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Abstract
This paper investigates the Maximum Acquisition Values (MAVs) of weeding robots and 
their determinants in both organic and conventional sugar beet farming in Germany. The 
MAV is defined in this paper as the price of the weeding robot that renders the same 
net profit as the current weeding methods. For our analysis, a Monte Carlo simulation 
approach is used, combined with empirical data and data collected from weeding robot 
companies. The results show that the MAVs of mechanical weeding robots for organic 
farming are substantially higher than that of spot spraying robots for conventional farm-
ing. Technology attributes are more influential than labour cost in determining the MAVs 
of weeding robots: in organic farming, technology attributes such as area capacity and 
weeding efficiency impact the MAVs of mechanical weeding robots the most; in con-
ventional farming, supervision intensity and the robot’s ability to save herbicides are the 
most influential factors. The wage rate of unskilled labour, relevant for manual weeding, 
plays a more important role in determining the MAVs than that of skilled labour, relevant 
for supervision of the robot. This implies that a shortage of seasonal workers and hence 
increases in the wage of low-skilled labour could be important drivers of the adoption of 
mechanical weeding robots. Plot characteristics such as plot size and mechanisation level 
only have limited impacts on the MAVs.

Keywords  Weeding robot · Labour · Technology adoption · Supervision · Investment

Introduction

Weed control is a key activity for both organic and conventional farming systems. In organic 
farming, manual weeding is labour-intensive and increasingly expensive in the European 
Union due to the shortage of workforce in the agricultural sector (Williams & Horodnic, 
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2018), which is amplified by the Covid-19 pandemic and the recent war in Ukraine (Bochtis 
et al., 2020; Dahm, 2022). In conventional farming, chemical weeding methods are effec-
tive, but they are usually costly, can create herbicide resistance problems and cause adverse 
environmental impacts. Thus, the Farm to Fork Strategy of the European Green Deal sets 
a goal of reducing chemical pesticide use by 50% by 2030 (European Commission, 2022; 
Montanarella and Panagos, 2021). In addition, farmers face regulatory uncertainties about 
the future availability of herbicides (see e.g. Stokstad, 2017). Cost-effective and environ-
mentally friendly weeding methods are urgently needed to ensure food security and the 
sustainability of agriculture in the context of a growing world population (MacLaren et al., 
2020).

Autonomous weeding robots have great potential to overcome the challenge of agricul-
tural labour shortage and reduce the negative environmental impacts of agricultural pro-
duction (Khanna et al., 2022; Lowenberg-DeBoer et al., 2021b; Gallardo & Sauer, 2018). 
Combining the recent advances in information and communications technology, robotics 
and artificial intelligence, autonomous weeding robots can distinguish weeds from crops 
and precisely treat the targeted weeds at the individual plant level (Bawden et al., 2017). 
Currently, there are many types of weeding robots that are commercialised or in devel-
opment such as GPS-based mechanical weeding robots (e.g. FD20 of FarmDroid, 2022), 
vision-based mechanical weeding robots (e.g. Dino of Naïo Technologies, 2022), vision-
based selective spot spraying robots (e.g. AVO of EcoRobotix, 2022), and vision-based 
thermal weed control with laser (e.g. LaserWeeder of Carbon Robotics, 2022).

Despite the rapid advancement in the engineering of agricultural robotics, the economic 
analysis of agricultural robots has lagged due to their limited adoption and data availability 
from farm trials (Lowenberg-DeBoer et al., 2020; Spykman et al., 2021). In the review of 
Lowenberg-DeBoer et al. (2020), only 18 studies that include economic analyses of agri-
cultural automation and robotics are identified. However, economic analyses are highly rel-
evant for farmers’ adoption decisions, technology providers’ machine design (Shockley et 
al., 2019), and policymakers’ strategies to promote adoption and tackle the uncertainties 
in the labour market. Therefore, this paper contributes in this regard by conducting a cost-
based investment analysis of weeding robots.

The aim of this paper is to investigate the Maximum Acquisition Values (MAV) (Shock-
ley et al., 2019; Sørensen et al., 2005) of weeding robots and their determinants in both 
organic and conventional sugar beet farming in Germany. Following Shockley et al. 
(2019) and Sørensen et al. (2005), the MAV of a weeding robot is defined here as the price 
of the robot that renders the same net profit as the current weeding methods. Specifically, 
this paper will (1) evaluate the MAVs of weeding robots in both organic and conventional 
sugar beet farming in Germany; (2) compare the importance of technology attributes and 
labour cost in determining the MAVs of weeding robots; and (3) examine the impact of 
plot characteristics on the MAVs of weeding robots. Accordingly, this paper employs a 
Monte Carlo simulation based on farm planning data extracted from the KTBL (2020) (In 
German: Kuratorium für Technik und Bauwesen in der Landwirtschaft e.V.; In English: the 
Association for Technology and Structures in Agriculture) database. To define the ranges 
of the robot characteristics for the Monte Carlo simulation, relevant information about the 
characteristics of currently available robots was collected through personal interviews with 
leading weeding robot companies, information on their homepages, and existing literature. 
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For the sake of simplicity, this paper focuses on sugar beets since there are many weeding 
robots already available that support the cultivation of sugar beets (Ducksize, 2022).

This paper is organised as follows. It first reviews the economic studies of agricultural 
robots, especially weeding robots, in the existing literature. Then, the KTBL dataset and the 
method for calculating the MAVs are introduced. Afterwards, the results are analysed and 
discussed. The last section concludes the paper and points out its limitations and the direc-
tions for future research.

Literature review

In this section, studies about mechanical weeding and spot spraying robots were firstly 
summarised, then those on whole-farm autonomous machinery. Some studies that only indi-
rectly investigate the economics of agricultural robots but provide important insights are 
also reviewed.

One of the earliest economic studies of mechanical weeding robots was conducted by 
Sørensen et al. (2005). Their intra-row mechanical weeding robot was based on a small 
autonomous vehicle with vision systems and active tools for weed removal. Their result 
showed that mechanical weeding robots could reduce the labour use by 85% in organic 
sugar beet farming and by 60% for organic carrot production in case of 100% weeding 
efficiency (i.e. the percentage of weed removed). With a 75% weeding efficiency, the labour 
cost could be reduced by around 50%. They also estimated the MAV of a weeding robot: 
A farmer could pay up to €110,000 for the weeding robot in case of high weeding intensity 
and high utilisation level of the robot (300 operation hours per year). With a low weeding 
intensity and low utilisation level (180 operation hours per year), the MAV was less than 
€40,000. Pérez-Ruíz et al. (2014) evaluated the labour-saving effect of an intra-row mechan-
ical weeding co-robot on an experimental tomato plot at the University of California. In the 
cooperation of the co-robot and a human, the human provided visual crop detection capa-
bility and manually located the hoes in between row crops, while the co-robot took on the 
drudgery of repetitive hoe movement. The result showed that using the co-robotic system 
replaced nearly 60% of hand hoeing labour for intra-row weed control.

