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Abstract
Plant diseases and pest infections are major factors that undermine the growth of plants 
along with their life cycle. Optical image-based plant disease detection provides an effi-
cient and low cost way for real-time plant growth monitoring and management. In recent 
years, the thriving development of deep learning techniques in a variety of communities 
has validated its great performance in image interpretation and understanding. Existing 
deep learning-based methods for plant disease classification mostly adopt convolutional 
neural networks (CNNs) that have been originally developed for general image classifica-
tion purposes. These CNN architectures consist of a very large volume of training param-
eters, which severely hinders its applicability under scenarios requiring fast and flexible 
deployment on compact devices with limited computation powers. In this paper, an ultra-
lightweight efficient network (ULEN) is proposed targeting image-based plant disease 
and pest infection detection. The proposed network consists of two parts, a deep feature 
extraction module that adopts residual depth-wise convolution and a classification module 
receiving multi-scale features enhanced by a spatial pyramid pooling layer. The network is 
constructed in a very compact design with approximately only 100 000 parameters, which 
greatly favors the demand for a lightweight model for practical needs. Two publicly avail-
able plant datasets collected at the indoor and outdoor environments were tested on two 
compact devices to validate its applicability under different scenarios. Compared with the 
state-of-the-art architectures, the proposed network showed superior performance with the 
least computation complexity and compelling classification accuracy.
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Introduction

According to the estimates by the Food and Agriculture Organization (FAO) (“Scientific 
review of the impact,” 2021), plant pests that ravage economically important crops are 
becoming more destructive due to the impact of climate change, resulting in a huge reduc-
tion of 40% global crop production every year. Moreover, plant diseases cost more than 
220 billion U.S. dollars around the globe. The occurrence and extent of plant diseases and 
pests have significantly damaged the quality of agricultural production and crop yields and 
posed an increasing threat to food security (FAO, 2021). The timely and accurate detection 
of plant diseases and pest infection could provide sufficient and intuitive information to 
support management decisions (e.g., pesticide application), thus playing a key role in agri-
culture (Miller et al., 2009).

Early image recognition-based methods refer to low-level image features (e.g., scale-
invariant feature transform) with machine learning classification algorithms (e.g., random 
forest) to realize plant image classification (Hlaing and Zaw 2017; Rançon et al., 2019). 
These methods have released the plant disease detection task from expertise knowledge 
involvement and have greatly improved the efficiency of plant disease and pest infection 
detection. However, they heavily rely on manually crafted features that are not capable of 
representing disease-dependent features that is helpful for image understanding under com-
plex environments. In recent years, deep learning techniques have been widely utilized in 
a variety of communities including the agriculture community, inspiring some insightful 
deep learning-based applications (Kamilaris & Prenafeta-Boldú, 2018) and continuously 
expanding its potential for precision agriculture.

Among the growing developed architectures in deep learning, convolutional neural net-
works (CNNs) haved raised the most interest in agriculture. Contributing to the concept 
of shared convolutional kernels and stacked convolutional layers and pooling layers, CNN 
can hierarchically extract low and high-level features that are barely encoded by artificially 
designed algorithms, thus achieving a strong feature representation ability. Therefore, 
CNN-based networks are becoming the most commonly used architecture in plant dis-
ease and pest infection classification. Tested on a publicly accessible dataset Plantvillage 
(Hughes & Salathé, 2015), LeNet and GoogLeNet were used to validate the effectiveness 
of stacked CNNs for plant disease image classification (Mohanty et  al., 2016). Another 
initial research also applied LeNet5 architecture with two convolutional layers and three 
fully connected layers for low-resolution maize leaf disease detection (Priyadharshini et al., 
2019). It should be noted that LeNet5 was firstly proposed in 1989 (LeCun et al., 1989). 
A modified CaffeNet architecture with five convolutional and three fully connected layers 
was used for plant disease image classification on a manually collected dataset consist-
ing of fifteen plant disease classes (Sladojevic et al., 2016). Since networks pre-trained on 
large-scale datasets have already gained a strong representation ability, studies on transfer-
ring the pre-trained networks for image-based plant disease detection have been conducted. 
An Xception-based architecture pretrained on the ImageNet (Deng et al., 2009) was trans-
ferred and fine tuned for tomato lead disease classification (Thangaraj et al., 2021). Effi-
cientNet has been proposed for plant disease detection, achieving 99% accuracy on the 
Plantvillage dataset (Atila et al., 2021). Insisting that high-resolution images can help to 
boost classification performance, generative adversarial network was first used to rebuild 
high-resolution images from low-resolution images. Then the VGG16 model was applied 
for crop disease classification (Wen et al., 2020). Comparisons of performance and model 
compactness between AlexNet, VGGNet, Inception, ResNet and MobileNet have been 
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conducted on Plantvillage Dataset. The proposed models were modified based on the four 
architectures and achieved an average precision of 98.6% with a minimum number of train-
ing parameters of 3,370,000 (Hassan et al., 2021). To the best of the authors’ knowledge, 
this is the most compact model proposed for the plant disease and pest infection task. Simi-
larly, Singh et al. (2021) compared the classification performances of VGGNet, Inception, 
DenseNet, MobileNet, Xception and NASNetMobile for disease and pest infection detec-
tion in coconut trees. The experimental results showed that MobileNet achieved the best 
classification accuracy of 82.1%. In the literature, several advanced networks have been 
applied to classify plant disease images. It has been acknowledged that with the network 
going deeper, more representative features can be learned so that the network performance 
can be boosted (Szegedy et  al., 2015). However, the gain in performance can be quite 
minor compared to the huge sacrifice of computational efficiency brought by the exponen-
tially growing volume of parameters.

