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Abstract
For most fruit-harvesting robots, an essential task of the machine vision system is to pro-
vide the manipulator with an accurate three-dimensional location of the target. However, 
the accuracy of this location can be affected by various factors. This study aimed to develop 
seven location methods, to investigate their effectiveness, as well as the influences of dif-
ferent camera modes and camera types, and, ultimately, to ascertain which was the optimal 
method. These methods utilized the pixels of the detected targets in each image, the cor-
responding depth values, as well as the locations of the 2D bounding boxes extracted from 
the detection results. These location methods differed in the way that they obtained the 
position of the 3D bounding box, and in their use of point clustering or colour thresholding. 
The images were collected via two types of 3D camera, patterned structured light and time-
of-flight. Comparative analysis showed that methods using the 2D bounding box and the 
selected depth value to calculate the 3D bounding box were faster (0.2–8.4 ms compared 
to 151.9–325.2 ms) and performed better than the 3D clustering methods. In addition, four 
modes of the structured light camera were tested and compared. The results showed that 
the high-accuracy mode had fewer noise points but a lower location rate (89.2–89.9%), 
while the high-density mode created more noise points but a higher location rate (98.9%). 
Evaluations also indicated that the data from the time-of-flight camera better represented 
the 3D shape (26.3% more accurate along the camera’s depth direction). Therefore, time-
of-flight camera was considered better for the applications that required more accurate 3D 
shape. This paper, thus, provided references in the selection of location methods, cameras 
and corresponding modes for related work.
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Introduction

Machine vision systems are one of the essential components of fruit-harvesting robots. 
Recent research on the development of such systems has tended to focus, either, on identi-
fication of fruits in 2D images, (Dai et al., 2021; Fu et al., 2020; Gao et al., 2021; Sa et al., 
2016; Yu et al., 2019) or on the integration of machine vision systems into picking robots 
that are required to locate their targets in 3D co-ordinated systems (Silwal et al., 2017; Wil-
liams et al., 2020; Xiong et al., 2020b).

Among these studies of detection in 2D images, some focused on the utilization of tra-
ditional methods, such as the identification algorithm developed by Silwal et  al. (2014) 
in which circular Hough transform (CHT) was used for the detection of apples, and the 
detection algorithm developed by Arad et  al. (2019) for sweet peppers, based on colour 
and shape. Other researchers applied and improved deep convolutional neural networks to 
detect targets, because of the promising results of deep learning methods. For example, Sa 
et al. (2016) utilized Faster R-CNN for the detection of fruit such as apples, oranges, sweet 
peppers, strawberries and others. Fu et al. (2020) utilized the same network for apple detec-
tion. In addition to the methods that focus primarily on detection of fruits, some studies 
have presented entire harvesting systems, in which the vision system detects and locates 
the fruits in 3D and then sends these 3D locations to the arm control system. For example, 
Williams et al. (2020) designed a kiwifruit-harvesting robot, proposing two versions of its 
machine vision system for the detection of kiwifruits. The first version (Williams et  al., 
2019) utilized a fully convolutional neural network (FCN) (Long et al., 2015) to perform 
semantic segmentation and find the calyx of the fruit. However, this method required a 
large amount of memory for image processing and caused a significant reduction in the 
picking speed. Therefore, in a later work, the authors utilized a faster network, Faster-
RCNN (Ren et al., 2015), and the model was trained to detect both the kiwifruit and its 
calyx. In both versions, the centroid points of the calyxes were used to locate the 3D posi-
tions of the kiwifruits.

In addition, Silwal et al. (2017) developed a vision system for apple identification, uti-
lizing an identification algorithm (Silwal et al., 2014) that used CHT to detect apples as 
circular objects, composed mainly of apple pixels. This method was, thus, regarded as a 
pixel segmentation method. Its vision system setup consisted of an RGB camera placed on 
top of a time-of-flight 3D camera, so that the 3D point cloud from the 3D camera could be 
mapped to the RGB image using extrinsic parameters. Following the co-ordinate mapping, 
the 3D co-ordinates inside the detected apple circles were used to calculate the 3D posi-
tions of corresponding apples. The average values of the x, y and z co-ordinates were used 
to represent the apple position and removed the outliers along depth direction. Since this 
paper described the entire machine, no evaluation was made of the location accuracy of its 
vision system. Another apple-harvesting robot, developed by Onishi et al. (2019), utilized a 
single-shot detection (SSD) network (Liu et al., 2016) to detect the bounding boxes instead 
of the pixels of apples, in which the centroid of the detected apple’s bounding box was 
matched with the corresponding 3D point from the camera’s point cloud for 3D location.