Turning to spot spraying robots, Pedersen et al. (2006) compared robotic weeding based 
on a micro spraying system with a conventional sprayer for sugar beet farming in Denmark. 
This system could weed 0.4 ha/h, and it was assumed to save herbicide use by 90%. Their 
economic feasibility assessment showed that robotic weeding was more profitable than con-
ventional systems: The robotic system could reduce operating costs by up to 24%. They also 
estimated an initial cost of nearly €65,000 for such a weeding robot. Pedersen et al. (2008) 
extended the study and estimated the costs of a similar robotic weeding system for sugar 
beet farming in Denmark, the US, the UK and Greece. These countries differ in farm size 
and labour cost, as well as technical parameters of the robotic weeding system. The results 
indicated that the robotic weeder had a cost advantage in all study regions except Greece, 
where the wage rate of unskilled labour was relatively lower than in the other three countries 
and the total treated area was also smaller.

There are also studies on the economics of autonomous machinery for the whole farming 
system. Shockley et al. (2019) used whole-farm mixed-integer programming considering 
the entire farming system to compare the net returns of using conventional and autonomous 
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machinery (including tractor, planter, sprayer, and fertiliser applicator), guided by intel-
ligent controls, for corn and soybean production in Kentucky, USA. They investigated the 
economic feasibility and break-even investment price of intelligent controls (not including 
the machinery). For an 850 ha grain farm, the break-even investment price ranged from 
around $26,000 up to $160,000, depending on the degree of input reduction and yield 
increasing effect. Their sensitivity analysis on farm size showed that without considering 
input saving or yield increasing effect, farm size only had a limited impact on the break-even 
investment price. However, farm size impacted the break-even investment price dramati-
cally when input saving and yield-increasing effects were considered. The study is extended 
by Shockley et al. (2021). They examined the farm-level implications of on-site supervisory 
regulations and a speed restriction. These regulations reduced the profitability of autono-
mous machinery, and in some scenarios, autonomous machines were no longer an economi-
cally viable alternative to conventional machinery.

Lowenberg-DeBoer et al. (2021a) went beyond the economic analysis of Shockley et 
al. (2019) showing it is technically possible to use Global Navigation Satellite Systems 
and drone autopilot software to retrofit conventional farm equipment to autonomous opera-
tion. They used data from the Hands Free Hectare (HFH) project on a grain-oilseed farm 
in the UK to estimate the whole farm profitability of an autonomous cropping system. The 
study showed that arable crop production with autonomous equipment was economically 
feasible. Although autonomous farms had no substantial improvement in gross margins, 
they had notably higher returns to operator labour, indicating autonomous farming is more 
beneficial for production systems that require more labour and field operations. The study 
suggests that using smaller equipment more intensively can decrease equipment investment 
costs. This also hints at the potential of small robots in utilising small and irregularly shaped 
farming plots. Lowenberg-DeBoer et al. (2021b) investigated the impact of supervision time 
of autonomous equipment and farm size on the costs of wheat production in the UK based 
on the HFH project. The results showed that for a farm of 66 ha, when a 100% supervision 
time was required, using autonomous equipment had no cost advantage compared to using 
conventional farming equipment. When more supervision time was required, smaller farms 
tended to benefit less from autonomous equipment than bigger farms.

Studies that do not directly investigate the profitability of agricultural robots neverthe-
less provide some important insights. De Witte (2019) calculated the operating costs of 
large and small machine combinations for grain harvesting and tillage using mainly farm 
planning data. The study found small machinery for tillage was 7% cheaper than using large 
machinery if labour costs were not considered, but small machinery got more expensive 
than the latter when considering labour costs. For harvesting, using large machinery had an 
economic advantage independent of including labour costs or not. Thus, it is reasoned that 
small autonomous machines can become cost-competitive for less capital-intensive pro-
cesses like tillage and seeding. Interviews with AgTech startups conducted by Rübcke von 
Veltheim et al. (2020) reveal the expectation that field crop robots would first be imple-
mented in specialty crops and organic farming as the economic case for conventional farm-
ing is not yet strong enough. They also predicted that farms with larger fields would adopt 
field crop robots sooner than farms with small fields, irrespective of total acreage, due to 
logistic costs. Rübcke von Veltheim et al. (2022) further investigated the behavioural inten-
tion of German farmers with respect to their future adoption of autonomous field robots. 
It is found that farmers’ expected performance and trust in technology had a significant 
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positive impact on their intention to adopt autonomous field robots. They suggested that 
policymakers should create a stable legal situation for autonomous systems to promote the 
adoption of field robots. Spykman et al. (2021) investigated farmers’ attitudes towards field 
crop robots in Bavaria, Germany. The study showed larger farms focus more on the eco-
nomic advantages of robots and prefer large autonomous tractors. In contrast, small-scale 
or organic farms consider the environmental impacts of robots relatively more important 
and favour small robots. Organic farming also positively correlates with the intent to invest 
in field robots. To the authors’ knowledge, quantitative economic analyses explaining these 
attitudinal results do not yet exist in the current literature.

Based on the literature review above, the following research gaps are identified: (1) no 
studies have compared the MAVs of weeding robots in organic farming with conventional 
farming; (2) no studies have compared the importance of different technology attributes, 
labour cost, and plot characteristics in determining the MAVs of weeding robots; and (3) 
no studies so far have investigated the economic implications of weeding robot for German 
sugar beet farms. Given that filling those gaps will provide relevant information for business 
strategies and the design of policy measures, this paper aims to investigate the MAVs of 
weeding robots and their determinants in German sugar beet farming of both conventional 
and organic farming systems.

Data and method

This section first describes the KTBL dataset, the baseline scenario with current weeding 
methods (KTBL, 2020), and the robot scenario with weeding robots. Afterwards, the calcu-
lation of MAVs is presented based on the two scenarios.

The KTBL database and the baseline scenario

The KTBL database provides detailed farm planning data for various farm branches such 
as arable, livestock and horticultural production in Germany. This extensive data source 
mainly serves as a basis for planning calculations and business assessments on German 
farms, but it is also regularly used for policy assessments, research and education (Heinrichs 
et al., 2021). For arable farming, the dataset provides information on crops including yields, 
revenues, and costs of all individual operations (e.g. seeding, weeding, harvesting). For 
each operation, labour requirements, machinery costs, and the costs of contractor services 
are provided. It also includes different types of costs such as variable costs (variable labour 
costs and variable machine costs), fixed costs (fixed labour and fixed machine costs), and 
direct costs (e.g. fertiliser and herbicide, etc.).

Note that all data on costs and revenues are provided on a per ha basis instead of per 
farm. Costs and revenue per ha differ from plot to plot. The KTBL database differentiates 
plots by plot size, mechanisation level (indicating power of the tractor’s engine), farm-plot 
distance, and yield level. Data on sugar beet production in both organic and conventional 
farming systems were extracted. For simplicity, this paper only varies plot size and mecha-
nisation level and fixes other plot characteristics. Plot size is chosen because the average 
cost of setting up a robot for a field depends on the plot size assuming the robot only needs 
to be set up once per field. The mechanisation level represents the existing technology, thus 
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determining the profit level of the plot. Other plot characteristics are fixed: The farm-plot 
distance is fixed at 2 km (default assumption used in the KTBL database (KTBL, 2022)), 
and the yield is fixed at a medium level. Plot size is a discrete variable including {1, 2, 5, 10, 
20, 40, 80} ha, and the mechanisation level is also discrete including {45, 67, 83, 102, 120, 
200, 230} kW. In total, there are 49 combinations (7 plot sizes × 7 mechanisation levels) of 
different plot characteristics for organic and conventional farming, respectively.