Precision agriculture has been witnessing the increasing use of artificial intelligence. 
Compared with the traditional expert-involved field observations, drones or UAVs 
equipped with imaging sensors or multi-spectral sensors can realize field observation 
(e.g., pest infection monitoring) with much higher efficiency and competitive accuracy. 
Moreover, facilitated by deep learning techniques, artificial intelligence-based pest infec-
tion detection has shown its great potential for large-area rapid field observation. However, 
transferring the current CNN models for plant disease detection encounters a major chal-
lenge in real scenarios. Specifically, on one hand, those heavy models running on large 
computation resources are costly in both economics and labor for software management 
and hardware maintenance. On the other hand, when utilized for large-area field observa-
tion, plant disease detection from a large number of high-resolution plant images would 
take a very long time. Take UAV-based imaging observation as an example, assuming one 
image is sampled per square meter, fields with hundreds of square kilometer areas have 
hundreds of million images that would take several days for the current models to analyze. 
Such a long analysis time is not acceptable considering rapid disease spread within several 
days. Though the above-mentioned lightweight models such as MobileNet and Xception 
have been proposed for fast-speed image classification, they were intentionally designed to 
deal with natural images (e.g., cars, human faces, and animals) instead of plant leaf images. 
Existing model architectures should be optimized to accelerate model inference speed fur-
ther while maintaining high accuracy on plant images. Accordingly, in this paper, we pro-
pose an ultra-lightweight efficient network (ULEN) aiming to strike an excellent balance 
between detection performance, time efficiency and computation cost, specifically for the 
task of image-based plant disease and pest infection detection.

Materials and methods

Datasets

The publicly available Plantvillage dataset (Hughes and Salathé, 2015) is applied in this 
work for experiments. The dataset consists of 54,306 images covering healthy and diseased 
or pest-infected leaves of 14 plants. Each image is attached with a label pair of plant type 
and disease type. Each plant image set includes at least 1 disease-infected image subset. 
There are a total of 38 classes in the dataset. Figure 1 presents some sample images of 
the dataset. It can be seen from Fig. 1 that image brightness and backgrounds vary in the 
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same disease category, which brings challenges for image classification. Such variability in 
inner-class images enhances model generalizability, which guarantees classification confi-
dence on images taken under different environments (e.g., shooting angles, light exposures, 
light contrasts).

However, it should be noted some imaging variabilities in inter-class images of this 
dataset pose some concerns for practical usage. Specifically, as shown in Fig.  2, grape 
black measles images show specular reflection while grape leaf blight images show lit-
tle specular reflection. Such variability might mislead the network to a short-cut solution 
which is to classify grape images with specular reflections into the black measles category 
and classify those without specular reflections into the leaf blight category. Therefore, it 
should be mentioned that results are to be taken with caution for practical usage and may 
be influenced by unknown sources of variability between classes.

Table 1 lists the 18 plants and the corresponding diseases. Image counts of each sub-
category (i.e., disease type) vary a lot. For example, the category of yellow leaf curl virus 

Fig. 1   Example images of Plantvillage dataset

Fig. 2   Examples of imaging variability across inter-class images. Grape black measles images show specu-
lar reflection while grape leaf blight images show little specular reflection
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Table 1   Statistics of Plantvillage 
dataset

Plant classes Disease classes Num-
ber of 
images

Total 
number of 
images

Apple Healthy 1645 3171
Scab 630
Black rot 621
Cedar apple rust 275

Blueberry Healthy 1502 1502
Cherry Healthy 854 1906

Powdery mildew 1052
Maize Healthy 1162 3852

Gray leaf spot 513
Common rust 1192
Northern leaf blight 985

Tomato Healthy 1591 18 160
Bacterial spot 2127
Early blight 1000
Late blight 1909
Leaf Mold 952
Septoria leaf spot 1771
Spider mites 1676
Target Spot 1404
Tomato mosaic virus 373
Tomato yellow leaf curl virus 5357

Squash Powdery mildew 1835 1835
Strawberry Healthy 456 1565

Leaf scorch 1109
Soybean Healthy 5090 5090
Potato Healthy 152 2152

Early blight 1000
Late blight 1000

Grape Healthy 423 4062
Black rot 1180
Black Measles 1383
Leaf blight 1076

Orange Huanglongbing 5507 5507
Peach Healthy 2297 2657

Bacterial spot 360
Pepper bell Healthy 1478 2475

Bacterial spot 997
Raspberry Healthy 371 371



1841Precision Agriculture (2023) 24:1836–1861	

1 3

disease in tomatoes has 5357 images accounting for 9.86% of the whole dataset. While the 
category of cedar apple rust has 275 images accounting for only 0.5% of the whole dataset.

