Irrigation 
 (m3/ha)

Theoretical bioristor 
irrigation  (m3/ha)

Theoretical 
water saved 
(%)

21 143.27 95.99 75.8 95.99 33.0
23 143.27 95.99 75.8 95.99 33.0
26 143.27 95.99 75.8 95.99 33.0
28 143.27 95.99 75.8 95.99 33.0
30 143.27 95.99 75.8 95.99 33.0
33 143.27 95.99 75.8 95.99 33.0
35 143.27 95.99 75.8 75.8 47.1
37 143.27 95.99 75.8 143.27 −
40 226.2 151.55 57.87 226.2 −
42 226.2 151.55 57.87 57.87 74.4
46 226.2 151.55 57.87 57.87 74.4
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the 100% water regime. Based on the bioristor data and yield performance, in 2020 the 
TWS was 38% (Tables 1 and 3).

Discussion

Water scarcity increasingly threatens food security and nutrition due to the importance of 
water for food systems, agricultural production, food processing, households, and consum-
ers (FAO, 2021).

Italy is a big water consumer since agriculture is one of the main sources of income. A 
total of 41.67% of the entire agricultural land in Italy is irrigated. Out of 9 Mha of culti-
vated land, 4 Mha are equipped for irrigation. A total of 17 billion  m3/year of agricultural 
water are consumed in Italy alone (Ritchie & Roser, 2020).

Precision agriculture is gaining interest as the related technologies can observe, meas-
ure, and apply exact quantities of water to crops on a large scale. Several sensors are exten-
sively used in precision agriculture management. In particular, proximal soil sensors play a 
critical role in smart and precision agriculture by monitoring real-time physical signals in 
the soil, such as temperature, moisture, pH, and pollutants, and providing key information 
to optimize crop growth, fight against biotic and abiotic stresses, and enhance crop yields 
(Yin et al., 2021). However, proximal sensors only return data related to the plant proxim-
ity and do not provide information on what is really occurring in the plant system.

An in vivo sensing approach was used in this study to understand the potential water 
savings through continuous and real-time monitoring of tomato crops in the open field dur-
ing the entire growth season.

The output of bioristor sensor is strongly related to the plant’s water status and to 
physiological and phenotypic changes due to drought. The high sensitivity and short time 
response (within minutes) of the bioristor index R increases the possibility and timeliness 
for determining a water deficit in a plant at a particular crop stage, thereby improving the 
efficiency of plant-based irrigation scheduling (Gentile et al., 2020; Gu et al., 2020; Janni 
et al., 2019; Vurro et al., 2019).

In 2018 and 2020, an excess in irrigation was identified by comparing the final yields 
with the water used. A minimum reduction of 36% in 2018 and 38% in 2020 in water use 
would have been achievable if bioristor had been used to guide the irrigation system.

Previous studies have used a life cycle assessment to estimate the amount of water saved 
for different crops. Fotia et al. (Fotia et al., 2021) demonstrated that precise irrigation by 
DSS-based management can reduce the overall environmental impact per 1 ton of olives by 
5.3–18%, or by 10.4–22.6% per 1 ha of cultivated land. Balafoutis et al. (Balafoutis et al., 
2017) reported that variable-rate application of water in a vineyard can reduce greenhouse 
gas emissions by 8.8%.

In the experiments carried out in two years and in two locations, the bioristor-based 
approach reported in this study provided additional tools to: (i) save water for irrigation, 
(ii) decreasing the water input required in tomato crops by 36–38%. Based on the collected 
data a complete algorithm for a fully operational decision support system based on the 
in vivo bioristor data, have been developed with the aim of identifying thresholds for the 
early warning of drought stress (Fig. 9).