A plot of size of 10 ha and mechanisation level of 102 kW in organic farming is used to 
illustrate the dataset: costs of individual operations (Table 1) and revenue and cost structure 
(Table 2). Table 1 shows the costs of individual operations on a sugar beet plot (not for all 
farm activities) during one year. The first two columns tell when and what individual opera-
tions are implemented (with what type of machinery). The column “Time” provides labour 
requirements (in hours) of each operation per ha during the season. The next five columns 
present the machinery costs per ha of each operation: depreciation, interest (for equity capi-
tal and borrowed capital for financing the machinery, see KTBL (2019) for details), other 
costs, maintenance, operating materials (diesel, gasoline, electricity, etc.). The last column 
shows the service costs per ha. Note that Table 1 only contains costs of labour, machinery 
and service but does not include the costs of direct farming inputs (e.g. seeds, manure, lime, 
hail insurance). For example, the operation “precision sowing” does not show the cost of 
seeds but the labour requirement and different costs of a sowing machine. Table 2 comple-
ments Table 1 by providing direct costs and categorising the costs in Table 1 as variable or 
fixed costs per ha. Therefore, this paper differentiates direct costs and variable costs due 
to the data structure of KTBL. In addition, Table 2 provides the information of revenue 
of sugar beet per ha. Figure 1 illustrates the relationship among the elements presented in 

Fig. 1  Net profit and cost structure
* Note: Direct costs include costs of direct farming inputs, e.g. seeds, fertilisers, herbicides, manure, hail 
insurance, and lime.
Source: based on KTBL (2019, 2020).
Graphics programme used: Microsoft PowerPoint.
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Tables 1 and 2 (KTBL, 2019). For the case of conventional farming, seeTable A.1 and Table 
A.2 in the appendix.

Specifically, variable machine costs and fixed machine costs are the sum of different ele-
ments from Table 1, see Eq. (1) and Eq. (2).

	 V ariable machine costs = Sumof maintenance + Sum of operating materials� (1)

	 Fixedmachine costs = Sumof depreciation + Sumof interest + Sumof other costs � (2)

Variable labour costs and fixed labour costs are calculated based on Eqs.  (3) and (4). 
According to the dataset, all field operations in conventional farming are done by perma-
nent farm workers (hired or family labour, calculated as fixed labour cost), requiring no sea-
sonal labour (unskilled labour, calculated as variable labour cost); in organic farming, only 
manual weeding requires partially unskilled labour. As shown in Table 1 (organic farming), 
there are multiple weeding steps (i.e. hoeing) from April to June. Normal hoeing is mechani-
cal weeding with a curry-comb carried by a tractor, while hand hoeing stands for manual 
weeding. According to the assumption of KTBL, mechanical weeding is done by permanent 
farm workers, while the labour cost of manual weeding consists of 11% fixed labour cost 
and 89% variable labour cost.

	 V ariable labour costs = Unskilled labour time × Wage rate of unskilled labour � (3)

	 Fixed labour costs = Fixed labour time × Wage rate of fixed labour � (4)

In the baseline scenario, farmers use the current weeding methods, i.e. manual weeding and 
mechanical weeding with a tractor in organic farming, and chemical spraying in conven-
tional farming. From Table 2, the net profit (per ha) of the baseline scenario (π1) is calcu-
lated as shown in Eq. (5):

	
Net profit = Gross profit − Fixed cost

= Revenue − Total direct costs − Total variable costs − Total fixed costs
� (5)

Robot scenario

This section describes the assumptions of the robot scenario and the simulated variables in 
this scenario.

Assumptions

(1)	 Two types of weeding robots are used for two farming systems.

It is assumed in this paper that a mechanical weeding robot will be used for organic 
farming, and a spot spraying robot for conventional farming. The differentiation has 
been established since labour intensity is a major driver of the costs in organic sugar 
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beet cultivation (see Table 1 and Table 2), whereas in conventional agriculture the 
cost of herbicides plays a larger role than labour intensity (KTBL, 2020). The exact 
technical execution of the weed removal is not crucial in this study as long as no 
chemicals are used in organic farming and conventional farming still uses herbicides 
to kill weeds.

(2)	 Operations replaced by weeding robots.

Table 1  Costs (per ha*) of all individual operations for organic farming and a plot size of 10 ha with mecha-
nisation level of 102 kW
Month Operations Time 

re-
quired 
(h/ha)

Depre-
ciation 
(€/ha)

Interest
(€/ha)

Other costs 
(€/ha)

Main-
tenance 
(€/ha)

Operating 
materials 
(€/ha)

Ser-
vices 
(€/
ha)

OCT Soil sample 0.02 0.08 0.01 0 0.07 0.01 1.2
OCT Ploughing with a 

reversible plough
1.13 16.67 4.85 2.08 20.44 18.99 0

FEB Harrowing with 
spring tine harrow

0.32 6.79 2.03 0.94 5.86 4.62 0

FEB Nmin-sampling, 
0–30 cm

0.19 0.64 0.06 0.01 0.53 0.05 2

MAR Spreading liquid 
manure, from farm

1.01 17.65 4.33 2.3 14.55 7.34 0

MAR Harrowing 
with seedbed 
combination

0.28 6.73 2.02 0.9 6.06 4.15 0

MAR Precision sowing 0.44 24 6.48 1.1 11.88 2.69 0
APR Hoeing, (1) and 

(2) hoeing
0.49 7.31 1.97 0.69 6.02 3.29 0

MAY Hoeing, (1) and 
(2) hoeing

0.49 7.31 1.97 0.69 6.02 3.29 0

MAY Crop appraisals 0.1 0.08 0.02 0.06 0.03 0.14 0
MAY Hand hoeing (1. 

hoeing)
85.43 0.92 0.21 1.33 1.1 2.58 0

MAY Hoeing, 3. and 4. 
hoeing

0.41 6.99 1.89 0.64 5.52 2.91 0

JUN Hand hoeing (at 
row closing)

77.74 0.86 0.19 1.26 1.04 2.35 0

SEP Harvesting 1.05 96.66 26.1 5.26 65.14 34.65 0
OCT Lime fertilisa-

tion, wheel loader, 
mineral fertiliser 
shovel

0.01 0.13 0.03 0.01 0.08 0.07 0

OCT Lime fertilisation, 
mounted spreader

0.03 1.92 0.44 0.2 0.52 0.42 0

OCT Processing 
stubbles, flat, 
sloped (30°)

0.48 8.41 2.47 1.35 8.63 4.97 0

Sum 169.62 203.15 55.07 18.82 153.49 92.52 3.2
Source: KTBL (2020)
* Note: The unit of this table is not per year because the costs of each individual operation are calculated 
by usage of labour and machinery per ha. This is the same for Table 2, where the revenue and costs are 
calculated per ha instead of per year at farm level.
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Based on the tables of individual operations from KTBL, it is assumed that weed-
ing robots go through the fields twice per season in both organic and conventional 
farming. For organic farming (see Table  1), only manual weeding (i.e. hand hoe-
ing) is replaced by a mechanical weeding robot (twice per season, in May and June, 
respectively) because this paper assumes that normal hoeing with a tractor is efficient 
enough so that a robot cannot compete with it. If a robot is not able to remove 100% 
of the weed, the rest will be done by manual weeding (11% fixed labour and 89% 
variable labour, as assumed by KTBL). In conventional farming, weeding is done 
by a tractor with a sprayer driven by a permanent farm worker (twice per season, 
“apply herbicide, sprayer” in March and May, respectively, see Appendix A), thus no 
unskilled labour is required. This paper assumes that the spot spraying robots are able 
to kill all weeds in the field, but their ability to save herbicide varies.