Moreover, Lehnert et  al. (2017) presented a sweet pepper harvesting robot with a 
vision system that used an RGB-D camera. The camera was mounted on the end-effec-
tor and was used to capture point clouds from multiple viewpoints so that a single 3D 
scene could be created, and a colour-based segmentation method was used to classify 
red sweet peppers. Furthermore, the authors developed methods to select grasping and 
cutting poses for improved sweet pepper picking. Similarly, Arad et al. (2020) presented 
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the design of a sweet pepper harvester with a vision system that incorporated a time-of-
flight RGB-D camera. Arad et al. (2019) initially developed a colour- and shape-based 
detection algorithm that segmented the pixel area of the fruit from the background. For 
3D location, they transformed the detected region to calculate the exact 3D position of 
the point of mass. Furthermore, 2D and 3D sizes of the detected targets were used to 
remove incorrect detections. Similarly, fruits were recorded detected, reached, cut and 
caught, while the failures that were possibly caused by location were not analysed. The 
vision system of another sweet pepper harvester, presented by Bac et al. (2017), used a 
sensing module with two colour cameras and one time-of-flight camera, in which the 
colour images were used for the detection of fruits and their ripeness, and time-of-flight 
images were used for location. This detection algorithm segmented the target pixel’s 
‘blob’, which then went through several erosion operators to remove noise. The average 
of the 3D co-ordinates for all pixels inside the blob were used as the 3D position of the 
target, and the failure cases caused by location error were recorded in the evaluation 
section.

In conclusions, the vision system of a harvesting robot mostly used colour images to 
identify the targets and utilized depth information to calculate the 3D locations. Vision sys-
tems are used for target detection in a fruit-harvesting robot. The algorithms for identifying 
the target can be divided into two main categories. One is based on image segmentation to 
segment target pixels from the background, while the other approach involves the detection 
of bounding boxes that indicate the positions of targets in the images (Onishi et al., 2019; 
Williams et al., 2020). Among those systems using segmentation, some utilized traditional 
methods based on colour and shape, enabling the selection of a centroid point to obtain 
corresponding 3D locations or the use of the average 3D co-ordinates of all the detected 
pixels (Arad et al., 2019; Silwal et al., 2017). The development of deep convolutional neu-
ral networks for instance segmentation provided an alternative approach to the vision sys-
tem, enabling the output of both the detected target position and segmented target pixels. 
The authors’ previous strawberry-harvesting system (Ge et al., 2019a; Xiong et al., 2020a) 
deployed the instance segmentation network Mask R-CNN (He et al., 2017), to extract the 
pixels of individual detected strawberries. The extracted pixels of each strawberry were 
transformed into 3D co-ordinates and a clustering method was implemented to filter noise 
(Ge et al., 2019b).

The advantage of using an instance segmentation network is that it can accurately locate 
every pixel of a detected target, thus avoiding extra noise points. However, segmentation 
networks are computationally expensive, which was why, for example, Williams et  al. 
(2020) upgraded their vision system from one using semantic segmentation (Williams 
et al., 2019) to a bounding box detection method, because the segmentation network was 
thought to cause a significant reduction in speed.

The aim of this study was to speed up the detection system as much as possible, due to 
the purpose of developing a closed-loop vison-guided system. The reported speed for Mask 
R-CNN was five frames per second (He et al., 2017), while it took approximately 0.8 s to 
process one image when implementing the method in the authors’ system via Nvidia GTX 
1060 (Ge et al., 2019b). Therefore, the network of the vision system was upgraded to the 
YOLOv4 object recognition system (Bochkovskiy et al., 2020), which could reach a detec-
tion speed of 20 frames per second using the same hardware settings. However, bounding 
box detection presented some limitations. The target bounding box might contain pixels 
from other objects, such as leaves, stems and adjacent fruits, that might vary in depth from 
the camera view and, therefore, these co-ordinates cannot be used to accurately calculate a 
target’s position. The goal of this paper was, thus, to develop different 3D location methods 
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and compare their performance for strawberry harvesting. The contributions of this work 
are as follows:

1. Proposition of seven 3D location methods for the machine vision system of strawberry-
harvesting robots

2. Comparative analysis of the effectiveness of the proposed methods on 3D location
3. Evaluation of the influence of different cameras on the various 3D location methods

Materials and methods

Preliminaries and overall system

The overall system of the strawberry harvesting robot is shown in Fig.  1. The complete 
picking system consisted of a platform, an arm, a gripper and an arch, which was used to 
reduce the influence of sunlight. This vision system used an RGB-D camera (D435, Intel, 
USA) to acquire RGB and corresponding depth images, while a previous version of the 
vision system (Ge et al., 2019a, 2019b, 2020) utilized an instance segmentation network, 
Mask R-CNN, for the detection and segmentation of targets. The obstacle avoidance algo-
rithm (Xiong et al., 2020a) initially used in the strawberry harvesting machine needed 3D 
bounding boxes of the detected strawberries. However, a faster detection algorithm was 
required to achieve real-time picking. Therefore, in 2020, the network was changed to a 
faster detection algorithm, YOLOv4. The instance segmentation network Mask R-CNN 
outputted pixels of detected targets, which could be transformed into 3D locations accord-
ingly, while the detection network YOLOv4 generated 2D bounding boxes, which could 
contain pixels from other objects that needed to be removed by further processing. The 
motivation of this work was to develop an accurate 3D location method using the outputs 
from the detection network.