A novelty of this work is the possibility to calculate form the R index, the timing and 
duration of leaf wetting were also measured through the bioristor: 438 h in the 2018 exper-
iment, and 409 h in 2020 (Table 4).
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Leaf wetting plays a major role in plant physiology with direct or indirect effects on 
plant function. For example, in leaf wetting by dew, the transpiration rate can decrease, 
thereby mitigating water stress at times of high evaporative demand (Yokoyama et al., 
2021). Consequently, leaf wetting increases the photosynthetic rate in the long term by 
mitigating water stress (Yokoyama et al., 2021). Leaf wetting is also linked with patho-
gen detection, thus continuous monitoring can help in the early detection of pathogens 
(Dawson & Goldsmith, 2018).

The ability of bioristor to detect leaf wetting is mainly due to the variation in solutes 
content in the plant sap due to environmental conditions. Changes in water potential 
lead to changes in the concentration of solutes (i.e. leaf osmolality), which then impact 
on the primary and secondary metabolism (Dawson & Goldsmith, 2018) as highlighted 
by the high correlation observed between R and VPD values (Figs. 4 and 7, Vurro et al., 
2019).

A side result of this field trial was the determination of the half-life of the pesti-
cides by continuous monitoring during the field trial. During the 2018 season, a strong 
change in the slope of the sensor response was associated with the use of an anti-aphid 
treatment (ACT ARA  25WG). In fact, the mode of action of ACT ARA  in the plant was 
similar to the one triggered during severe drought stress, thus leading, in terms of sen-
sor response, to a major change in the value and trend of the R index. The analysis of R 
also enabled the ACT ARA  half-life to be estimated as 13 days which to the best of our 
knowledge has not been reported before.

Fig. 9  Bioristor working principle and features. Sensor response and data interpretation in relation to water 
supply and needs

Table 4  Leaf wetting timing 
and duration calculated over the 
whole season in 2018 and 2020

Season Leaf wetting timing (days) Leaf wetting 
duration (h)

2018 18 438
2020 17 409
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Conclusions

This study has demonstrated that bioristor enables real time, in vivo and continuous moni-
toring of tomato growth and fruit production in open field conditions, resulting in the 
identification of the sensor response index (R index), that has been demonstrated to be a 
good proxy of plant health status. Of note, bioristor allowed to trace the plant’s water sta-
tus dynamics during the plant response under changing environmental conditions together 
with the precise occurrence and duration of the drought stress. The use of bioristor for 
smart agriculture can concretely contribute to improve the sustainable use of water in agri-
culture leading to save 36–38% of the water consumed for irrigation.

A novel feature of bioristor was also identified. The frequency, timing, and duration of 
leaf wetting was also established through the analysis of the R index, leading to further 
optimization of water use, and opening new perspectives on pest detection, and manage-
ment since a pathogen attack is strictly related to plant humidity. This bioristor’s feature 
would enable a more precise schedule of pesticide treatment, thereby contributing to 
greater sustainability in agriculture.

Taking all together, this work paves the way for the use of bioristor under a smart irriga-
tion approach significantly improves the water use efficiency allowing the fine-tuning of 
irrigation protocols and strategies.

Supplementary information The online version contains supplementary material available at https:// doi. 
org/ 10. 1007/ s11119- 023- 10049-1.

Acknowledgements The authors warmly thank Mutti SpA for fully funding the 2018 field trial and their 
continuous support, and YAXE for funding the 2020 field trial. The research activities were partially sup-
ported by projects POSITIVE (Regione Emilia-Romagna ERDF project 2014–2020, Coordinator Prof. 
Stefano Caselli), and by the Italian Ministry of Agriculture RGV FAO (DM 10271, Principal investigator 
Michela Janni. The authors also thank ALSIA Metapontum Agrobios for financing Filippo Vurro PhD.

Author contributions MJ coordinated all the trials and the bioristor application, and also wrote the manu-
script; FV and RM oversaw the 2018 and 2020 experiment respectively, and analyzed the data; MB devel-
oped the control unit and the IoT network; GB conceived and supervised the 2020 field trial, and edited 
the manuscript; SC and ALC provided technical support for the 2018 trial at Stuard and the 2020 trial, 
respectively; RR conceived and supervised the 2018 field trial at Stuard; EM, NC, AZ and SC contributed to 
conceptualization of the experiments, data interpretation and editing of the manuscript.