(3)	 Revenue per ha stays the same as in the baseline.

It is assumed that the revenue per ha in the robot scenario is the same as in the base-
line for each plot, meaning the quality of crop output and yield stay unchanged. Since 
the KTBL data only provide the costs and revenue per ha, the costs and revenue in 
the robot scenario are also calculated per ha. In this way, the MAV is the price of the 
robot that renders the same net profit per ha as the current weeding methods. Since the 
KTBL dataset does not provide information on farm size, this paper only focuses on 
the average profit of each plot, and no farm size is assumed. Thus, our analysis is not 
at the farm level but focuses on the profit of the production activity.

Table 2  Revenue and cost structure (per ha) for organic farming and a plot size of 10 ha with mechanisation 
level of 102kw

Detailed Item Amount Amount 
Unit

Price Price 
Unit

Total
(€/ha)

Revenue Sugar beet, organic 50 t/ha 105 €/t 5,250
Direct Costs Seeds, organic 1.23 U/ha 230 €/U 282.9
Direct Costs Interest (3 month) 91.68 €/ha 0.03 €/€ 2.75
Direct Costs Liquid manure 20 m³/ha 0 €/m³ 0
Direct Costs Calcium carbonate 1 t/ha 40.7 €/t 40.7
Direct Costs Hail insurance* 5,250 €/ha 8.21 €/1000 

€
43.1

Variable Costs Variable machine 
costs

/ / / / 246.01

Variable Costs Variable labour 
costs

145.04  h/ha 13.25 €/h 1,921.78

Variable Costs Services / / / / 3.2
Variable Costs Interest (3 month) 542.75 €/ha 0.03 €/€ 16.28
Fixed Costs Fixes machine 

costs
/ / / / 277.04

Fixed Costs Fixed labour costs 24.58  h/ha 21 €/h 516.18
Source: KTBL (2020)
* Note: In this table, a farmer pays €8.21 to buy insurance for crops worth €1,000. One hectare of organic 
sugar beet is estimated to be worth €5,250 as can be seen in the table. Thus, the hail insurance costs 8.21 
* 5,250/1,000 = €43.1 per ha.
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(4)	 Robots are operated at full capacity.

The focus on the plot level comes with the assumption that the weeding robots work 
at full capacity regardless of farm size. This implies either that the farm has the appro-
priate size, or the remaining capacity can be rented out at rates reflecting the costs. 
Assuming that a robot works at full capacity may cause an overestimation of MAVs 
for small farms that do not manage to rent out excess hours. In addition, timing of 
using a robot is not taken into consideration, meaning all plots can be weeded in time.

(5)	 Skilled labour for setting up and supervising the robot.

It is assumed that the robot is set up and supervised by skilled labour to ensure safe 
operations on the field for both organic and conventional farming. Although Shockley 
et al. (2021) and Lowenberg-DeBoer et al. (2021b) view the required level of supervi-
sion time as a regulation, it can also be seen as a technology attribute depending on the 
levels of autonomy of the robot. For simplicity, this paper includes the required level 
of supervision time as a technology attribute (see “supervision intensity” in “Variables 
and the accounting system”).

Variables and the accounting system

To calculate the MAVs of weeding robots, variables of technology attributes and their val-
ues need to be defined, same for the wage rates of skilled and unskilled labour. Definitions 
and ranges of value are presented in Table 3. The actual values used to calculate the MAVs 
are drawn from these ranges in a Monte Carlo simulation. The ranges of the variables come 
from various sources: personal interviews with leading weeding robot companies, informa-
tion on their homepages, existing literature, and KTBL database.

Personal interviews with leading weeding robot companies were conducted on the DLG 
(In German: Deutsche Landwirtschafts-Gesellschaft; In English: German Agricultural Soci-
ety) field days (14th-16th June 2022, Mannheim, Germany). In total, 7 companies were 

Variable Definition Range (unit)
Area capacity The amount of area the robot can 

weed in its useful life
200–600 
(ha)

Setup time per 
plot

Time required to set up the robot 
per plot

0.16-2 (h/
plot)

Repair and 
energy costs

Repair and energy costs of the 
robot for weeding one ha

14–56 (€/
ha)

Weeding 
efficiency

Percentage of weeds removed by 
the robot (organic farming);
Percentage of herbicide saved by 
the robot (conventional farming)

50-100%

Supervision 
intensity

Percentage of field time required 
to supervise the robot

0-100%

Wage rate of 
unskilled labour

Wage rate of seasonal labour 13.25-21 
(€/h)

Wage rate of 
skilled labour

Wage rate of the personal who sets 
up and supervises the robot

21–42 (€/h)

Table 3  Definitions and ranges 
of variables in the Monte Carlo 
simulation

Note: All variables will 
be drawn from uniform 
distribution.
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interviewed, among which 6 companies produce mechanical weeding robots, and 1 com-
pany produces spot spraying robots. Those companies already offer commercial robots on 
the market. During the interviews, the aim was to collect information on the robot charac-
teristics (see variable (1)–(5) below), which is then used to specify their ranges in the Monte 
Carlo simulation. Experts were asked to estimate these technology attributes according to 
their knowledge about their products and experience of using them. Variables and their 
ranges are described in the following.

(1)	 Area capacity.

The area capacity of a weeding robot is measured by the amount of area (in ha) it can 
weed in its useful life. This information is usually difficult to estimate for technology 
providers. Thus, the area capacity is approximated based on the lifetime and weed-
ing capacity per year of a robot. The total lifetime of a robot is assumed to be 10 
years according to Sørensen et al. (2005), Pedersen (2006 and 2008), and FarmDroid 
(2022), which is also similar to the average lifetime of hoeing equipment and self-
propelled machinery. According to FarmDroid (2022), the mechanical weeding robot 
FD20 is designed to farm up to 20 ha per season. When assuming weeding twice per 
year and 10 years of useful life, the area capacity is 400 ha. According to the personal 
interviews, three other robot companies also estimated a similar capacity for their 
robots. Although spot spraying robots should have higher area capacity because of 
their faster speed, due to the lack of data, this paper uses 400 ha as an average level 
and set a range between 200 to 600 ha for area capacity for both types of robots. This 
allows us to compare the MAV of the two types of robots assuming they have the same 
characteristics.

(2)	 Setup time per plot.