Data acquisition

Three-dimensional cameras include various methods for depth estimation, which have dif-
ferent advantages and disadvantages. The RGB-D camera (D435, Intel RealSense Tech-
nology, Colorado, USA) uses patterned structured light to calculate depth values, while 

Fig. 1  The strawberry-harvesting robot
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the other 3D time-of-flight cameras (Pico Zense DCAM710, Vzense Technology, Qingdao, 
China) calculate the distance between the camera and the subject by emitting light and 
recording the time used to receive the returning light. Although neither of these two types 
of cameras are ideal for outdoor usage because of their sensitivity to sunlight, they are 
still widely used in agricultural open field applications. In this paper, both cameras were 
tested in different location methods and their performance was compared for the location 
of small objects, namely strawberries, in polytunnel conditions. The resolution of the col-
lected images was 640 × 480 pixels. RGB and depth data were collected simultaneously 
for each view, and examples of the collected data are shown in Fig. 2a, including the RGB 
image, the depth values visualized in the colorized depth image, and the cameras’ intrinsic 
parameters. The detection results using YOLOv4 are shown in Fig. 2b.

Location methods

Overall method descriptions

The 2D bounding boxes obtained via the YOLOv4 indicated the positions of the detected 
ripe and unripe strawberries in the 2D images. Various possible post-processing steps with 
different location performance and processing speeds could be used to calculate the 3D 
positions of the berries. Although the clustering method could help to remove noise and 
improve the accuracy of 3D locations, the application of clustering and coordinating the 
transformation of all detected pixels would slow down the system. In addition, some noise 
could be removed by implementing segmentation based on colour within the rectangular 
bounding boxes. To investigate the influence of these factors on location performance, 
this paper proposed seven different methods through which to locate targets in a 3D space. 
The workflows and differences of these methods are illustrated in Fig. 3. The output of the 
vision system used to indicate the target locations was a 3D bounding box.

The seven methods were grouped into three categories based on the main data that were 
used to calculate 3D bounding boxes, which were 2D bounding boxes and the depth values, 
2D bounding boxes and the clustered transformed 3D points, and 3D transformed points 
directly, respectively. In the first, the 3D bounding boxes were obtained using the position 
of the detected 2D bounding box and a calculated depth value. This category of method 
was subdivided into three sub-methods, based on whether or not colour-based segmenta-
tion and clustering were applied. In the second category of methods, all detected pixels 

Fig. 2  Data acquired from RealSense D435 and Pico Zense DCAM710 cameras: a data capturing process 
and examples of captured data; b image detection results from YOLOv4
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were transformed into 3D points and a depth value was calculated based on the trans-
formed and clustered 3D points. This category of method was subdivided into two further 
methods, based on the use of colour-based segmentation. This category of methods was 
developed because adjacent noise can be removed by clustering, and it was considered that 
the location would be more accurate after noise removal. In the third major category of 
methods, all detected pixels were transformed into 3D points and the positions of the 3D 
bounding boxes were identified based on the boundary of the transformed points. This cat-
egory of methods was subdivided into two methods, depending on the use of colour-based 
segmentation. In this category of methods, the original points from the camera were used 
to calculate the 3D bounding boxes, thus retaining more information from the 3D points 
captured by the camera.

Location method first category: 2D bounding box and depth values

As shown in Fig.  4a, the corresponding depth values (Vd) of all pixels (Pb) inside the 
detected 2D bounding box were extracted for method one. A median depth value (vdm) 
of Vd was regarded as the depth location of the detected strawberry. To calculate a 3D 
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Fig. 3  Flowchart showing seven possible methods through which to detect the 3D positions of targets
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bounding box for the position of the berry, the top-left and bottom-right co-ordinates of the 
detected 2D bounding box, pt (xt, yt) and pb (xb, yb), and the median depth value vdm, were 
used to calculate a 3D bounding box position cpt (cxt, cyt, czt) and cpb (cxb, cyb, czb). Given 
the intrinsic matrix K of the camera, the 3D location with respect to the camera co-ordinate 
frame was calculated by cpt = vdmK

−1pt . Additionally, cpt and cpb were calculated using 
the same depth value. A 3D bounding box was then constructed using the width of the 2D 
bounding as the depth of the 3D box, since strawberries are mostly symmetrical.