Funding Open access funding provided by IMEM - PARMA within the CRUI-CARE Agreement.

Data availability The datasets generated during the current study are available from the corresponding 
author on reasonable request.

Declarations 

Conflict of interest The authors declare that they have no conflict of interest.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

https://doi.org/10.1007/s11119-023-10049-1
https://doi.org/10.1007/s11119-023-10049-1
http://creativecommons.org/licenses/by/4.0/


2497Precision Agriculture (2023) 24:2479–2499 

1 3

References

Amato, D., Montanaro, G., Vurro, F., Coppedé, N., Briglia, N., Petrozza, A., Michela, J., Zappettini, A., 
Cellini, F., & Nuzzo, V. (2021). Towards in vivo monitoring of ions accumulation in trees: response of 
an in planta organic electrochemical transistor based sensor to water flux density, light and vapor pres-
sure deficit variation. Applied Sciences, 11(11), 4729. https:// doi. org/ 10. 3390/ app11 114729

Balafoutis, A. T., Koundouras, S., Anastasiou, E., Fountas, S., & Arvanitis, K. (2017). Life cycle assessment 
of two vineyards after the application of precision viticulture techniques: a case study. Sustainability, 
9(11), 1997. https:// doi. org/ 10. 3390/ su911 1997

Barrs, H., D., & Weatherley, P., E (1962). A re-examination of the relative turgidity technique for estimating 
water cleficits in leaves. Australian Journal of Biological Sciences, 15, 413–428.

Ben Hamed, K., Zorrig, W., & Hamzaoui, A. H. (2016). Electrical impedance spectroscopy: a tool to inves-
tigate the responses of one halophyte to different growth and stress conditions. Computers and Elec-
tronics in Agriculture, 123, 376–383. https:// doi. org/ 10. 1016/j. compag. 2016. 03. 006

Ben Mariem, S., Soba, D., Zhou, B., Loladze, I., Morales, F., & Aranjuelo, I. (2021). Climate change, crop 
yields, and grain quality of C3 cereals: a meta-analysis of  [CO2], temperature, and drought effects. 
Plants, 10(6), 1052. https:// doi. org/ 10. 3390/ plant s1006 1052

Bernacka-Wojcik, I., Huerta, M., Tybrandt, K., Karady, M., Mulla, M. Y., Poxson, D. J., Gabrielsson, E. O., 
Ljung, K., Simon, D. T., Berggren, M., & Stavrinidou, E. (2019). Implantable organic electronic ion 
pump enables ABA hormone delivery for control of stomata in an intact tobacco plant. Small (Wein-
heim An Der Bergstrasse, Germany), 15(43), 1902189. https:// doi. org/ 10. 1002/ smll. 20190 2189

Bonfante, A., Monaco, E., Manna, P., & De Mascellis, R. (2019). LCIS DSS—an irrigation supporting sys-
tem for water use efficiency improvement in precision agriculture: a maize case study. Agricultural 
Systems. https:// doi. org/ 10. 1016/j. agsy. 2019. 102646

Browne, M., Yardimci, N. T., Scoffoni, C., Jarrahi, M., & Sack, L. (2020). Prediction of leaf water potential 
and relative water content using terahertz radiation spectroscopy. Plant Direct, 4(4), e00197. https:// 
doi. org/ 10. 1002/ pld3. 197.

Buffagni, V., Vurro, F., Janni, M., Gullì, M., Keller, A. A., & Marmiroli, N. (2020). Shaping durum wheat 
for the future: gene expression analyses and metabolites profiling support the contribution of BCAT 
genes to drought stress response. Frontiers in Plant Science. https:// doi. org/ 10. 3389/ fpls. 2020. 00891

Cabrita, P. (2022). Non-invasive assessment of the physiological role of leaf aerenchyma in Hip-
peastrum herb. and its relation to plant water status. Planta, 256(1), 19. https:// doi. org/ 10. 1007/ 
s00425- 022- 03930-2