The setup time per plot is defined as the time required for preparing the robot for the 
actual fieldwork. According to robot companies, the setup of the first time involves 
settling the GPS station and loading the map, which takes about several hours. But 
from the second time, each setup per plot only needs from 10 minutes to 2 h depend-
ing on the situation. Therefore, the range from 0.16 h to 2 h is chosen for this variable. 
It is assumed that a robot must only be set up once for a whole plot irrespective of 
plot size.

(3)	 Repair and energy costs.

Repair and energy costs are difficult to estimate for technology providers because 
they do not have enough experience yet. Therefore, this paper uses the KTBL data for 
a standard tractor (all-wheel drive, manual gearbox, 40 km/h, 102 kW) and attached 
hoeing machine (3 m, row width 45-50 cm, 6 rows). The combined repair and energy 
costs for this combination are 28 €/ha. Since the weeding robot can be solar-powered 
and the maintenance costs might differ among different robots, for the analysis, the 
range is assumed to be a minimum of half the respective costs (14 €/ha), and a maxi-
mum of twice the costs of the standard tractor (56 €/ha).
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(4)	 Weeding efficiency.

The weeding efficiency of the two types of weeding robots is defined differently. For 
a mechanical weeding robot, weeding efficiency measures the percentage of weeds 
that can be autonomously removed by the robot, whereas for a spot spraying robot, 
it measures the percentage of herbicide that can be saved (compared with the base-
line). According to the information collected from robot companies, the efficiency of 
a mechanical weeding robot ranges from 70–99%, which is similar to Bawden et al. 
(2017) and Kunz et al. (2015). The spot spraying robot can save up to 95% herbicide 
depending on the weed density (see e.g. EcoRobotix, 2022). The spot spray technol-
ogy See & Spray of John Deere (2021) can reduce herbicide use by 77% on average. 
Thus, a minimal weeding efficiency of 50% and a maximum weeding efficiency of 
100% are assumed for both types of robots.

(5)	 Supervision intensity.

Supervision intensity is defined in this paper as a fraction of the field time, which is 
the same as the level of supervision time in Lowenberg-DeBoer et al. (2021b) and 
Shockley (2021). This study assumes a field time (i.e. weeding time) of 3.2 h/ha for 
a mechanical weeding robot based on the information collected from the internet 
(FarmDorid, 2022; Farmers Weekly, 2021; Naïo Technologies, 2022) and through 
personal interviews with robot companies. Spot spraying robots are usually faster, 
for example, the AVO of Ecorobotix needs 1.6 h/ha (Ecorobotix, 2022). Due to the 
limited number of observations for spot spraying robots, and for the sake of compa-
rability, this paper also uses 3.2 h/ha as the field time for spot spraying robots in this 
study. As the requirement regarding supervision intensity is uncertain, this paper uses 
a range from 0 to 100% for this variable.

(6)	 Wage rate of unskilled labour.

Of relevance is the wage rate of seasonal labour hired to remove weeds for organic 
farming. This variable is assumed to be irrelevant in conventional farming as weeds 
are not removed manually in this production system. The wage rate of unskilled labour 
in the KTBL database is assumed as a minimum (13.25 €/h), and the maximum is set 
to 21 €/h, which is the wage rate of the permanent farm worker according to KTBL 
(2020). Wage rates include employer contributions to social security.

(7)	 Wage rate of skilled labour.

This paper considers the wage rate of the skilled labour hired to set up and supervise 
the robot. The minimum is assumed to be the same as the wage rate of a permanent 
farm worker in KTBL database (21 €/h), and the maximum is assumed to be twice as 
much as the minimum (42 €/h). Wage rates include employer contributions to social 
security.
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Costs in the robot scenario

The costs of operations that are not replaced by the robot will stay the same as for the base-
line. Depending on the farming system and the weeding efficiency of the robot, weeding 
steps might be partially or completely replaced by the robot. For organic farming, if the 
weeding efficiency is below 100%, the manual weeding steps can only be partially replaced 
because the rest of the weeds that are overlooked by the robot must be removed by humans 
(both fixed and variable labour costs are involved). This causes additional labour and 
machine costs. The additional costs are fractions of the original costs of baseline depending 
on the weeding efficiency. For conventional farming, it is assumed that weeding steps are 
completely replaced by the weeding robots, which means the robot can always achieve the 
required weeding efficiency. The weeding efficiency only determines how much herbicide, 
thus the direct costs, can be saved by the spot spraying robot.

In both organic and conventional sugar beet farming, there are weeding steps in the base-
line that will be replaced by robotic weeding in our simulation. Following the structure of 
Table 1, the costs of one robotic weeding step per ha are shown below.

(1)	 Time (h/ha): it is the labour requirement of robotic weeding per ha. In this study, it is 
the sum of the setup time and supervision time per ha as shown in Eq. (6), where field 
time per ha is fixed at 3.2 h/ha as shown above. Since both setup and supervision are 
assumed to be conducted by skilled labour paid on an hourly basis, these costs will be 
counted as variable labour costs.

	
T ime =

Setup time per plot

P lot size
+ Supervision intensity × Field time per ha � (6)

(2)	 Depreciation (€/ha): the depreciation cost per ha is the MAV of the robot divided by the 
area capacity because this paper assumes that the robot depreciates linearly by usage. 
Thus, depreciation in this paper is not calculated per year but per ha. The MAV will be 
an unknown variable that must be solved in our simulation.

	
Depreciation =

MAV

Area capacity
� (7)

(3)	 Interest and other costs (€/ha): they are assumed to be fractions of the depreciation 
due to the limited data. Based on the KTBL data of the current machinery, this paper 
assumes that interest equals to 30% of the depreciation, while other costs equal to 10% 
of the depreciation.

	 Interest = Depreciation × 0.3� (8)

	 Other costs = Depreciation × 0.1� (9)

(4)	 Maintenance and operating materials (€/ha): these two items are merged into “Repair 
and energy costs”.
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	 Maintenance + Operating materials = Repair and energy costs � (10)

(5)	 Services (€/ha): no costs of services are calculated because the costs of hiring skilled 
labour to set up and supervise the robot are counted as variable labour costs.

As long as the values of the parameters are determined, the costs of each operation in the 
robot scenario are also determined using Eq. (6) to Eq. (10), assuming the costs of other 
steps stay the same as in the baseline. Then, different cost categories in the robot scenario 
can also be calculated. Variable machine costs and fixed machine costs still follow Eq. (1) 
and Eq. (2). Variable labour costs are calculated based on Eq. (11) since skilled labour is 
introduced. Direct costs and fixed labour costs are proportions of the corresponding costs in 
baseline, depending on the weeding efficiency.

	

V ariable labour costs = Skilled labour time × Wage rate of skilled labour

+ Unskilled labour time × Wage rate of unskilled labour
� (11)

At the end, the net profit per ha of the robot scenario (π2) can also be calculated using 
Eq. (5).

Figure 2 illustrates how each variable influences the net profit of using robotic weeding. 
The types of costs that will change in the robot scenario are marked in dotted boxes, under 
which the variables that influence them are noted.