The Cassava dataset

The Plantvillage dataset is the largest plant disease dataset taken with consistent image 
backgrounds under the indoor environment. However, the Plantvillage dataset fails to pre-
sent field observed plant images in real-world scenarios in two aspects: (1) Mixed back-
grounds. Various backgrounds (e.g., farmlands) usually exist in the images. (2) Occlu-
sion and overlapping of leaves. Because deep learning models tend to focus on the most 
discriminative lesions, mixed backgrounds introduce noise features that may confuse the 
models. The obscured lesions caused by the occlusion and overlapping of leavesbring dif-
ficulty for accurate detection. Therefore, the Cassava leaf disease dataset [Mwebaze et al., 
2019] containing 21,397 images collected in Uganda was used to test model performances 
under real-world scenarios. Most Cassava images in the dataset were taken by farmers in 
their gardens and annotated by experts at National Crops Resources Research Institute 
(NaCRRI) and Makerere Artificial Intelligence Lab. The images were labeled into the four 
most common cassava disease categories and healthy cassava images. The four cassava dis-
ease categories are cassava brown streak disease, cassava mosaic disease, cassava bacterial 
blight, and cassava green mite. As shown in Fig. 3, different Cassava disease images show 
very similar symptoms. Moreover, the mixed image backgrounds, the varying light condi-
tions, and the occlusion of leaves in the images posed new challenges for the Cassava dis-
ease classification task. Same as the Plantvillage dataset, the Cassava dataset was split into 
three subsets with percentages of 70%, 20%, and 10% for training, validation, and test pur-
poses, respectively. All the images were resized into 256 × 256 pixels to fit in model inputs.

It should be noted that the Cassava dataset also sufferd from the category imbalance 
problem as cassavas are more vulnerable to some specific diseases (e.g., cassava mosaic 

Fig. 3   Example images of Cassava diseases
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disease). Table 2 gives the number of each category. The cassava mosaic disease images 
account for the majority of the dataset (61.49%). The cassava brown streak disease, the cas-
sava green mite, and the healthy images account for a similar percentage of the dataset (all 
in about 10%). Cassava bacterial blight has the least amount, which makes the classifica-
tion of this disease more difficult.

Ultra‑lightweight efficient network architecture

The basic backbone structures of VGGNet and AlexNet are both constructed by several 
sequentially connected conv blocks, as shown in Fig.  4a. Though the design of shared 
weights in the convolutional layer decreases the number of network parameters to a cer-
tain amount, network volumes grow rapidly with the network going ‘deeper’. Therefore, 
naively stacking large convolution operations is computationally expensive. Rather than 

Table 2   Statistics of the Cassava 
dataset

Disease classes Number of images

Cassava bacterial blight 1087
Cassava brown streak disease 2189
Cassava green mite 2386
Cassava mosaic disease 13 158
Healthy 2577

Fig. 4   Network architecture of a VGG network, and b Inception network
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going ‘deeper’, the Inception network goes ‘wider’ by putting filters with multiple sizes on 
the same level feature maps as shown in Fig. 4b. It performs convolution on input with 3 
different sizes of filter (1 × 1, 3 × 3, 5 × 5). A 3 × 3 maxpooling layer is also performed in 
the inception module. Outputs of the four operations are concatenated and sent to the next 
inception module. Since existing state-of-the-art classification networks were originally 
constructed for natural images of which details are very fine grained, it is necessary to 
expand the depth and width of networks to extract more high-level information. However, 
image-based plant disease classification is comparatively simpler due to the structured 
texture and limited color representation of plant leaves. Utilizing a very deep network for 
the task encountered the overfitting problem (Shi et al., 2017). Additionally, either stack-
ing more convolutional layers vertically (i.e., going ‘deeper’) or horizontally (i.e., going 
‘wider’) brings more computation burden.

In this work, a high performance while computational efficient network ULEN for 
image-based plant disease and pest infection detection is proposed considering the spe-
cialty of leaf image-based classification task. As shown in Fig. 5, ULEN consists of five 
sequentially stacked blocks. Leaf images with fixed sizes are first input to the first con-
volution block to extract low-level features (e.g., leaf edge features). A basic convolu-
tion block contains a convolutional layer that slides over the feature map horizontally and 
vertically, a pooling layer to reduce spatial dimensions of extracted feature maps, and a 
batch normalization layer to train network faster and more stably by normalizing the layer 
inputs across the batch dimension. Then two max pooling layers are used to reduce the 
spatial dimensions of feature maps. Reduced feature maps are then sequentially fed into 
three residual depth-wise convolution (RDWConv) blocks and a 1 × 1 convolution block 
to further extract high-level features embedded in low-level features. Finally, converted by 
spatial pyramid pooling (SPP), high-level features are flattened and are fed into a linear 
classification to realize image classification. Details of RDWConv and SPP are detailed in 
the following section.