In the second method in this category, the above process (Fig. 4a) was taken one step 
further with the filtration of noisy pixels from the 2D image. In addition to the target berry, 
a detected 2D bounding box might contain pixels from other objects with distinct depth 
values, such as background leaves and other unripe berries. Therefore, a colour-threshold 
processing step was carried out to remove such noise pixels, thereby potentially improv-
ing the accuracy of the 3D location. This image processing method based on colour was 
shown to be simple and fast. However, it would not be stable in an outdoor environment. 
Therefore, a wide range of hue saturation values (HSV) was applied to ensure the inclusion 
of most strawberry pixels. The pixels (Pb_f) that had been filtered were then used to find 

Fig. 4  Illustration of 3D location processes: a method one; b method four; c method seven
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the corresponding depth values (Vd_f) in the depth image. A median depth value vdm_f was 
selected from Vd_f to perform the subsequent steps to calculate the 3D bounding boxes.

Depth values can contain some noise due to the deformation of point clouds and, there-
fore, a clustering method was added in method three to filter any possible noise in the depth 
values. A one-dimensional k-mean clustering method was used to apply on Vd_f to obtain 
the clustered depth values Vd_fc. Therefore, in this method, a median depth value vdm_fc was 
selected from Vd_fc to perform the subsequent steps to calculate the 3D bounding box.

Location method second category: 2D bounding box and clustered 3D points

In methods one to three, described above, one-dimensional depth values were used directly 
to select a depth value and calculate the 3D bounding boxes without completing co-ordi-
nate transformations from the 2D image pixels to the 3D co-ordinates. However, com-
pletely transformed co-ordinates can more precisely represent the point cloud distribution 
in a 3D space, enabling more accurate performance of the clustering method. Therefore, 
in methods four and five, the pixels Pb of the detected 2D bounding box were transformed 
from 2D pixels to 3D points cPb, before the clustering of 3D points to remove noise. The 
3D clustering method used here was the density based DBSCAN algorithm (Ester et al., 
1996). As before, a median depth value was selected to calculate the 3D location of the 
detected berry. In method five, the pixels in the detected berry bounding boxes went 
through a thresholding process based on their HSV values, as described in method two; 
this process was not included in method four. The process used in method four can be 
seen in Fig. 4b. Pb and Vd were used to calculate the complete transformed points cPb and 
then cPb_c was obtained by applying the clustering process. A median depth czm_t from cZt_c 
obtained from cPb_c and the position of 2D bounding box pt and pb were used to calculate 
the 3D bounding box. Note, the values of cZt_c equal to the corresponding Vd.

Location method third category: transformed 3D points

The 3D bounding box location, determined in methods one to five, was calculated from a 
selected depth value and the 2D bounding box co-ordinates. In this way, much of the extra-
neous noise can be removed from the deformed point cloud. However, the final 3D bound-
ing box obtained cannot represent the actual point distribution of the primary 3D points. 
Thus, to investigate how the original 3D points work, methods six and seven were pro-
posed to calculate the 3D bounding box using the original transformed 3D points (Fig. 4c). 
As with methods four and five, methods six and seven transformed the detected 2D straw-
berry pixels Pb or Pb_f to 3D points cPb and a 3D clustering method was used to obtain 
cPb_c and cPb_fc, respectively. However, methods six and seven used the clustered points 
cPb_c or cPb_fc directly to outline the 3D bounding boxes, rather than using a specified depth 
value to calculate them. As can be seen in Fig. 4c, which illustrates the process used in 
method seven, the 3D bounding box was obtained based on the outer contour of the origi-
nal points. In this example, Pb_f were pixels in the 2D box that have been filtered and the 
3D points were cPb_fc.

Location examples: third category of methods

In Fig. 5, two examples, namely e1 and e2, are presented to show the co-ordinate trans-
formation process and the effects of colour filtering and clustering on the transformed 
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3D berry points. The examples from the third category were introduced here because 
they used the transformed 3D points directly and could reflect the effects more intui-
tively. Figure  5a-(1) and a-(2) are the detection results of the RGB image and corre-
sponding colorized depth image, respectively. Figure  5a-(3) is the bounding box area 
of the RGB image, and Fig. 5a-(4) shows the binary results applying the colour filter-
ing. Figure 5a-(5) shows the remaining pixels Pb_f after thresholding, while Fig. 5a-(6) 
shows the visualized corresponding depth values Vd of Pb. However, some RGB pixels 
Pb do not have valid depth values Vd due to the camera’s inaccurate sensing, as can be 
seen from the white 3D points in Fig. 5b. Figure 5c, d and e are the points that were 
transformed using only clustering (cPb_c), only colour filtering (cPb_f), and both colour 
filtering and clustering (cPb_fc), respectively.