Data generation and calculation of MAVs

Figure 3 depicts the data generation process and the derivation of MAV of one random draw. 
The data generation processes of organic farming and conventional farming are separated. 
Here, the process for organic farming is described as an example. First, distributed random 
outcomes of all variables that matter (7 for organic farming, 6 for conventional farming) are 
uniformly drawn from the ranges specified above. Then, for each combination of plot size 
and mechanisation level i (49 combinations for both organic and conventional farming), the 
net profits per ha of baseline and robot scenario are calculated given the randomly drawn 
values. For organic farming, the net profit per ha of baseline (πi1) is calculated given the 
randomly drawn wage rate of unskilled labour (this step is unnecessary for conventional 
farming because unskilled labour is not used there). The net profit per ha of the robot sce-
nario (πi2) is a function of technology attributes, wage rates of skilled and unskilled labour, 
and an unknown MAV. The fsolver of the scipy library (Virtanen et al., 2020) finds the MAV 
that equalises net profits (i.e. πi1= πi2) and implicitly determines the MAV.

The same process is repeated for each draw. A large number of draws is needed to obtain 
a fairly accurate representation of the results MAV distribution given the multi-dimensional 
parameter space. In this way, a large dataset consisting of the MAVs and the variables is 
generated. For organic farming, 32,000 data points were drawn for each combination of plot 
size and mechanisation level. In the end, 1,568,000 possible data points for all organic farms 
(32,000 ×49) are generated. For conventional farming, 12,000 data points were drawn for 
each combination, resulting in 588,000 data points.

1 3

1725



Precision Agriculture (2023) 24:1712–1737

Fig. 3  Data generation and the calculation of the MAV of one random draw
* Note: only for organic farming.
Source: authors’ own figure.
Graphics programme used: Microsoft PowerPoint.

 

Fig. 2  How each variable influences the net profit per ha
Note: MAV is not drawn from the Monte Carlo simulation but will be derived from the system.
Source: based on KTBL (2019, 2020).
Graphics programme used: Microsoft PowerPoint.
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Results and discussion

Range of MAVs in two farming systems

Figure 4 shows the distributions of the MAVs in organic and conventional sugar beet farm-
ing systems in Germany. MAVs in the organic farming system are distinctly higher than in 
conventional farming. The MAVs of mechanical weeding robots in organic farming range 
from €62,564 to €694,073 with a mean of €279,884. In contrast, the MAVs of spot spraying 
robots in conventional farming have a maximum of €63,364 and a mean of €10,362. Around 
21% of the data points have negative MAVs in conventional farming, which means under 
certain conditions, a compensation to farmers for using the robot would actually be required 
to keep the same profitability as in the baseline. The partially negative MAVs for spot spray-
ing robots in conventional farming also imply that a good technological performance (e.g. 
higher area capacity, higher weeding efficiency, less repair and energy costs, etc.) is needed 
for creating positive MAVs.

The higher variability of the MAVs of weeding robots in organic farming compared with 
conventional farming largely reflects a higher sensitivity to the changes in the randomly 
drawn variables given that the ranges and distributions of those are the same for the two 
types of robots.

The implication of our result is consistent with the findings by Rübcke von Veltheim 
et al. (2020) and Spykman et al. (2021). The higher MAVs of weeding robots in organic 
farming mean that organic farms (especially for high-value crops) can pay much more for 

Fig. 4  Histograms of the MAVs of weeding robots in organic and conventional sugar beet farming systems
Note: Organic farming system contains 1,568,000 data points, and conventional farming contains 588,000 
data points.
Source: simulation results.
Graphics programme used: Python.
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weeding robots to obtain the current profit level, thus having a stronger economic incentive 
to adopt autonomous weeding robots than conventional farms. Besides, the availability of 
weeding robots (and generally agricultural robots) might change the conversion consider-
ation of conventional farms, for whom the high labour requirement has been an obstacle to 
convert to organic farming (Olabisi et al., 2015).

According to the personal interviews, the price of a mechanical weeding robot ranges 
from €75,000 to €240,000 (6 robots, average price around €130,000), while the price of a 
spot spraying robot ranges from €80,000 to €100,000 (2 robots). Comparing the result of 
the Monte Carlo simulation above, one can see that the profitability margin of organic farms 
would allow them to pay even more than the current price of mechanical weeding robots to 
maintain the current profit level. On the contrary, the price of spot spraying robots is much 
higher than the MAVs from the simulation. It is possible that the technology performance of 
spot spraying robots is underestimated because of limited observations and limited experi-
ence of technology providers so far. For example, the range of area capacity of spot spray-
ing robots is probably underestimated since they have the same range of area capacity with 
mechanical weeding robots in this simulation.

Importance of different factors

To compare the importance of different factors, Table 4 is constructed to show how the 
average MAV changes across each quarter of the simulated range of each factor (averag-
ing across the outcome for all simulations, i.e. averaging across the other variables). For 
example, for the variable “area capacity” (ranging from 200 to 600 ha), the range is split into 
four quarters to calculate the average MAV of all data points. €175,650 is the average MAV 
of those data points whose area capacity is between 200 ha and 300 ha in organic sugar beet 
farming. Besides, for each variable, Table 4 also presents the change of MAV from Q1 to 
Q4 (∆ MAV), which measures the importance of the variable in determining the MAV of a 
weeding robot considering the assumed scale of the variable.

According to this measure, the most important factor in determining the MAVs of weed-
ing robots in organic farming is the area capacity of a weeding robot. When the area capacity 
increases from a low level (Q1: 200–300 ha) to a high level (Q4: 500–600 ha), the average 
MAV increases by €208,741. Weeding efficiency (i.e. the percentage of weeds removed by 
the mechanical weeding robot in organic farming) is the second most important factor. A 
robot that can remove 87.5-100% (Q4) of the weeds can attract farmers to pay €150,118 
more than a robot with an efficiency between 50% and 62.5% (Q1). In terms of labour cost, 
the wage rate of unskilled labour has a larger impact than the wage rate of skilled labour 
on the MAV of a weeding robot in organic farming: the ∆ MAV of the wage of unskilled 
labour is €87,345, but €-9,345 for the wage rate of skilled labour. This is because changes 
in the wage rate of unskilled labour influence the production cost much greater than the 
wage rate change in skilled labour. This finding implies that increasingly more expensive 
seasonal labour could be one important driver for adopting mechanical weeding robots in 
organic farming. Supervision intensity is the fourth most important factor among the seven 
factors in influencing the MAV of a weeding robot. When the supervision intensity increases 
from Q1 (0-25%) to Q4 (75-100%), the MAV of a mechanical weeding robot would drop by 
€21,111. The impacts of repair and energy costs and setup time per plot are less influential 
compared to other factors.
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In conventional sugar beet farming, the most influential factor is supervision intensity. 
As can be seen, when supervision intensity increases from Q1 (0-25%) to Q4 (75-100%), 
the MAV of a spot spraying robot would drop by €21,934. Both Shockley et al. (2021) and 
Lowenberg-DeBoer et al. (2021b) found that high supervision intensity can lead to a nega-
tive profit level in conventional farming. When only looking at the data points with negative 
MAVs, the average supervision intensity is 77% (not shown in the table). This result cor-
responds with the study of Lowenberg-DeBoer et al. (2021b). They found that for a 66 ha 
farm, using autonomous equipment had no cost advantage anymore when 100% supervision 
was required. In our simulation, the second most important factor is weeding efficiency (i.e. 
the percentage of herbicide saved by the spraying robot in conventional farming). Farmers 
can pay €17,285 more for a spraying robot that can save herbicide by 87.5-100% (Q4) than 
a robot that is only able to save 50-62.5% (Q1) of the herbicide use. Repair and energy costs 
and the wage rate of skilled labour are of similar importance in determining the MAV. In 
conventional farming, the area capacity of a weeding robot is much less influential than in 
organic farming because the economic benefit per ha of using a weeding robot is less than 
that in organic farming. However, when considering the environmental impact of applying 
less herbicide, with policy incentives, conventional farmers might be willing to switch to 
robotic weeding methods.

