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Abstract
Recently the application of spectral reflection data for the prediction of crop parameters for 
applications in precision agriculture, such as green area index (GAI), total aboveground 
dry matter (DM), and total aboveground nitrogen content (N content) increases. However, 
the usability of vegetation indices (VI) for the prediction of crop parameters is strongly 
limited by the fact that most VI calibrations are only valid for specific crops and growth 
periods. The results of the presented study based on the differentiation of primary (main 
driver of the reflectance signal) and secondary (not directly related to reflectance signal) 
crop parameters. For GAI prediction, a universal (without crop-specific parametrization) 
simple ratio vegetation index (SR) provided good calibration  (R2 adj. = 0.90, MAE = 0.32, 
rMAE = 22%) and evaluation results (MAE = 0.33, rMAE = 18%). The disentangle-
ment of primary and secondary traits allowed the development of a functional two-step 
model for the estimation of the N content during vegetative growth (MAE = 19.2 g N  m−1, 
rMAE = 44%). This model was based on fundamental, crop-specific relationships between 
the crop parameters GAI and N content. Additionally, an advanced functional approach 
was tested enabling the whole-season prediction of DM and confirming a reliable GAI esti-
mation throughout the whole growing season  (R2 = 0.89–0.93).

Keywords Green area index · Total aboveground dry matter · Nitrogen content · Simple 
ratio vegetation index · Functional two-step model

Introduction

Key traits for the purpose of precision farming, yield estimation, global carbon cycling 
or the calibration and application of crop growth models, such as green area index 
(green plant area per ground area; GAI), leaf area index (LAI), total aboveground dry 
matter (DM), and total aboveground nitrogen content (N content) are often required 
in a high spatial and temporal resolution. These traits are derivable from spectral 
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reflectance measurements which are detectable by several carrier systems, such as satel-
lites, unmanned aerial vehicles (UAVs) and handheld devices (Bukowiecki et al., 2021; 
Gerighausen et al., 2015; Hansen & Schjoerring, 2003; Müller et al., 2008; Rosso et al., 
2022). In general, the advantageous features of spectral remote sensing are speed, non-
destructivity, and scalability. Hence, over the last decades, the application of spectral 
reflectance data for the prediction of various crop parameters in the agricultural context 
increased continuously (Fu et al., 2021; Weiss et al., 2020).

The spectral reflectance signal of a crop is primarily determined by the specific prop-
erties of its green parts and the probability that a light quantum hits either the crop or 
the soil surface (Christensen & Goudriaan, 1993; Gitelson et  al., 2003; Tucker et  al., 
1981). Therefore, Weiss et  al. (2020) proposed the classification of crop parameters 
in primary and secondary traits, whereby primary traits are involved in the process of 
radiative transfer, and hence, are directly derivable from spectral reflectance measure-
ments. GAI is a key influential factor of these primary traits (Weiss et al., 2020). This is 
reflected in the existence of vegetation indices (VIs) for the estimation of GAI which are 
applicable throughout the whole growing season (Bukowiecki et al., 2020) and do not 
require a crop-specific parametrization (Delegido et al., 2013; Dong et al., 2020; Kira 
et al., 2016; Nguy-Robertson et al., 2012; Viña et al., 2011). From this, the first working 
hypothesis of the presented study was deduced:

1. GAI is the major determinant of spectral reflectance. Therefore, VIs for the GAI estima-
tion can be calibrated uniformly for a range of crops and applied throughout their whole 
growing season.

In contrast, the estimation of secondary variables (e.g., N content or DM) must contain 
crop-specific factors as the relationship between GAI and these traits varies between 
crops (Lemaire et al., 2008). Nevertheless, such crop parameters play an important role 
in the application of some agronomic traits. For example, a spatial and temporal knowl-
edge of the crop nitrogen (N) status is highly relevant for an accurate site-specific fer-
tilizer management. Thus, research forges ahead to find new options to derive informa-
tion about secondary crop parameters from spectral reflectance data. A well working but 
very time-consuming and labor-intensive option is to fit daily calibrations (Ma et  al., 
2019). An alternative method is to couple simple crop growth models with the primary 
trait GAI and to deduce secondary traits as state variables (Claverie et al., 2012; Dong 
et al., 2020; Fu et al., 2021; Gerighausen et al., 2015; Weiss et al., 2020).