In the results with clustering, shown in Fig. 5c, some extraneous noise was removed. 
However, some points that were close to the target berry, such as the leaves, could not 
be removed. Some of those points could, thus, be additionally filtered by applying the 
colour thresholding method on the RGB image, as shown in Fig. 5d and e, in which the 
points of the green leaves on the top of the berry have been removed. Additionally, the 
points transformed using only colour filtering included other noise, such as the random 
points in the background in Fig. 5e1-(d) and other adjacent ripe berry points that could 
not be filtered, like in Fig. 5e2-(d). Clustering can remove some of these kinds of noise. 
The transformed points combining both clustering and filtering, as shown in Fig.  5e, 
were most likely to have the least noisy points. Thus, tests should be designed to investi-
gate the effects of these methods on location results.

Fig. 5  Two examples of the transformation from image to 3D points, both with and without filtering and 
clustering: a-(1) original RGB image with detection results, a-(2) colorized depth image with detection 
results, a-(3) detected berry target in the detected 2D bounding box, a-(4) thresholded binary image of 
(3), a-(5) remaining pixels after colour filtering from (3), and a-(6) corresponding depth image of detected 
berry; b transformed 3D points without any filtering or clustering; c transformed 3D points with clustering; 
d transformed 3D points with filtering; e transformed 3D points with both filtering and clustering
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Evaluation results

Results from different location methods

A total of 267 berries detected in the default mode were used to test the proposed seven 
location methods. The number of located berries, time consumed, and mean and stand-
ard deviations of lengths along the x, y and z axes for each method are summarized in 
Table 1. M_x, M_y and M_z are the average lengths in the three directions, and Std_x, 
Std_y and Std_z are the corresponding standard deviations. The mean and standard 
deviations of the lengths along different axes indicate the sizes of the detected targets 
in 3D and provides information about the distribution of the 3D points of the detected 
target.

The located berries were those with valid 3D points that could be used to generate the 
3D bounding boxes, while the unlocated berries were those that lost some valid 3D points, 
either because the berries were not perceived by the camera, or because the points were 
filtered out during processing. The number of located berries decreased from method one 
to method three because of the additional processing steps, which not only filtered noisy 
points but also sometimes incorrectly filtered out some berries lacking complete depth val-
ues. Figure 6a–c show three examples of incomplete depth values, in each example, image 
No. 6 shows the colorized depth values of the target detected. Figure 6a, b are examples 
of incomplete depth values caused by the occlusion of front stems and adjacent objects, 
while Fig. 6c is an example in which the target was small and far from the camera. A target 
cannot be located if all depth values are lost, such as the case shown in Fig. 6c. While the 
berries in these incomplete depth values were still located using method one, their loca-
tions could be inaccurate because the depth values were mostly from surrounding objects. 
For example, the depth values in Fig. 6b were mainly obtained from berries that were in 
front of the target berry and its own depth values were lost because of the occlusion. Exam-
ples of 3D points of a target without complete points can be seen in Fig. 7, in which most 
of the berry points were lost because of adjacent occlusions. In the cases of methods two 
and three, the depth values were indexed by the filtered colour image Fig. 6—(5), and the 
filtered depth values corresponding to the berry pixels could be used to locate the berry tar-
gets. These examples illustrate that occluded targets such as these can still be located, pro-
viding there are some valid depth values remaining after thresholding. The same applied in 
methods four to seven, in which the berries could only be located if there were some valid 
3D points available after processing.

Table 1  Test results of location methods one to seven using a RealSense camera

Method Berries located Location rate (%) M_x
(mm)

M_y
(mm)

M_z
(mm)

Std_x
(mm)

Std_y
(mm)

Std_z
(mm)

Time
(ms)

1 265 99.3 42.6 55.9 42.6 10.9 12.2 10.9 0.2
2 263 98.5 42.9 56.3 42.9 10.9 11.9 10.9 0.2
3 263 98.5 42.4 56.8 43.4 10.6 11.6 10.6 8.4
4 265 99.3 42.7 55.9 42.7 10.8 11.9 10.8 140.5
5 263 98.5 43.1 56.5 43.1 10.8 11.8 10.8 228.0
6 265 99.3 41.6 52.9 20.8 12.0 14.8 10.2 325.2
7 263 98.5 37.7 47.9 17.6 12.6 15.9 10.0 151.9
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Results from different RealSense camera modes

The RealSense camera supports different modes for depth capturing. Examples of color-
ized depth images captured in four modes, namely default (DF), hand (HN), high accu-
racy (HA) and high density (HD), are shown in Fig.  8b, in which the order of point 
density from high to low is HD, DF, HN, then HA. The location methods were tested in 
these four camera modes to explore the effects of depth values in different modes on the 
results.