Residual depth‑wise convolution

As shown in Fig. 6 a, a standard convolution layer uses a 3-d filter to extract higher level 
feature maps. By sliding each 3-d filter over each pixel, one single feature map can be 
acquired. Therefore, the total number of trainable parameters of standard convolution is 
calculated as:inputchannels × height × width × outputchannels . For example, given an 
input channel of 16 and output channel of 16 with 3 × 3 filters, the total number of train-
able parameters is 2304. Accordingly, except for the first and last convolutional layer, the 
depth-wise convolution layer in ULEN is introduced. Instead of using a 3-d filter slid-
ing over all input channels, depth-wise convolution uses multiple 2-d filters sliding over 

Fig. 5   Architecture of the proposed ULEN
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each individual channel. For example, as shown in Fig. 6(b), the three channel input fea-
ture maps are firstly split into three independent images, then each image is convolved by 
the corresponding 2-d filter to get the corresponding output. Finally, the computed three 
outputs are stacked together to get the final output. Number of trainable parameters are 
inputchannels × height × width . In this way, given the above scenario, the number of train-
able parameters is dramatically dropped from 2304 to 144, which gains 6× computational 
efficiency improvement.

Depth-wise convolution operates only on a spatial dimension for each individual chan-
nel map. To further improve information exchange across different channels, a 1 × 1 stand-
ard convolution layer is attached after each depth-wise convolution layer. Finally, a basic 
RDWConv block is constructed as shown in Fig.  7a by integrating the design of resid-
ual network (Zhang et al., 2017). By bridging the downstream layers with upstream lay-
ers using skip connections, residual can effectively avoid the vanishing gradients problem. 
In terms of feature map downsampling, the standard max pooling layer and average pool-
ing layer are mostly used and are very efficient with little computational cost. However, it 
directly discards about one third of the embedded information. To downsample the feature 
map while avoiding information loss, the RDWConv block with convolution stride equal to 
2 is further proposed (as shown in Fig. 7b).

Spatial pyramid pooling

After acquiring the final deep features from the last convolutional layer, a linear clas-
sification model is used to categorize deep features. Since the linear classification model 
accepts only 1-d feature inputs, 2-d feature maps need to be converted into 1-d feature 
arrays. A direct way is to reshape features by flattening. However, this way introduces 
too many parameters, which makes it hard for model training. For example, flattening 
a 16 × 16 × 128 feature output will get 32,768 parameters. Another way is to use global 
pooling for each channel map. Therefore, flattening a 16 × 16 × 128 feature output will 
get 128 parameters. Though global pooling can dramatically reduce model sizes, local 
disease-related features distributed in image corners (e.g., rust spots on leaf edges) are 
ignored, thus degrading model performances. Accordingly, SPP for efficient feature flat-
tening in ULEN is introduced. As shown in Fig. 8, instead of operating only one global 

Fig. 6   Depth-wise convolution



1845Precision Agriculture (2023) 24:1836–1861	

1 3

pooling on the whole feature map, SPP utilizes a couple of different output sized pool-
ing operations and combines the results before sending to the linear classifier. On the 
one hand, the sparse local features conveying disease-related information and the global 
features conveying plant-related information can be effectively aggregated. On the other 
hand, model volume can be significantly reduced.

Fig. 7   Residual depth-wise convolution block

Fig. 8   Architecture of spatial pyramid pooling layer
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Experiments

Model training

Experiments of ULEN and four benchmark methods were implemented in PyTorch library. 
Adam optimizer was utilized for model training. Batch size was set to 16. Learning rate was 
initially set to 0.001 for fast model learning in the first 5 epochs and then was decreased to 
0.0001 to slowly converge to its best performance. Tested on the Plantvillage dataset, the 
models converged to a steady performance after 20 epochs. Therefore, training epoch of 
each model was set to 20 for model training. Cross entropy loss (CEL) was used to cal-
culate the gaps between the predicted results and image labels. CEL is defined as follows:

 where yi represents ground truth labels of each image, N represents the number of images 
in each epoch and pyi represents the predicted probability. Model parameters and training 
hypermeters were fine tuned and set to the same on ULEN and four benchmark methods 
for a fair comparison. Generally, the whole dataset was randomly split into three subsets for 
training, validation and test purposes in a certain percentage. Since the Plantvillage data-
set has a severe data imbalance problem, random selection from the whole dataset would 
cause images of small categories excluded from the training dataset. Therefore, data split 
was conducted on each sub-category to make sure each category is included in the three 
datasets.