Recently, Lemaire et  al. (2021) argued for the usage of spectral reflectance data in 
the agricultural context by a coherent theoretical framework which should be based on 
existing fundamental relationships to apply this technology in a useful and robust way. 
Those fundamental relationships often can be found between the secondary traits N con-
tent as well as DM and the primary trait GAI. However, these correlations are always 
crop-specific, restricted to the vegetative growth period and affected by several other 
factors, such as N treatment, environment, and water status (e.g., Lemaire et al., 2007; 
Muchow & Sinclair, 1994; Vos et al., 2005). This led to the second working hypothesis 
of the presented study:

2. The disentanglement of the spectral reflection signal and secondary traits by the consid-
eration of existing fundamental relationships provides the development of more robust 
prediction models for the estimation of secondary variables, such as DM and N content.
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Robust and easily extensible models for the prediction of the crucial crop parameters GAI, 
DM, and N content by the measurement of spectral reflectance might be achieved more 
reliable by the combination of both working hypotheses because confounding variables as 
well as differing growth periods might be detected more directly. Additionally, the combi-
nation of a universal GAI model and fundamental relationships between primary and sec-
ondary traits would permit the usage of larger and incomplete datasets.

To test the working hypotheses, a large unpublished dataset was analyzed. Data were 
collected in the last two decades and comprised four crops (winter oilseed rape, winter 
wheat, winter barley, and silage maize) and different N treatments ranging from no fertili-
zation to substantial oversupply.

Materials and methods

Study site and field trials

Data were collected between 2003 and 2020 in several field trials containing different crops 
(winter wheat, winter barley, winter oilseed rape, and silage maize) and N treatments. All 
field trials were carried out in Northern Germany at the Hohenschulen Experimental Farm 
of the Kiel University (10.0 E, 54.3 N, 30 m a.s.l.). The study site is characterized by Luvi-
sol soils with sandy loam textures in the topsoil (Food and Agriculture Organization of 
the United Nations, 2014). The long-term mean annual temperature is about 8.8  °C, the 
annual precipitation averages 806 mm, thereof 462 mm occurs during main growing sea-
son between March and September.

Data collection

Datasets

This study is based upon three datasets described in more detail below (Fig. 1; Table 1). 
All datasets contained different N treatments ranging from no fertilization to substantial 
oversupply and different crops. Dataset I and Dataset II provide data for the calibration and 
evaluation of the prediction models during vegetative growth for the target crop parameters 
GAI, DM, and N content. Dataset III comprise data collected during the whole growing 
season and was used for the development of an advanced functional model for whole-sea-
son DM prediction (Fig. 1).

Dataset I consists of 1482 samples in total collected in nine field trials between 2005 
and 2018. It was split in two subsets: Calibration Set and Evaluation Set (Fig. 1; Table 1). 
To create two independent datasets, measurements collected on a certain sampling date 
were either assigned to the Calibration Set or to the Evaluation Set. Thus, erroneous over-
fitting due to date-specific measurement errors was adequately penalized in the evaluation. 
The Calibration Set comprises two crops (winter wheat and winter oilseed rape) and GAI 
ranged from 0 to 6.7, DM ranged from 0.8 to 685 g DM  m−2, and N content ranged from 
0.03 to 20.3 g N  m−2. The independent Evaluation Set contains four crops (winter wheat, 
winter oilseed rape, silage maize, and winter barley) and includes GAI values ranging from 
0.03 to 7.7, DM values ranging from 0.3 to 809 g  m−2, and N contents values ranging from 
0.02 to 20.4 g N  m−2. Data for both sets were collected during vegetative growth between 
BBCH main stage 1 (leaf development) and the end of BBCH main stage 5 (inflorescence 
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emergence). For each data point, spectral reflection measurements in parallel with destruc-
tive plant samplings were available. Not every crop parameter was captured at each sam-
pling date, thus, the number of data points vary for the different calibration and evaluation 
purposes (Table 1).