Fig. 6  Examples of target berries with incomplete depth values (marked by a white circle): a and b are 
example of berries that are occluded by adjacent objects; c is an example in which the berry was far from 
the camera, consequently losing depth values; (1) RGB image with detected bounding boxes; (2) corre-
sponding colorized depth image; (3) detected target in RGB image; (4) thresholded binary image; (5) thres-
holded RGB image; (6) depth image of the detected target, showing the depth values captured from the 
depth camera

Fig. 7  Examples of detected targets with incomplete 3D points: a and b are similar examples that the 3D 
points of the target berry were lost because of adjacent occlusions, in which the left column of each exam-
ple shows the RGB image of detected target and corresponding colorized depth image, and the right column 
of each example shows the front and top view of the 3D point cloud
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Depth values in HD mode were found to have the maximum density, while the density 
of the depth values in HA mode was much lower but had fewer noisy points and the points 
were more precise. The point densities in the DF and HN modes were in the middle of the 
point densities of the other two modes. Figure 8c, d and e show three sets of strawberry 
3D points in the four modes. The strawberry points on the left column (second column of 
examples (c), (d) and (e)) are the complete transformed points from the depth image, and 
the strawberry points on the right column are the points after filtering and clustering. It can 
be seen in the figure that the point set in HD mode had the most noise, while that in the HA 
mode had the least noise and, thus, represented the berry shape more precisely.

The results of methods two and seven using the four modes are shown in Table  2, 
including the detected and located berries, and mean and standard deviations along three 
directions. Methods two and seven were considered representative methods, with one using 

Fig. 8  Images and 3D data from four camera modes: a RGB images; b correponding colorized depth 
images in four modes; c, d and e the data of three ripe strawberries in the images, in which the first col-
umn is the colorized depth image of the berry; the second column is the original points from the camera; 
the third column is the filtered and clustered points of the berry; and the three images on the top of each 
example are the RGB image, thresholded binary image and thresholded color image of the target berry, 
respectively

Table 2  Results of four camera modes using method two and method seven

DF default, HN hand, HA high accuracy, HD high density, M2 method two, M7 method seven

Berries Detected Berries Located Location 
Rate (%)

M_x
(mm)

M_y
(mm)

M_z
(mm)

Std_x
(mm)

Std_y
(mm)

Std_z
(mm)

DF M2 267 263 98.5 42.9 56.3 42.9 10.9 11.9 10.9
DF M7 267 263 98.5 37.7 47.9 17.6 12.6 15.9 10.0
HN M2 275 268 97.5 43.7 56.6 43.7 9.93 12.2 9.9
HN M7 275 268 97.5 34.7 44.3 15.9 11.8 16.4 8.9
HA M2 288 259 89.9 43.4 56.0 43.4 9.36 11.6 9.4
HA M7 288 257 89.2 28.3 38.6 12.9 12.4 17.4 7.3
HD M2 275 272 98.9 43.6 56.3 43.6 10.4 11.6 10.4
HD M7 275 272 98.9 38.5 47.6 20.5 12.4 15.5 10.1
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the 2D bounding box to calculate the 3D bounding boxes and the other using the original 
points to calculate the 3D bounding boxes.

The results showed that the rate of location was highest in HD mode, followed by the 
rates in the DF, HN and HA modes. This was mainly due to the density of the 3D points. 
As can be seen in Fig. 8, the density of depth points in the four modes, from lowest to high-
est, was found in the HA, HN, DF, then HD modes. These results indicate that the smaller 
the density, the lower the rate of location using the proposed location methods. As men-
tioned above, the berry could be located as long as there were valid depth values. When the 
depth density was low, the possibility of having valid depth points after thresholding and 
clustering was also low, which is why the HA mode, with lowest depth density, delivered 
the lowest rate of location.

The mean lengths and standard deviations using method seven are shown in bold in 
Table 2. The lengths in three dimensions were shortest in the HA mode, followed by those 
in the HN and DF modes, with those in HD mode the longest. Therefore, these results 
indicate that the lower the density, the shorter the length. The lengths of x, y and z in the 
different modes using method 2 were similar, because this method used 2D bounding 
boxes to extract 3D bounding boxes and so the influence of the point density was much 
smaller. Similarly, with regard to deviations in length, no obvious regularity was found 
for the results using method two. Same regularity can be seen from the deviations in the 
length in z direction, in that the lower the density, the smaller the standard deviation in the 
z direction.