In both farming systems, setup time per plot plays the least important role in determining 
the MAV of a weeding robot because the setup cost is only a minor part of the production 
costs. In general, a longer setup time per plot will decrease the MAV of a weeding robot. 
However, the differences in MAVs seem to be quite small, in some cases (e.g. in organic 
farming from Q3 to Q4) even smaller than the sampling noise.

Given that the first two most important factors in organic and conventional farming 
are technology attributes, the advancement of technology seems to be more relevant for 

Table 4  Average MAV of each quarter and the change of MAV from Q1 to Q4
Organic sugar beet farming
(Mechanical weeding robots)

Average 
MAV (€)
(Q1)

Average 
MAV (€)
(Q2)

Average 
MAV (€)
(Q3)

Average 
MAV (€)
(Q4)

∆ MAV (€)
(Q4-Q1)

Area capacity (200–600 ha) 175,650 245,224 314,760 384,391 208,741
Setup time per plot (0.16-2 h/plot) 281,580 280,301 278,674 278,956 -2,624
Repair and energy costs (14–56 €/ha) 284,029 280,537 278,316 276,700 -7,330
Weeding efficiency (50-100%) 204,185 255,289 307,269 354,303 150,118
Supervision intensity (0-100%) 290,236 283,126 277,182 269,125 -21,111
Wage rate of skilled labour (21–42 €/h) 285,200 281,143 277,383 275,855 -9,345
Wage rate of unskilled labour (13.25-21 
€/h)

234,391 266,080 296,884 321,736 87,345

Conventional sugar beet farming
(Spot spraying robots)

Average 
MAV (€)
(Q1)

Average 
MAV (€)
(Q2)

Average 
MAV (€)
(Q3)

Average 
MAV (€)
(Q4)

∆ MAV (€)
(Q4-Q1)

Area capacity (200–600 ha) 6,473 9,324 11,476 14,107 7,634
Setup time per plot (0.16-2 h/plot) 11,984 10,716 9,953 8,830 -3,154
Repair energy costs (14–56 €/ha) 15,228 11,922 8,975 5,244 -9,984
Weeding efficiency (50-100%) 1,950 7,430 13,067 19,235 17,285
Supervision intensity (0-100%) 21,170 13,913 6,637 -764 -21,934
Wage rate of skilled labour (21–42 €/h) 14,436 11,833 8,987 6,153 -8,283
Source: simulation results
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changes in MAVs than changes in the labour market. However, this needs to be cautiously 
interpreted because the selected technology and labour market characteristics may not accu-
rately reflect current or future changes.

Impact of plot characteristics

Figure 5(a) and Figure 5(b) show the average MAV of each plot size and mechanisation 
level in organic sugar beet farming across all simulation data points. When the plot size 
increases from 1 ha to 10 ha, the average MAV increases by €9,451, which is only 3.4% 
of the mean MAV (€279,884) of a weeding robot in organic farming. From 10 ha to 80 ha, 
there is only a minor increase in MAV. Regarding the mechanisation level, the MAV of a 
robot that operates on a plot with a mechanisation level of 67 kW is €3,712 higher than that 
of a plot with a mechanisation level 45 kW. But the average MAV of farms with a mecha-
nisation level beyond 67 kW does not change. It is because KTBL assumes that beyond 
67 kW, the production costs (specifically machine costs and labour costs) do not change for 
organic farming even though the mechanisation level increases.

Figure 5(c) and Figure 5(d) show the average MAV of each plot size and mechanisa-
tion level in conventional sugar beet farming. When the plot size increases from 1 ha to 
10 ha, the average MAV increases by €7,468, which is 72% of the mean MAV (€10,362) 
of a weeding robot in conventional farming. From 10 ha to 80 ha, the average MAV goes 
up only slightly. It can be observed that the impact of plot size in conventional farming is 
bigger than that in organic farming. This indicates that a sprayer can work more efficiently 
on larger fields due to less turning time compared to smaller fields. However, in organic 
farming, the time requirement of manual weeding (per ha) stays relatively stable as the plot 
size increases. In terms of mechanisation level, the average MAV is the highest when the 
mechanisation level is 67 kW. From 67 kW to 120 kW, the average MAV decreases because 
the average spraying cost goes down as the mechanisation level increases. However, with a 
mechanisation level of 120 kW, KTBL assumes there is another person driving a water tank 
when spraying. This paper will not dig into the assumptions of KTBL but focuses on the 
overall implication of the results of the two farming systems: when the mechanisation level 
is above 40 kW, a higher mechanisation level reduces the MAVs of spot spraying robots but 
has no influence on the MAVs of mechanical weeding robots based on the assumptions of 
KTBL data.

Comparing the changes in MAVs caused by plot characteristics with the ∆ MAVs (Q4 - 
Q1) caused by technology attributes and labour cost, it can be seen that plot characteristics 
have only limited importance in determining MAVs of weeding robots in both farming 
systems.

Conclusion

This paper investigates the MAVs of weeding robots and the importance of factors from 
different categories (including technology attributes, labour cost, and plot characteristics) in 
determining MAVs of weeding robots in German sugar beet farming. It uses a Monte Carlo 
simulation approach combined with empirical data of KTBL and assumptions about differ-
ent robotic characteristics based on the information collected from weeding robot compa-
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nies. The MAV is defined as the break-even investment price that renders the same net profit 
level as using the current weeding methods.

Under the assumption that mechanical weeding robots replace manual weeding in 
organic farming, and spot spraying robots replace untargeted herbicide spraying in con-
ventional farming, and considering plausible ranges for the robot characteristics, the results 
show that the MAVs of mechanical weeding robots in organic farming range from €62,564 
to €694,073 with a mean of €279,884. In contrast, the MAVs of spot spraying robots in con-
ventional farming have a maximum of €63,364 and a mean of €10,362. The huge difference 
in MAVs between organic and conventional farming systems indicates that the economic 
benefit of mechanical weeding robots for organic farming surpasses that of spot spraying 
robots for conventional farming, and organic farms are able to pay considerably more for a 
weeding robot than conventional farms to maintain the current net profit level. Therefore, 
the adoption and diffusion of weeding robots might also start among organic farms, which 
is consistent with the findings from previous qualitative studies. Another implication is that 
the availability of weeding robots (and generally agricultural robots) might change the con-
version decision of conventional farms, for whom the high labour requirement could be an 
obstacle so far.