Cantore, V., Lechkar, O., Karabulut, E., Sellami, M. H., Albrizio, R., Boari, F., Stellacci, A. M., & Todor-
ovic, M. (2016). Combined effect of deficit irrigation and strobilurin application on yield, fruit quality 
and water use efficiency of “cherry” tomato (Solanum lycopersicum L.). Agricultural Water Manage-
ment, 167, 53–61. https:// doi. org/ 10. 1016/j. agwat. 2015. 12. 024

Coppedè, N., Janni, M., Bettelli, M., Maida, C. L., Gentile, F., Villani, M., Ruotolo, R., Iannotta, S., Marmi-
roli, N., Marmiroli, M., & Zappettini, A. (2017). An in  vivo biosensing, biomimetic electrochemi-
cal transistor with applications in plant science and precision farming. Scientific Reports, 7(1), 16195. 
https:// doi. org/ 10. 1038/ s41598- 017- 16217-4

Coppedè, N., Villani, M., & Gentile, F. (2014). Diffusion driven selectivity in organic electrochemical tran-
sistors. Scientific Reports. https:// doi. org/ 10. 1038/ srep0 4297

Corbari, C., Ben Charfi, I., & Mancini, M. (2021). Optimizing irrigation water use efficiency for tomato and 
maize fields across italy combining remote sensing data and the aquacrop model. Hydrology, 8(1), 39. 
https:// doi. org/ 10. 3390/ hydro logy8 010039

Dawson, T. E., & Goldsmith, G. R. (2018). The value of wet leaves. New Phytologist, 219(4), 1156–1169. 
https:// doi. org/ 10. 1111/ nph. 15307.

Diacci, C., Abedi, T., Lee, J. W., Gabrielsson, E. O., Berggren, M., Simon, D. T., Niittyla, T., & Stavrinidou, 
E. (2021). Diurnal in vivo xylem sap glucose and sucrose monitoring using implantable organic elec-
trochemical transistor sensors. iScience. https:// doi. org/ 10. 1016/j. isci. 2020. 101966

Dufil, G., Bernacka-Wojcik, I., Armada-Moreira, A., & Stavrinidou, E. (2022). Plant bioelectronics and bio-
hybrids: the growing contribution of organic electronic and carbon-based materials. Chemical Reviews, 
122(4), 4847–4883. https:// doi. org/ 10. 1021/ acs. chemr ev. 1c005 25

Ehrenberger, W., Rüger, S., Rodríguez-Domínguez, C. M., Díaz-Espejo, A., Fernández, J., Moreno, J., Zim-
mermann, D., Sukhorukov, V. L., & Zimmermann, U. (2012). Leaf patch clamp pressure probe meas-
urements on olive leaves in a nearly turgorless state. Plant Biology, 14(4), 666–674. https:// doi. org/ 10. 
1111/j. 1438- 8677. 2011. 00545.x

FAO (2021). The state of Food and Agriculture 2021. Making agrifood systems more resilient to shocks and 
stresses. Rome, FAO. https:// doi. org/ 10. 4060/ cb144 7en

https://doi.org/10.3390/app11114729
https://doi.org/10.3390/su9111997
https://doi.org/10.1016/j.compag.2016.03.006
https://doi.org/10.3390/plants10061052
https://doi.org/10.1002/smll.201902189
https://doi.org/10.1016/j.agsy.2019.102646
https://doi.org/10.1002/pld3.197
https://doi.org/10.1002/pld3.197
https://doi.org/10.3389/fpls.2020.00891
https://doi.org/10.1007/s00425-022-03930-2
https://doi.org/10.1007/s00425-022-03930-2
https://doi.org/10.1016/j.agwat.2015.12.024
https://doi.org/10.1038/s41598-017-16217-4
https://doi.org/10.1038/srep04297
https://doi.org/10.3390/hydrology8010039
https://doi.org/10.1111/nph.15307
https://doi.org/10.1016/j.isci.2020.101966
https://doi.org/10.1021/acs.chemrev.1c00525
https://doi.org/10.1111/j.1438-8677.2011.00545.x
https://doi.org/10.1111/j.1438-8677.2011.00545.x
https://doi.org/10.4060/cb1447en