Results from two types of cameras

In this study, different cameras were found to affect the quality of the captured 3D points, 
which could consequently affect the location performance. Therefore, the results of the 
structured light camera and time-of-flight camera were compared. The results from the 
RealSense camera have been listed in the above two sections, while the results of the Pico 
Zense camera are shown in below Table 3. The ground truth number of berries from the 
images was 151. The setting of the Pico Zense camera was similar to the HA mode of the 
RealSense camera, so their location rates were close.

The aim of this section was to compare the performances of the two cameras. The 
results from method seven, which used the original points from the camera to locate the 
berry, reflected the most information and, therefore, these are shown in Fig. 9a. It can 
be seen that the most obvious difference from the average results of all methods was 

Table 3  Results of data from the Pico camera

Method Berries located Location rate (%) M_x
(mm)

M_y
(mm)

M_z
(mm)

Std_x
(mm)

Std_y
(mm)

Std_z
(mm)

1 136 90.07 41.6 54.7 41.6 9.1 10.9 9.1
2 134 88.74 42.1 55.2 42.1 8.7 10.7 8.7
3 134 88.74 42.2 55.3 42.2 8.6 10.2 8.6
4 136 90.07 41.5 54.7 41.5 9.0 10.9 9.0
5 134 88.74 42.2 55.2 42.2 8.6 10.7 8.6
6 136 90.07 33.7 46.1 24.0 10.5 13.4 10.8
7 134 88.74 32.3 42.3 21.1 10.0 14.4 8.3
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that the mean length in the z direction of the Pico camera was greater than the z length 
of all modes of the RealSense camera. The average z length of the RealSense camera in 
four modes was 16.7 mm, while the average z length of the Pico camera was 21.1 mm, 
almost half of the diameter of the strawberry, which was closer to the real 3D shape, 
since only half of the target could be captured by a single-view camera along the depth 
direction. This meant that the Pico camera could provide 26.3% more accurate shape 
information along the depth direction. A reasonable explanation for this was that data 
from the Pico camera would more precisely present the 3D shape of the strawberry, 
while that of the RealSense camera may flatten the shape. While the mean lengths from 
the Pico camera were relatively larger, the standard deviations were smallest, except 
for those of the z direction, which were the second smallest, as can be seen in Fig. 9b. 
Since methods six and seven used the original 3D points, the smaller deviation indicates 
that the fluctuation of the data was smaller. The reasons for the larger deviation in the 
RealSense camera could be that the size of the 3D points was more easily changed in 
the different captured frames and also that there might be a large amount of data when 
there was more noise.

To ascertain the size changes of the 3D points from these two cameras, abnormal 
data were defined by checking the size of the detected 3D bounding boxes. Two ranges 
were used to extract the data with large sizes and to collect the corresponding number of 
cases. The first range setting was x > 60 mm, y > 80 mm and z > 60 mm, and the second 
range setting was x in [50–60 mm], y in [70–80 mm], and z in [50–60 mm]. The results 
from methods two, six and seven are shown in Table 4. As there were no significant dif-
ferences among methods one to five, only the results from method two, six and seven 
are listed in the table.

As can be seen from the table, the rate of outliers from the RealSense camera was 
larger than that from the Pico camera for all methods and modes. For example, in the 
first range setting, the rate of outliers for method two was 14.9%, while the rate was 
20.2% for method two in the RealSense default mode. Furthermore, there were no outli-
ers from the Pico camera in the second range setting, while there were quite a few from 
the RealSense camera.

To more fully investigate the reasons for these outliers, the data from the second 
range setting were collected, and the results are summarized in Table 5. Reasons a to c 
in the table were found to lead to insufficient 3D points, resulting in the failure of the 
clustering method. In this case, the noise points could not be filtered, and the noise made 
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the size of the detected bounding box abnormally large. Figure 7. Among the deformed 
data, the largest outlier was 17.3 mm larger than the limit value, and the deformations 
were mostly due to occlusion by stems or adjacent berries.

The total occurrence results showed that 55.7% of the cases were due to reason a. These 
were cases in which strawberries were on the other side of the table, which could still be 
captured by the RealSense camera, as can be seen in Fig. 2, but were not captured by the 
Pico camera. Therefore, insufficient 3D points did not occur with the Pico camera, while 
cases b, c and d did also occur on the Pico camera. For reasons b to d, the larger number of 
outliers indicated that the 3D point shapes of RealSense camera were not as stable as those 
of the Pico camera.

Discussions

Location methods

In this study, the results from methods one to five were found to be comparatively uniform 
because they utilized the position of the 2D bounding box to calculate the 3D bounding 
box, while methods six and seven used original points to calculate the 3D bounding boxes, 
and these may have contained deformed 3D points.