Performance evaluation

To comprehensively evaluate the performances of ULEN and the other five benchmark 
methods from aspects of classification accuracy and computational efficiency. The adopted 
metrics are introduced in this section. Three classification accuracy metrics are defined as 
follows:

 where TP, FP, TN, and FN represent true positives, false positives, true negatives and false 
negatives, respectively. It should be noted that for the multi-category classification tasks, 
two F1 scores can be utilized: micro F1 score and macro F1 score. Macro F1 is an arith-
metic mean of the per-class F1-scores, while micro F1 firstly computes precision and recall 
on all the samples and then computes the F1 score. Here the macro F1 score was used to 
fairly evaluate model performance on all categories. Additionally, a confusion matrix is 

(1)CEL = −
1

N

N
∑

i=1

yi × log
(

pyi

)

+ (1 − yi)log(1 − pyi )

(2)Precision =
TP

TP + FP

(3)Recall =
TP

TP + FN

(4)F1 =
2 × precision × recall

precision + recall
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introduced for visual comparison of classification accuracy. The elements on the diagonal 
in the confusion matrix represent the correctly classified instances along all categories. The 
elements of the non-diagonal represent the falsely classified instances.

In terms of computational efficiency, three metrics were measured in the experiments: 
Floating point operations (FLOPs), total parameter and total memory usage. Specifically, 
FLOPs was used to describe how many operations (such as add, subtract, multiply, and 
divide) were required to run a single instance of a given model. Total parameter is the sum 
of parameters in all layers of CNNs. Besides the network parameters, during the process of 
backward propagation, the activations and the associated gradients for each neuron needs 
to be saved. Therefore, the total memory usage of each model was further evaluated to test 
their applicability on devices with limited memory spaces.

Computational efficiency comparison on compact devices

To further evaluate model performance in practical scenarios, especially on devices with 
lower computation ability, the proposed ULEN and the other benchmark methods were 
tested on two compact devices. As shown in Fig. 9, a mini-PC and a Raspberry Pi4 that 
were used in the experiments are of very compact size. The mini-PC has an ultra-low volt-
age dual-core CPU (Intel Pentium 4405U, 2.1 GHz) with 8GB of memory. The Raspberry 
Pi4 has an even lower computational ability with a 1.8 GHz CPU (Broadcom BCM2711) 
with 4GB of memory. Both devices are at affordable prices (The mini-PC costs about 150 
USD and the Raspberry Pi4 cost about 50 USD) and are easily deployed in any situation 
with little maintenance costs. It should be noted that since Raspberry Pi4 has a very lim-
ited model inference ability, an Intel neural compute stick was integrated with it to dra-
matically accelerate its inference time at an acceptable cost (an Intel neural compute stick 
2 costs about 150 USD). Mini-PC runs on Ubuntu 22 and Raspberry Pi 4 runs on Rasp-
berry Pi OS. Python-based deep learning toolkits Pytorch and OpenVINO were installed 
on the two devices, respectively. Compared with large PCs with high-performance graphic 

Fig. 9   Two compact devices used for performance testing. a Mini-PC. b Raspberry Pi4 is equipped with an 
intel neural compute stick2
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computation cards, the two devices have dominant superiorities over accessibility, portabil-
ity, reliability and maintainability, which are very favorable for practical scenarios.

Results and discussion

Training curves

To monitor and compare the converge speeds and the stabilities of CNNs during the train-
ing phase, training loss curves and F1 score curves of the five models are shown in Figs. 10 
and 11. It can be observed from Fig. 10 that all the models achieve high F1 scores on the 
validation dataset from 0.91 to 0.99. MobileNet_V2, Xception, ShuffleNet_V2, and ULEN 
quickly reach their peak performances and remain stable on the validation dataset after 6 
training iterations. VGG16 converged at the lowest speed. Similarly, in Fig.  11, training 
losses of MobileNet_V2, Xception, ShuffleNet_V2, and ULEN reached their lowest val-
ues quickly after 6 training iterations, and difficult to further improve model performance. 
However, the loss curve in VGG16 fluctuated widely even when approaching 20 training 
epochs, which implies the instability of VGG16.

Classification accuracy evaluation

Table 3 shows the classification performance of the proposed method compared to the 
other five benchmark methods. It can be seen from the table that all models achieved 
satisfactory results, with F1 scores above 0.90. Specifically, Xception outperformed 
all the other methods with the highest precision (99.23%), recall (99%), and F1 score 
(0.991). Compared with Xception, ULEN achieved the second-best classification perfor-
mance with slightly decreased precision (1.1%), recall (1.51%), and F1 score (0.0134). 

Fig. 10   F1 score curves of a VGG16, b MobileNet_V2, c Xception, d ShuffleNet_V2, e ULEN
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MobileNet_v2 achieved a very close performance compared to ULEN, with a minor 
performance drop on the F1 score (0.9767 compared to 0.9776). ShuffleNet_v2 ranked 
fourth in terms of classification accuracy, with precision (0.9721), recall (0.9681), and 
F1 score (0.9698). VGG16 performed the worst among all methods with significantly 
reduced precision (6.34% compared to ULEN), recall (5.48% compared to ULEN) and 
F1 score (0.0599).