This paper also quantifies and compares the importance of factors in determining the 
MAVs of weeding robots from different categories given the chosen ranges of such factors. 
Firstly, technology attributes are more influential than labour cost in determining the MAVs 
of weeding robots. For organic farming, the area capacity of a robot impacts its MAV the 

Fig. 5  Average MAVs of weeding robots of each plot size and mechanisation level in both farming systems
Source: simulation results.
Graphics programme used: Python.
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most, followed by weeding efficiency (the percentage of weeds that can be removed by the 
mechanical weeding robot). For conventional farming, supervision intensity is the most 
influential factor, and weeding efficiency (the percentage of herbicide that can be saved by 
the spot spraying robot) is the second. Secondly, the wage rate of unskilled labour has a 
larger impact than the wage rate of skilled labour on the MAV of a weeding robot in organic 
farming because of the high share of unskilled labour costs in the total production costs. 
The implication is that the shortage in seasonal labour could be one important driver for 
adopting mechanical weeding robots in organic farming. Thirdly, supervision intensity is 
the most influential factor in determining the MAVs of spot spraying robots. Our results 
indicate that high supervision costs in robotic weeding can cause economic infeasibility 
in conventional farming. In addition, this paper finds that plot characteristics have limited 
importance in determining the MAVs of weeding robots, compared to technology attributes 
and labour cost.

This paper innovates by comparing the importance of factors from different categories 
(technology attributes, labour cost, and plot characteristics) in determining the MAVs of 
weeding robots in both organic and conventional farming systems. Our approach allows 
us to experiment with different performances of weeding robots and changes in the labour 
market. One of the limitations of this study is that the robot scenario does not consider the 
changes in crop yield and quality, the alternative use of the farm labour after adopting weed-
ing robots, and the environmental impacts at both farm and regional levels due to the lack of 
data. Future research can make use of data collected by large-scale on-farm precision exper-
imentations (Bullock et al., 2019) with input use decisions and precision and autonomous 
farming equipment to capture not only the economic but also environmental impacts. Fur-
thermore, this study assumes that the weeding or spot spraying robot has a single purpose. 
However, there are also multipurpose agricultural robots on the market. For example, the 
multipurpose tool carrier ROBOTTI (AGROINTELLI, 2023) can be used for e.g. seeding, 
weeding, ridging, and spraying. Autonomous tractors (e.g. AgXeed, 2023) might also be the 
future form of the current tractor. By spreading the cost of the base unit over more manage-
ment activities, the weeding cost should be lower compared to a single purpose equipment.

Appendix A

Table A.1  Costs (per ha) of all individual operations for conventional farming and a plot size of 10 ha with 
mechanisation level of 102 kW
Month Operations Time 

required 
(h/ha)

Depre-
ciation 
(€/ha)

Interest
(€/ha)

Other costs 
(€/ha)

Main-
te-
nance 
(€/ha)

Operating 
materials 
(€/ha)

Ser-
vices 
(€/
ha)

SEP Soil sample 0.02 0.08 0.01 0 0.07 0.01 1.2
OCT Apply mineral 

fertiliser, fer-
tiliser screw 
conveyor

0.03 0.08 0.02 0.03 0.02 0.04 0
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Table A.1  Costs (per ha) of all individual operations for conventional farming and a plot size of 10 ha with 
mechanisation level of 102 kW
Month Operations Time 

required 
(h/ha)

Depre-
ciation 
(€/ha)

Interest
(€/ha)

Other costs 
(€/ha)

Main-
te-
nance 
(€/ha)

Operating 
materials 
(€/ha)

Ser-
vices 
(€/
ha)

OCT Apply min-
eral fertiliser, 
mounted fertil-
iser spreader

0.18 1.83 0.45 0.22 1.4 0.94 0

OCT Ploughing with 
a reversible 
plough

1.13 16.67 4.85 2.08 20.44 18.99 0

FEB Nmin-sam-
pling, 0–30 cm

0.19 0.64 0.06 0.01 0.53 0.05 2

MAR Harrowing 
with seedbed 
combination

0.28 6.73 2.02 0.9 6.06 4.15 0

MAR Apply mineral 
fertiliser, fer-
tiliser screw 
conveyor

0.02 0.05 0.01 0.02 0.01 0.03 0

MAR Apply min-
eral fertiliser, 
mounted fertil-
iser spreader

0.15 1.36 0.34 0.17 1.13 0.78 0

MAR Precision 
sowing

0.44 24 6.48 1.1 11.88 2.69 0

MAR Weed rating 0.1 0.12 0.03 0.08 0.05 0.18 0
MAR Apply herbi-

cide, mounted 
sprayer

0.18 4.12 0.96 0.29 1.69 0.75 0

MAY Apply herbi-
cide, mounted 
sprayer

0.18 4.12 0.96 0.29 1.69 0.75 0

JUL Crop appraisals 0.1 0.08 0.02 0.06 0.03 0.14 0
AUG Apply fungi-

cide, mounted 
sprayer

0.18 4.12 0.96 0.29 1.69 0.75 0

SEP Harvesting 1.11 101.97 27.53 5.55 68.72 38.25 0
OCT Lime 

fertilisation
0.01 0.13 0.03 0.01 0.08 0.07 0

OCT Lime fertilisa-
tion, mounted 
fertiliser 
spreader

0.03 1.92 0.44 0.2 0.52 0.42 0

OCT Processing 
stubbles, flat, 
sloped (30°)

0.48 8.41 2.47 1.35 8.63 4.97 0

Sum 4.33 168.02 45.17 11.3 116.01 68.99 3.2
Source: KTBL (2020)
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Table A.2  Revenue and cost structure (per ha) for organic farming and a plot size of 10 ha with mechanisa-
tion level of 102 kW

Detailed Item Amount Amount 
Unit

Price Price 
Unit

Total
(€/ha)

Revenue Sugar beet 60 t/ha 35 €/t 2,100
Direct Costs Seeds 1.23 U/ha 180 €/U 221.4
Direct Costs Interest (3 month) 229.76 €/ha 0.03 €/€ 6.89
Direct Costs Potash and magnesium 140 kg/ha 0.38 €/kg 53.2
Direct Costs Calcium ammonium nitrate 400 kg/ha 0.23 €/kg 92
Direct Costs Calcium carbonate 1 t/ha 40.7 €/t 40.7
Direct Costs phosphorus/potassium 

fertiliser
450 kg/ha 0.22 €/kg 99

Direct Costs Fungicide, intensity level 2 / / / / 75.5
Direct Costs Herbicide, intensity level 2 / / / / 320
Direct Costs Hail insurance 2,100 €/ha 8.21 €/1,000 € 17.24
Direct Costs Water 900 l/ha 0 €/l 0
Variable Costs Variable machine costs / / / / 198.6
Variable Costs Variable labour costs / h/ha 13.25 €/h 0
Variable Costs Services / / / / 3.2
Variable Costs Interest (3 month) 50.45 €/ha 0.03 €/€ 1.5
Fixed Costs Fixes machine costs / / / / 236.72
Fixed Costs Fixed labour costs 4.81  h/ha 21 €/h 101.01
Source: KTBL (2020)

Supplementary Information  The online version contains supplementary material available at https://doi.
org/10.1007/s11119-023-10015-x.
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