2498 Precision Agriculture (2023) 24:2479–2499

1 3

Fariñas, M. D., Sancho-Knapik, D., Peguero-Pina, J. J., Gil-Pelegrín, E., & Gómez Álvarez-Arenas, T. E. 
(2022). Contact-less, non-resonant and high-frequency ultrasonic technique: towards a universal tool 
for plant leaf study. Computers and Electronics in Agriculture, 199, 107160. https:// doi. org/ 10. 1016/j. 
compag. 2022. 107160

Finco, A., Bentivoglio, D., Chiaraluce, G., Alberi, M., Chiarelli, E., Maino, A., Mantovani, F., Montuschi, 
M., Raptis, K. G. C., Semenza, F., Strati, V., Vurro, F., Marchetti, E., Bettelli, M., Janni, M., Anceschi, 
E., Sportolaro, C., & Bucci, G. (2022). Combining precision viticulture technologies and economic 
indices to sustainable water use management. Water, 14(9), 1493. https:// doi. org/ 10. 3390/ w1409 1493

Fotia, K., Mehmeti, A., Tsirogiannis, I., Nanos, G., Mamolos, A. P., & Malamos, N. (2021). LCA-based 
environmental performance of olive cultivation in northwestern Greece: from rainfed to irrigated 
through conventional and smart crop management practices. Water, 13(14), 1954. https:// doi. org/ 
10. 3390/ w1314 1954

Friedlein, J. T., McLeod, R. R., & Rivnay, J. (2018). Device physics of organic electrochemical transis-
tors. Organic Electronics, 63, 398–414. https:// doi. org/ 10. 1016/j. orgel. 2018. 09. 010.

Gebbers, R., & Adamchuk, V. I. (2010). Precision agriculture and food security. Science, 327(5967), 
828–831. https:// doi. org/ 10. 1126/ scien ce. 11838 99

Gentile, F., Vurro, F., Picelli, F., Bettelli, M., Zappettini, A., & Coppedè, N. (2020). A mathematical 
model of OECTs with variable internal geometry. Sensors and Actuators A: Physical, 304, 111894. 
https:// doi. org/ 10. 1016/j. sna. 2020. 111894.

Gu, Z., Qi, Z., Burghate, R., Yuan, S., Jiao, X., & Xu, J. (2020). Irrigation scheduling approaches and 
applications: a review. Journal of Irrigation and Drainage Engineering, 146(6), 04020007. https:// 
doi. org/ 10. 1061/ (ASCE) IR. 1943- 4774. 00014 64

Jamaludin, D., Abd Aziz, S., Ahmad, D., & Jaafar, H. Z. E. (2015). Impedance analysis of Labisia 
pumila plant water status. Information Processing in Agriculture, 2(3), 161–168. https:// doi. org/ 10. 
1016/j. inpa. 2015. 07. 004

Janni, M., Claudia, C., Federico, B., Sara, P., Filippo, V., Nicola, C., Manuele, B., Davide, D., Loreto, F., 
& Zappettini, A. (2021). Real-time monitoring of arundo donax response to saline stress through 
the application of in vivo sensing technology. Scientific Reports, 11(1), 18598. https:// doi. org/ 10. 
1038/ s41598- 021- 97872-6

Janni, M., Coppede, N., Bettelli, M., Briglia, N., Petrozza, A., Summerer, S., Vurro, F., Danzi, D., Cel-
lini, F., Marmiroli, N., Pignone, D., Iannotta, S., & Zappettini, A. (2019). In vivo phenotyping for 
the early detection of drought stress in tomato. Plant Phenomics. https:// doi. org/ 10. 34133/ 2019/ 
61682 09

Jiang, G. L. (2020). Comparison and application of non-destructive NIR evaluations of seed protein and 
oil content in soybean breeding. Agronomy, 10(1), 77. https:// doi. org/ 10. 3390/ agron omy10 010077.