To visually check the classification results, confusion matrices of results predicted 
by the five methods are shown in Figs. 12, 13, 14, 15 and 16. Orange grids on the diag-
onal of the confusion matrix represent correctly classified instances. Blue and green 
grids on the non-diagonal of the confusion matrix represent the number of misclassified 
instances. The darker the color, the more misclassified the instances were. The X-axis 
represents predicted categories. The Y-axis represents true labels. All the axis labels are 
in short abbreviations considering the limited figure space. As seen in Fig. 12 and 22 
Maize_GLS (Gray leaf spot) images were misclassified as Maize_NLB (Northern leaf 
blight) categories, which dominates the bias of results produced by VGG16. Compared 
with other plant diseases, tomato diseases are more easily misclassified. Specifically, 

Fig. 11   Loss curves of a VGG16, b MobileNet_V2, c Xception, d ShuffleNet_V2, e ULEN

Table 3   Classification 
performances of ULEN and 
four benchmark models on the 
Plantvillage dataset

Bold values indicate best performance

Deep learning model Precision Recall F1 score

VGG16 0.9179 0.9201 0.9177
MobileNet_v2 0.9762 0.9775 0.9767
Xception 0.9923 0.9900 0.9910
ShuffleNet_v2 0.9721 0.9681 0.9698
ULEN 0.9813 0.9749 0.9776
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10 Tomato_EB (Early blight) images were misclassified as Tomato_SLS (Septoria leaf 
spot) disease. 10 Tomato_TS (Target spot) were misclassified as Tomato_SM (Spider 
mites) disease. Similar classification biases among tomato diseases can also be observed 
in Figs. 13, 14, 15 and 16. 

The top 3 misclassified categories are presented in Figs. 17, 18 and 19 to further detail 
the classification biases. Specifically, Figs. 17 and 18 show results of similar diseases on 
the same plants. Figure 19 shows examples of confused predictions among different plant 
species. As shown in Fig. 17, the four tomato late blight images on the right side are falsely 
classified into the tomato early blight category. Tomato leaves that are infected by early 
blight and late blight diseases both show symptoms of dark irregular-shaped lesions. The 
highly similar leaf textures and colors between the two tomato diseases may confuse the 
current deep learning models.

Figure  18 shows some examples of confused classified images regarding Maize dis-
eases. As shown in the figure, maize leaves infected by the gray leaf spot disease have small 
oval lesions with light-tan color. With the development of the disease, lesions expand into 
long, narrow, rectangular lesions parallel to the leaf veins. Meanwhile, the maize northern 

Fig. 12   Confusion matrix of results by VGG16
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leaf blight disease also shows cigar or elliptical-shaped lesions that are longitudinally dis-
tributed with leaf veins, which makes the maize gray leaf spot disease easily confused with 
the maize northern leaf blight disease.

Figure 19 presents examples of confused predictions across different plant species. The 
four potato late blight images on the left side of the figure show huge different symptoms 
from each other. For example, the top left image shows a very small oval lesion on the 
leaf while the bottom left one shows a large rotten lesion in irregular shapes. The different 
symptoms can not only be observed from the leaf textures, but also from the leaf colors. 
Such discrepancies make deep learning model hard to learn a uniform representation to 
successfully discriminate the true potato late blight disease. To conclude, though deep 
learning models show very high precisions on most plant disease cases, their performance 
is still hindered by the limited reception field neglecting the contextual information. Expert 
knowledge needs to be incorporated to fully discard prediction biases.

The Cassava dataset is more challenging compared to the Plantvillage dataset due to 
the complex image backgrounds and the varying imaging qualities, which results in dra-
matic performance drops for ULEN and the other four benchmark methods. As shown in 

Fig. 13   Confusion matrix of results by MobileNet_v2
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Table 4, Xception again achieved the best performance while the precision, recall, and F1 
score were very low (i.e., 68.61%, 68.6%, and 0.6843). VGG16 achieved a similar perfor-
mance with Xception with an F1 score of 0.6507. ULEN achieved an F1 score of 0.5337, 
outperforming MobileNet_v2 and ShuffleNet_v2 with 0.0049 and 0.0582 improvement, 
respectively.

Computation efficiency evaluation

The computation efficiency of the proposed architecture with four benchmark methods 
were compared from three aspects: Total parameter, total memory and floating-point oper-
ations per second (FLOPs). As shown in Table 5, ULEN has significantly fewer param-
eters compared to the other four architectures. The total parameters of ULEN are 111,758, 
which is nearly 1484 times lighter than VGG16, 200 times lighter than Xception, 20 times 
lighter than MbileNet_v2, and 3.4 times lighter than ShuffleNet_v2. In terms of total mem-
ory, ULEN occupies the least memory space which is 6.09 Mb. Comparatively, the total 
memory usage of the state-of-the-art lightweight network ShuffleNet_v2 is two times larger 

Fig. 14   Confusion matrix of results by Xception
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than the proposed architecture ULEN. Though Xception performs slightly better than 
ULEN in terms of classification accuracy, it requires a large memory usage of 190.76 Mb, 
which is nearly 13 times larger than ULEN. Finally, the FLOPS of the proposed method 
with four benchmark methods were compared. VGG16 has the largest number of FLOPs 
(i.e., 20.27 GFLOPs) due to its tremendous number of parameters. Xception reduces the 
FLOPs to 6.0 GFLOPs while reaching the highest classification accuracy. MobileNet_v2 
and ShuffleNet_v2 significantly reduce the needed Flops from gigaFlops level to mega-
Flops level. In the proposed architecture, ULEN has only 21.36 MFlops that run 2.6 times 
faster than ShuffleNet_v2 and nearly 380 times faster than Xception. From all measure-
ments including total parameters, total memory, and Flops, ULEN dominates all the other 
methods. With only 111,758 network parameters and a memory requirement of only 6 Mb, 
ULEN has great feasibility for mobile platform deployment. The small computation power 
requirement (i.e., 21.36 MFlops) makes the inferencing of ULEN at a very fast speed, even 
running on a lightweight mobile platform.