Dataset II consists of 2224 data points collected in twelve field trials between 2003 
and 2020 (Table 1). It includes the crops winter wheat, winter barley, winter oilseed rape, 

Fig. 1  Flowchart of the considered datasets and the main processes of the data analysis

Table 1  Overview of the data comprised in Dataset I, Dataset II, and Dataset III (n represents the number 
of collected data)

GAI green area index, DM total aboveground dry matter, N content total aboveground nitrogen content

Dataset Crop GAI (n) DM [g  m−2] (n) N content [g  m−2] (n)

Dataset I
(Calibration Set)

Winter Oilseed Rape 0.02–3.2 (231) 0.8–537 (231) 0.03–20.1 (231)
Winter Wheat 0–6.7 (206) 31–685 (126) 1.1–20.3 (126)

Dataset I
(Evaluation Set)

Winter Oilseed Rape 0.02–2.7 (192) 1–284 (215) 0.05–13.1 (119)
Silage Maize 0.03–5 (154) 0.3–669 (235) 0.01–17.3 (235)
Winter Barley 0.1–5.8 (164) 17–809 (198) 0.3–17.8 (198)
Winter Wheat 0.4–7.7 (329) 15–788 (119) 0.6–20.4 (119)

Dataset II Winter Oilseed Rape 0.01–4.5 (530) 1–485 (530) 0.09–21.9 (530)
Silage Maize 0.04–6.4 (123) 1–707 (123) 0.06–19.8 (123)
Winter Barley 0.07–4.4 (95) 7–625 (95) 0.3–10.6 (95)
Winter Wheat 0.01–6.5 (696) 0.3–929 (696) 0.01–20.3 (696)

Dataset III Silage Maize 35–1925 (157)
Winter Barley 24–1705 (65)
Winter Wheat 15–2053 (216)
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and silage maize. Samples were harvested during vegetative growth between BBCH main 
stage 1 (leaf development) and the end of BBCH main stage 3 (stem elongation) for winter 
wheat, winter barley, and silage maize or the end of BBCH main stage 5 (inflorescence 
emergence) for winter oilseed rape, respectively. GAI, DM, and N content were destruc-
tively determined for each sample.

Dataset III consists of measurements and samplings collected in a crop rotation field 
trial between 2016 and 2018 (Table 1). Spectral reflectance data were collected for winter 
wheat, winter barley, and silage maize weekly to biweekly between March and harvest. 
Destructive DM samples were collected in several plots throughout the growing season. 
Plots were harvested by combine and additionally by hand.

Plant samplings

In two experiments of the Evaluation Set (Dataset I) GAI data were captured non-destruc-
tively using a plant canopy analyzer (LAI-2000 or LAI-2200, LiCor Inc., NE, USA). Apart 
from that, GAI, DM, and N concentration were determined by destructive sampling of the 
aboveground plant material of a defined and representative area of the plot (0.25  m2 for 
winter wheat and winter barley, 1  m2 for winter oilseed rape, 10 plants for silage maize). 
After determining the developmental stage by the BBCH-scale (Meier, 1997) the samples 
were further processed. Collected plants were separated in green leaves, green stems, and 
senescent parts of the plant. The green leaf area index and green stem area index were 
determined using a LI-3100 leaf area meter (LiCor Inc., NE, USA), and GAI was calcu-
lated as their sum. Subsequently, the samples were dried, weighted, ground and the N con-
centration was analyzed by near infrared spectroscopy (NIRS; NIRSystems 5000 scanning 
monochromator, FOSS GmbH, Rellingen, Germany). Therefore, the N concentration of 
a calibration and an evaluation dataset was determined using a Vario Max CN analyzer 
(Elementar Analysensyteme, Hanau, Germany). The N content of the aboveground bio-
mass was calculated by multiplying the total aboveground dry matter and the determined N 
concentration.