The decrease in the standard deviation from method one to method three could be attrib-
uted either to noise in the 2D image or to the removal of 3D points by the addition of 
thresholding and clustering methods. The same phenomenon was observed in methods 
four to five, and from methods six to seven, because methods five and seven include an 
additional thresholding step to filter out noise, while methods four and seven do not. The 
average lengths of x, y and z for methods one to five were found to be similar, because the 
lengths of x and y were calculated based on the size of the 2D detected bounding boxes 
and, consequently, were less affected by point cloud deformation.

The time (t1–t7) consumed by methods one to seven could be categorized into three 
groups, with group one comprising t1 and t2, group two comprising t3, and group three 
comprising t4–t7. The main difference among these three groups was their clustering 
method, with group one having no clustering method, group two using a k mean clustering 
on the depth values, and group three using a DBSCAN clustering method on the 3D points. 

Table 5  Reasons for outliers of the first range setting (x > 60 mm, y > 80 mm and z > 60 mm)

Total occurrence: a(44), b(12), c(7), d(16)
Reasons: a insufficient 3D points were left because strawberry was too far from the camera; b insufficient 
3D points were left because only a small part of the berry was detected; c insufficient 3D points were left 
because strawberry was occluded by other objects; d highly deformed points

Mode x outliers (> 60 mm) y outliers (> 80 mm) z outliers (> 60 mm)

DF a(7), b(2), c(0), d(3) a(4), b(2), c(0), d(2) a(7), b(2), c(1), d(1)
HN a(4), b(1), c(1), d(2) a(3), b(0), c(1), d(0) a(4), b(2), c(2), d(0)
HA a(0), b(0), c(0), d(1) a(0), b(0), c(0), d(0) a(0), b(0), c(0), d(0)
HD a(5), b(1), c(0), d(3) a(5), b(1), c(0), d(3) a(6), b(1), c(2), d(1)
Total a(15), b(4), c(1), d(9) a(12), b(3), c(1), d(5) a(17), b(5), c(5), d(2)
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Moreover, methods four to seven needed co-ordinate transformations, from 2 to 3D, for all 
the detected and selected pixels in the image, which consumed additional time.

In conclusion, the methods using 2D boxes and a selected depth value to calculate 3D 
bounding boxes were found to be significantly faster, while methods that included thresh-
olding benefited from the removal of some noisy points. Among methods one to five, 
method two was considered the most ideal in terms of both time consumption and effec-
tiveness. Original 3D points from the camera provided direct information about the target 
locations. However, their accuracy was restricted to the performance of the camera. The 
unlocated cases were due to incomplete point clouds, but these cases did not always impact 
negatively on the final picking rate, because even if some berries with incomplete points 
could be located, their locations might be inaccurate if the target was occluded.

RealSense camera modes

By evaluating these two types of methods using the four camera modes, it could be con-
cluded that the rates of location were affected by the different camera modes. In terms of 
the sizes and deviations of the detected 3D bounding boxes, the effects of the different 
modes were not obvious when using method two, while for method seven, as the density of 
the points in different modes increased, so the size and deviation of the detected 3D bound-
ing box rose accordingly.

Types of cameras

The analysis results of the two types of cameras showed that the 3D points from the Pico 
camera had less noise and, thus, could more precisely present the 3D shape of the straw-
berry. This makes it a better option when the goal is to process raw point cloud data, such 
as when using the original points to locate the target or in 3D reconstruction.

Conclusions

This paper proposed seven methods for the location of targets in 3D locations for straw-
berry-harvesting robots. These methods used the detection results of a convolutional neural 
network but differed in their usage of colour filtering and point clustering, and in their 
extraction of the 3D bounding boxes. The methods were tested on data collected in the four 
different modes on a RealSense camera and a Pico Zense camera. Evaluations showed: 
(1) methods using a detected 2D bounding box and single selected depth value to calcu-
late the 3D bounding box were found to be faster and could somewhat avoid the noise 
from deformed 3D points; the clustering algorithm required more computational resources, 
while the thresholding algorithm took relatively less time, and the second method (2D 
bounding box with a median depth value after thresholding) was found to be the optimal 
solution for the strawberry harvester; (2) among the four modes, the HA mode had less 
noise but lower located rates, while the HD mode had more noisy points but obtained a 
higher rate of location; the DF mode could be a compromise choice if the end effector has 
sufficient tolerance to positional errors; (3) the 3D points from the Pico camera had fewer 
noisy points and could more precisely present the 3D shape of the strawberry, thus indicat-
ing that the Pico camera was a better option for applications that require full information of 
the 3D points, including shape.
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