Table 5 shows different model performances in terms of network structures. To further 
understand model performance in real scenarios, the proposed ULEN and the other four 

Fig. 15   Confusion matrix of results by ShuffleNet_v2
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benchmark methods were tested on a Mini-PC and a Raspberry Pi4 to quantitatively eval-
uate their time efficiencies and model weight sizes. Since the process of model training 
relies on huge computation resources, it is typically performed on high specification PCs 
with high-performance GPUs. As for experiments on Mini-PC, the time required for model 
training on one image concerning each network was tested. Then per-image inference time 
of each model was tested. Moreover, to clearly show the model complexity of each net-
work, model weight sizes are presented. As shown in Table 6, ULEN outrun all the other 
four methods with the least training time (0.101s), the least inference time (0.037s) and the 
smallest model weight size (0.5 MB). Compared to Xception which achieved the highest 
classification precision, ULEN run 30 times and 18 times faster than it with a 174 times 
smaller model weight size. The time efficiency gap between ULEN and the state-of-the-art 
model (i.e., ShuffleNet_v2) is around 2 to 3 times on a Mini-PC.

Table 7 shows results on Raspberry Pi4. Model load time instead of model train time 
was tested on Raspberry Pi4 since it does not support model training. Model inference 
time and weight size are also presented in Table 7. Since OpenVINO runs a different 
model weight format (i.e., .onnx format) from Pytorch (i.e., .pth format), model weight 

Fig. 16   Confusion matrix of results by ULEN
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sizes on Raspberry Pi4 differ from those on Mini-PC. However, model load time among 
different networks differs a lot on Raspberry Pi4 than on Mini-PC due to the lower CPU. 
As shown in Table 7, VGG16 failed to load its weight file on Raspberry Pi4 consider-
ing its huge model weight size (i.e., 632 MB). Xception takes 24s to load model weight. 
Enhanced by Intel neural compute stick2, inference times of all models were acceler-
ated while the gain on ULEN was marginal (i.e., 0.005s). State-of-the-art lightweight 

Fig. 17   The images on the left are truly predicted tomato early blight disease. The images on the right are 
falsely predicted

Fig. 18   The images on the left are truly predicted Maize gray leaf spot disease. The images on the right are 
falsely predicted
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model ShuffleNet_v2 showed similar time efficiency on model load time and inference 
time. But its weight size is more than 3 times bigger than ULEN. The result suggests 
that the gain in inference efficiency gradually converged to a low level with the increase 
of the computation ability. In other words, time efficiency gaps between heavy-weight 
models and light-weight models were enlarged on compact devices, which highlights 

Fig. 19   The images on the left are truly predicted Potato late blight disease. The images on the right are 
falsely predicted

Table 4   Classification 
performances of ULEN and 
four benchmark models on the 
Cassava dataset

Bold values indicate best performance

Deep learning model Precision Recall F1 score

VGG16 0.6847 0.6468 0.6507
MobileNet_v2 0.5439 0.5292 0. 5288
Xception 0.6861 0.6860 0.6843
ShuffleNet_v2 0.5010 0.4649 0.4755
ULEN 0.5497 0.5322 0.5337

Table 5   Computation efficiency of ULEN and four benchmark models. 1 M FLOPs represents 1000,000 
FLOPs. 1 GFlops represents 1000,000,000 FLOPs

Bold values indicate best performance

Deep learning model Total parameter Total memory Flops

VGG16 165,873,510 210.22 Mb 20.27 GFlops
Xception 22,855,952 190.76 Mb 6.0 GFlops
MobileNet_v2 2,272,550 96.97 Mb 416.64 MFlops
ShuffleNet_v2 380,742 14.67 Mb 55.71 MFlops
ULEN 111,758 6.09 Mb 21.36 MFlops
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the necessity of ultra-light models in practical scenarios which require low computation 
resources.