Jócsák, I., Végvári, G., & Vozáry, E. (2019). Electrical impedance measurement on plants: a review 
with some insights to other fields. Theoretical and Experimental Plant Physiology, 31(3), 359–375. 
https:// doi. org/ 10. 1007/ s40626- 019- 00152-y

Kaiser, H., Sagervanshi, A., & Mühling, K. H. (2022). A method to experimentally clamp leaf water 
content to defined values to assess its effects on apoplastic pH. Plant Methods, 18(1), 72. https:// 
doi. org/ 10. 1186/ s13007- 022- 00905-y.

Kassambara, A., & Mundt, F. (2016) Factoextra: extract and visualize the results of multivariate data 
analyses. https:// CRAN.R- proje ct. org/ packa ge= facto extra r package version 1.0.3.

Kim, M. Y., & Lee, K. H. (2022). Electrochemical sensors for sustainable precision agriculture—a 
review. Frontiers in Chemistry, 10.   Retrieved August 25,   2022 from https:// www. front iersin. org/ 
artic les/ 10. 3389/ fchem. 2022. 848320

Li, R., Lu, Y., Peters, J. M. R., Choat, B., & Lee, A. J. (2020). Non-invasive measurement of leaf water 
content and pressure–volume curves using terahertz radiation. Scientific Reports, 10(1), 21028. 
https:// doi. org/ 10. 1038/ s41598- 020- 78154-z.

Loures, L., Chamizo, A., Ferreira, P., Loures, A., Castanho, R., & Panagopoulos, T. (2020). Assessing 
the effectiveness of precision agriculture management systems in mediterranean small farms. Sus-
tainability, 12(9), 3765. https:// doi. org/ 10. 3390/ su120 93765

Marquez, A. V., McEvoy, N., & Pakdel, A. (2020). Organic electrochemical transistors (OECTs) toward 
flexible and wearable bioelectronics. Molecules, 25(22), 5288. https:// doi. org/ 10. 3390/ molec ules2 
52252 88

Millones-Chanamé, C. E., de Oliveira, A. M. S., de Castro, E. M., & Maluf, W. R. (2019). Inheritance of 
blossom end rot resistance induced by drought stress and of associated stomatal densities in toma-
toes. Euphytica, 215(7), 120. https:// doi. org/ 10. 1007/ s10681- 019- 2444-z.

Mundim, F. M., & Pringle, E. G. (2018). Whole-plant metabolic allocation under water stress. Frontiers 
in Plant Science. https:// doi. org/ 10. 3389/ fpls. 2018. 00852

https://doi.org/10.1016/j.compag.2022.107160
https://doi.org/10.1016/j.compag.2022.107160
https://doi.org/10.3390/w14091493
https://doi.org/10.3390/w13141954
https://doi.org/10.3390/w13141954
https://doi.org/10.1016/j.orgel.2018.09.010
https://doi.org/10.1126/science.1183899
https://doi.org/10.1016/j.sna.2020.111894
https://doi.org/10.1061/(ASCE)IR.1943-4774.0001464
https://doi.org/10.1061/(ASCE)IR.1943-4774.0001464
https://doi.org/10.1016/j.inpa.2015.07.004
https://doi.org/10.1016/j.inpa.2015.07.004
https://doi.org/10.1038/s41598-021-97872-6
https://doi.org/10.1038/s41598-021-97872-6
https://doi.org/10.34133/2019/6168209
https://doi.org/10.34133/2019/6168209
https://doi.org/10.3390/agronomy10010077
https://doi.org/10.1007/s40626-019-00152-y
https://doi.org/10.1186/s13007-022-00905-y
https://doi.org/10.1186/s13007-022-00905-y
https://CRAN.R-project.org/package=factoextra
https://www.frontiersin.org/articles/10.3389/fchem.2022.848320
https://www.frontiersin.org/articles/10.3389/fchem.2022.848320
https://doi.org/10.1038/s41598-020-78154-z
https://doi.org/10.3390/su12093765
https://doi.org/10.3390/molecules25225288
https://doi.org/10.3390/molecules25225288
https://doi.org/10.1007/s10681-019-2444-z
https://doi.org/10.3389/fpls.2018.00852


2499Precision Agriculture (2023) 24:2479–2499 

1 3

Parihar, G., Saha, S., & Giri, L. I. (2021). Application of infrared thermography for irrigation scheduling 
of horticulture plants. Smart Agricultural Technology, 1, 100021. https:// doi. org/ 10. 1016/j. atech. 
2021. 100021.