Spectral reflectance measurements

Hyperspectral reflectance measurements were carried out with a HandySpec® Field spec-
trometer (tec5 AG, Oberursel, Germany), a handheld device with an opening angle of 
25° that is hold about 1 m above the crop and measures in 10 nm steps between 400 and 
1000 nm. At the beginning of each sampling date, the optical sensors of the spectrometer 
were technically calibrated with a white standard. Due to noise at the end of the measured 
spectrum, only data between 400 and 900 nm were used for further analyses. In total, three 
to five measurements per sampling plot were averaged to represent the reflectance spec-
trum of the whole plot. In Dataset I, the hyperspectral reflectance measurements were car-
ried out directly before destructive sampling at the defined sampling area of the plot. The 
measurements in Dataset III were distributed over the entire plot (plot size: 3 × 7 m).

Data processing and statistical analysis

Data processing and statistical analyses were conducted in the statistical environment R 
(R Core Team, 2000). For visualization, the package ggplot2 was used (Wickham, 2016). 
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In Fig. 1, the main processes of calibration, evaluation, and application were illustrated to 
clarify the procedure of the data analysis.

Model calibration and evaluation of simple ratio vegetation indices for the target crop 
parameters

It is common practice to convert the spectral reflectance at two or more wavelengths into 
VIs which can be formulated in different ways (e.g., Bukowiecki et al., 2020; Christensen 
& Goudriaan, 1993; Clevers & Kooistra, 2012; Demetriades-Shah et  al., 1990). Simple 
ratio vegetation indices (SRs), initially published by Jordan (1969), divide the reflectance 
in one wavelength by another. Since SRs are easily-to-handle, they are frequently used. 
SRs have been shown to be sensitive and linear correlated to several crop parameters 
(Bukowiecki et al., 2020; Clevers & Gitelson, 2013; Serrano et al., 2000; Viña et al., 2011).

The entire Calibration Set (Dataset I) was analyzed to calibrate universal (without 
crop-specific parametrization) SRs for the target crop parameters GAI  (GAISRuni), DM 
 (DMSRuni), and N content  (NSRuni). Additionally, the Calibration Set was split in the indi-
vidual crops. Hence, the calibration of crop-specific SRs for winter wheat to estimate GAI 
 (GAISRww), DM  (DMSRww), and N content  (NSRww), and for winter oilseed rape to estimate 
GAI  (GAISRwosr), DM  (DMSRwosr), and N content  (NSRwosr) was possible. Therefore, simple 
linear and quadratic regressions between the target crop parameters (GAI, DM, and N con-
tent) and all possible wavelength combinations (n = 2550) were fitted. The superior mod-
els and the associated best wavelength combinations for the individual SRs were selected 
by comparing the adjusted correlation coefficient  (R2 adj.) of the linear and the quadratic 
equations.

The performance of the established SRs was evaluated in the independent Evaluation 
Set (Dataset I). The mean absolute error (MAE) and the relative MAE (rMAE) were used 
for the assessment of the applied models. To examine whether crop, N treatment, year, 
and the combination of these factors affected the models, the  R2 adj. for the simple linear 
regression, the linear regression with every additional factor, and the linear regression with 
all additional factors, and their interactions were calculated. The additionally explained 
variance was the difference between the base model and the extended models.

Calibration and evaluation of functional two‑step models for secondary crop 
parameters

The functional two-step DM model  (DM2step) and a functional two-step N content model 
 (N2step) were developed assuming a strong but crop-specific correlation between GAI and 
DM or GAI and N content, respectively.

According to Lemaire et al. (2007), GAI and DM are allometrically related. This rela-
tion is described by a power function:

where parameter c is the so-called “leafiness coefficient” and represents the GAI of the 
crop at DM = 1 t  ha−1. Parameter c depicts morphological differences and is crop-specific 
(Lemaire et al., 2007). Parameter a is the ratio between the relative rate of GAI expansion 
and the relative rate of DM accumulation.

In addition, a linear relationship between GAI and N content exists (Lemaire et  al., 
2007):

(1)GAI = c × DMa,
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Parameter b is the accumulated N content of the crop at DM = 1 t  ha−1 and represents the 
ability of a crop to accumulate N during the early growth period. Parameter b differs between 
C3 and C4 crops due to metabolic differences, but it is rather constant for species within these 
groups (Lemaire et al., 2007). Parameter c is the “leafiness coefficient” described above.