Discussion on model performances in different scenarios

For images in the Plantvillage dataset, plant leaf photos were taken under indoor envi-
ronments with identical backgrounds, and the leaves do not overlap. The main challenge 
lies in the discrimination of disease symptom features across different plants. Since 
the leaves are placed at the center of images, it is easier for conventional convolutional 
layers to successfully capture the deep features of different diseases even though the 
reception field is limited. Therefore, for models using single convolutional kernels (e.g., 
VGG16) or multiple convolutional kernels (e.g., Xception), satisfying performances 
were achieved in the high-quality Plantvillage dataset. For images taken with mixed 
backgrounds and occlusion of leaves in the Cassava dataset, performance gaps of dif-
ferent models were enlarged. The results on the Cassava dataset proved the superior-
ity of heavy models for plant disease classification tasks. Specifically, Xception used 
multiple convolutional kernels with various reception fields to capture both local and 
global information, such that the detailed leaf features in the image center position and 
the background features in the image edge position are considered for disease classifica-
tion. Therefore, Xception can effectively overcome the problem of mixed backgrounds 
and occlusion of leaves. Interestingly, VGG16 with the simplest network architecture 
achieved competing performances with Xception without advanced module, which 
demonstrates that heavy models are naturally more robust to complex backgrounds and 
varying imaging conditions than light models. The phenomenon is consistent with the 
work demonstrating that large models generalize better than small models [Brutzkus 

Table 6   Computation efficiency 
of ULEN and four benchmark 
models on Mini-PC

Bold values indicate best performance

Deep learning model Train time 
(seconds)

Inference time 
(seconds)

Weight 
size 
(MB)

VGG16 10.144 1.555 632
Xception 3.102 0.671 87
MobileNet_v2 0.680 0.137 8.9
ShuffleNet_v2 0.277 0.079 1.6
ULEN 0.101 0.037 0.5

Table 7   Performance evaluation 
on Raspberry Pi4 with Intel 
neural compute stick 2

Bold values indicate best performance

Deep learning model Model load 
time (sec)

Inference time 
(sec)

Weight 
size 
(MB)

VGG16 – – 632
Xception 24.309 0.148 87
MobileNet_v2 4.501 0.055 8.6
ShuffleNet_v2 2.770 0.034 1.5
ULEN 2.232 0.032 0.4
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et al., 2019]. However, their high classification accuracies were achieved at the expense 
of high computing loadings, which makes them hardly deployed on compact devices. 
A balance between classification accuracy and computation cost needs to be compro-
mised for practical needs in real-world field observation scenarios. Following the idea 
of increasing the observation field, ULEN proposed to incorporate spatial pyramid pool-
ing layers with depth-wise convolutional layers in the feature extraction network instead 
of using multiple convolutional kernels to avoid introducing more network parameters. 
As discussed in "Classification accuracy evaluation", ULEN performed inferior to the 
best classification performance model Xception with an F1 score drop of 0.15, but the 
model size is 200 times lighter than Xception. Compared with the lightest benchmark 
model (i.e., ShuffleNet_v2), ULEN beats it in terms of both classification accuracy and 
computation efficiency.

Discussion on the potential of ULEN for plant disease detection

This work focuses on an ultra-lightweight network targeting plant disease classification. 
This section further discusses the potential of ULEN for another highly-related task: 
plant disease detection. The task of plant disease detection requires not only distinguish-
ing the type of plant disease but also specifying the exact position of the diseased part 
in the image. Practically, the two tasks are applied for different purposes from differ-
ent perspectives. Plant disease detection fits the purpose of precise disease detection in 
object-level granularity while the image-level plant disease classification is more suit-
able for large-area rapid disease detection which does not require object-level informa-
tion. Though the proposed ULEN cannot be directly applied for object-level detection, 
the two tasks share a core module for feature extraction, which suggests the proposed 
structure can be easily transferred to object detection-targeted networks. As shown in 
Fig. 20, typical plant disease detection networks (RCNN [Girshick et al., 2014], Mask-
RCNN [Girshick 2015], Fast-RCNN [He et al., 2017]) consist of two streams that share 
the same feature extractor module for saving computation cost purposes. The first stream 
is same as the conventional image classification structure, which means the proposed 
ULEN structure can be directly transferred to this stream to accelerate image classifica-
tion speed. The second stream re-utilizes the feature extractor in ULEN. Considering 

Fig. 20    A ULEN-modified object detection network for plant disease detection
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the feature extractor module consumes the most computation during model training and 
inference, adopting ULEN for conventional plant disease detection architectures can 
promisingly accelerate its training and inference speed.

Conclusion

In this paper, a novel ultra-lightweight efficient network for image-based plant disease and 
pest infection detection is proposed. The proposed architecture consists of two parts to 
realize plant disease-related feature extraction and deep feature classification, by adopting 
residual depth-wise convolution and spatial pyramid pooling, respectively. A comprehen-
sive comparison experiment validates the superior lightweight advantage of the proposed 
architecture over other state-of-the-art architectures with a slight compromise on classifica-
tion accuracy. The architecture has shown a comparable classification accuracy to effec-
tively detect plant diseases and pest infections with at least 200 times fewer parameters 
compared to the most accurate architecture and outperforms the state-of-the-art lightweight 
architecture with more than 3 times fewer parameters. Such lightweight design signifi-
cantly reduces the computation power consumption of the network, which enables it to be 
trained on low computation power platforms or even without GPUs, thereby facilitating an 
environmental-friendly deployment of plant disease and pest infection detection model in 
practical scenarios. The proposed architecture could easily be extended to other plant (e.g., 
tea, tobacco) disease and pest infection detection tasks with minor adjustments.
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