Polinova, M., Salinas, K., Bonfante, A., & Brook, A. (2019). Irrigation optimization under a limited 
water supply by the integration of modern approaches into traditional water management on the 
cotton fields. Remote Sensing, 11(18), 2127. https:// doi. org/ 10. 3390/ rs111 82127

Poxson, D. J., Karady, M., Gabrielsson, R., Alkattan, A. Y., Gustavsson, A., Doyle, S. M., Robert, S., 
Ljung, K., Grebe, M., Simon, D. T., & Berggren, M. (2017). Regulating plant physiology with 
organic electronics. Proceedings of the National Academy of Sciences of the United States of Amer-
ica, 114(18), 4597–4602. https:// doi. org/ 10. 1073/ pnas. 16177 58114

Ritchie, H., & Roser, M. (2020). Environmental impacts of food production. Our World in Data. https:// 
ourwo rldin data. org/ envir onmen tal- impac ts- of- food. Accessed 25 February 2021.

Sancho-Knapik, D., Peguero-Pina, J. J., Fariñas, M. D., Álvarez-Arenas, T. G., & Gil-Pelegrín, E. (2013). 
Ultrasonic spectroscopy allows a rapid determination of the relative water content at the turgor loss 
point: a comparison with pressure–volume curves in 13 woody species. Tree Physiology, 33(7), 695–
700. https:// doi. org/ 10. 1093/ treep hys/ tpt052

Shafi, U., Mumtaz, R., García-Nieto, J., Hassan, S. A., Zaidi, S. A. R., & Iqbal, N. (2019). Precision agri-
culture techniques and practices: from considerations to applications. Sensors (Basel, Switzerland), 
19(17), 3796. https:// doi. org/ 10. 3390/ s1917 3796

Stavrinidou, E. (2022). Bioelectronics for Plant Interface. In Stavrinidou, E. & Proctor, C. M. (Eds.), Intro-
duction to Bioelectronics (pp: 12-1-12–22). AIP Publishing Books, AIP Publishing LLC. https:// doi. 
org/ 10. 1063/ 97807 35424 470_ 012

Stavrinidou, E., Gabrielsson, R., Gomez, E., Crispin, X., Nilsson, O., Simon, D. T., & Berggren, M. (2015). 
Electronic plants. Science Advances, 1(10), e1501136. https:// doi. org/ 10. 1126/ sciadv. 15011 36.

Stavrinidou, E., Gabrielsson, R., Nilsson, K. P. R., Singh, S. K., Franco-Gonzalez, J. F., Volkov, A. V., Jons-
son, M. P., Grimoldi, A., Elgland, M., Zozoulenko, I. V., Simon, D. T., & Berggren, M. (2017). In vivo 
polymerization and manufacturing of wires and supercapacitors in plants. Proceedings of the National 
Academy of Sciences of the United States of America, 114(11), 2807–2812. https:// doi. org/ 10. 1073/ 
pnas. 16164 56114

Takács, S., Pék, Z., Csányi, D., Daood, H. G., Szuvandzsiev, P., Palotás, G., & Helyes, L. (2020). Influence 
of water stress levels on the yield and lycopene content of tomato. Water, 12(8), 2165. https:// doi. org/ 
10. 3390/ w1208 2165

Tarabella, G., Villani, M., Calestani, D., Mosca, R., Iannotta, S., Zappettini, A., & Coppedè, N. (2012). A 
single cotton fiber organic electrochemical transistor for liquid electrolyte saline sensing. Journal of 
Materials Chemistry, 22(45), 23830. https:// doi. org/ 10. 1039/ c2jm3 4898e.

Vurro, F., Janni, M., Coppedè, N., Gentile, F., Manfredi, R., Bettelli, M., & Zappettini, A. (2019). Develop-
ment of an in vivo sensor to monitor the effects of vapour pressure deficit (VPD) changes to improve 
water productivity in agriculture. Sensors (Basel, Switzerland), 19(21), 4667. https:// doi. org/ 10. 3390/ 
s1921 4667

Wing, I. S., De Cian, E., & Mistry, M. N. (2021). Global vulnerability of crop yields to climate change. 
Journal of Environmental Economics and Management, 109, 102462. https:// doi. org/ 10. 1016/j. jeem. 
2021. 102462.

Wong, C. Y. S., Bambach, N. E., Alsina, M. M., McElrone, A. J., Jones, T., Buckley, T. N., Kustas, W. P., & 
Magney, T. S. (2022). Detecting short-term stress and recovery events in a vineyard using tower-based 
remote sensing of photochemical reflectance index (PRI). Irrigation Science, 40(4), 683–696. https:// 
doi. org/ 10. 1007/ s00271- 022- 00777-z

Yin, H., Cao, Y., Marelli, B., Zeng, X., Mason, A. J., & Cao, C. (2021). Soil sensors and plant wearables for 
smart and precision agriculture. Advanced Materials, 33(20), 2007764. https:// doi. org/ 10. 1002/ adma. 
20200 7764

Yokoyama, G., Yasutake, D., Minami, K., Kimura, K., Marui, A., Yueru, W., Feng, J., Wang, W., Mori, M., 
& Kitano, M. (2021). Evaluation of the physiological significance of leaf wetting by dew as a sup-
plemental water resource in semi-arid crop production. Agricultural Water Management, 255, 106964. 
https:// doi. org/ 10. 1016/j. agwat. 2021. 106964

Zhang, Q., Li, Q., & Zhang, G. (2012). Rapid determination of leaf water content using VIS/NIR spectros-
copy analysis with wavelength selection. Journal of Spectroscopy, 27, 93–105. https:// doi. org/ 10. 1155/ 
2012/ 276795

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.1016/j.atech.2021.100021
https://doi.org/10.1016/j.atech.2021.100021
https://doi.org/10.3390/rs11182127
https://doi.org/10.1073/pnas.1617758114
https://ourworldindata.org/environmental-impacts-of-food
https://ourworldindata.org/environmental-impacts-of-food
https://doi.org/10.1093/treephys/tpt052
https://doi.org/10.3390/s19173796
https://doi.org/10.1063/9780735424470_012
https://doi.org/10.1063/9780735424470_012
https://doi.org/10.1126/sciadv.1501136
https://doi.org/10.1073/pnas.1616456114
https://doi.org/10.1073/pnas.1616456114
https://doi.org/10.3390/w12082165
https://doi.org/10.3390/w12082165
https://doi.org/10.1039/c2jm34898e
https://doi.org/10.3390/s19214667
https://doi.org/10.3390/s19214667
https://doi.org/10.1016/j.jeem.2021.102462
https://doi.org/10.1016/j.jeem.2021.102462
https://doi.org/10.1007/s00271-022-00777-z
https://doi.org/10.1007/s00271-022-00777-z
https://doi.org/10.1002/adma.202007764
https://doi.org/10.1002/adma.202007764
https://doi.org/10.1016/j.agwat.2021.106964
https://doi.org/10.1155/2012/276795
https://doi.org/10.1155/2012/276795

	In vivo sensing to monitor tomato plants in field conditions and optimize crop water management
	Abstract
	Introduction
	Materials and methods
	Plant growth and field conditions
	The bioristor sensors, principles and preparation
	Bioristor preparation
	Bioristor integration in plants and signal acquisition
	Bioristor IoT control unit
	Environmental conditions and soil characteristics
	Ground physiological measurements
	Data analysis and statistics

	Results
	Bioristor monitoring in multisite experiments
	Estimation of potential water saving using the bioristor

	Discussion
	Conclusions
	Anchor 18
	Acknowledgements 
	References