In Dataset II the crop-specific relations between GAI, DM, and N content, and the crop-
specific response to N deficiency were investigated. As stated by Lemaire et al. (2007), power 
functions between GAI and DM were calculated (Eq. 1). Linear and power functions were fit-
ted between the crop parameters GAI and N content because non-linearity was apparent in the 
presented dataset. The superior models were selected by comparing the  R2 adj.

The evaluation of  DM2step and  N2step was conducted in the Evaluation Set (Dataset I). 
Therefore, GAI was predicted by  GAISRuni, and the estimated values were multiplied with 
the detected crop-specific correlations between GAI and the secondary crop parameters. The 
assessment of the functional two-step models was carried out in the same way as for the SRs 
described above.

Development of an advanced functional model for DM prediction

An advanced functional model for DM prediction throughout the whole growing period was 
devised.

According to Monteith (1977), the generated DM is the product of intercepted radiation 
(Q) and radiation use efficiency (RUE). RUE is defined as ratio between Q and DM in a cer-
tain time interval:

GAISRuni was applied to the spectral reflectance measurements in Dataset III to predict GAI 
at every measuring date. The GAI development on plot level for a daily timestep was assigned 
by linear interpolation. Based on this data, the amount of the intercepted radiation (Q) can be 
described by Beer-Lambert law (Monsi & Saeki, 1953):

where  IPAR is the incoming photosynthetically active radiation and k the extinction coeffi-
cient.  IPAR is defined as total global radiation multiplied by the factor 0.5 and was weighted 
by a crop-specific temperature weighting factor. Therefore, a trapezoidal function ranging 
between 0 and 1 was used. The transition points were at 2.5, 9.5, 20, and 35 °C of the daily 
mean temperature for winter wheat and winter barley, and at 6, 16, 28, and 34 °C of the 
daily mean temperature for silage maize. For winter wheat and winter barley k was fixed at 
0.729, and for silage maize k was fixed at 0.654 (own unpublished measurements).

(2)N content =
b

c
× GAI.

(3)DM = RUE × Q.

(4)Q = IPAR × (1 − e
−k×GAI),
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Results

Model calibration and evaluation of simple ratio vegetation indices for the target 
crop parameters

In most cases, a quadratic fit between the SRs and the crop parameter performed best 
(highest  R2 adj.), except for the crop-specific GAI and N content models of winter wheat 
(Table 2). In case of the secondary crop parameters DM and N content, the data of all crops 
of the Calibration Set except of winter oilseed rape, were restricted to samples collected 
before the end of BBCH main stage 3 (stem elongation). Because samples collected after-
wards caused large scattering mainly due to underestimation (data not shown).

The  R2 adj. of the calibration of all tested GAI models (universal and crop-specific) 
ranged from 0.89 to 0.91. The MAEs were between 0.18 and 0.37, and the rMAEs were 
between 18 and 22% (Table  2). The MAEs and the rMAEs of the evaluation were low 
as well (Table  3; Fig.  2).  GAISRuni provided adequate GAI estimations for each crop of 
the Evaluation Set (MAE = 0.22–0.42, rMAE = 16–24%) and the model was not improved 
by additional factors (Tables  3, 4). The slope (0.871) of the linear regression between 
measured and predicted values indicated a slight underestimation of high GAI values by 
 GAISRuni. However, no obvious saturation effects occurred in the Evaluation Set (Fig. 2).

The calibration of crop-specific SRs for the estimation of the N content resulted in 
higher assessment variables compared to the universal SR (Table  2). The evaluation of 
 NSRuni was affected by crop, year, and N treatment resulting in little saturation effects and 
scattering (Fig. 2; Table 4).

The universal and crop-specific DM models achieved MAEs between 27.02 and 
38.1 g   m−2 and rMAEs between 16 and 28% in the calibration. The  R2 adj. ranged from 

Table 2  Best wavelength combinations for the estimation of green area index (GAI), total aboveground dry 
matter (DM), and total aboveground nitrogen content (N content) by simple ratio vegetation indices (SR)

VI vegetation index; R2 adj. adjusted correlation coefficient; MAE mean absolute error; rMAE relative MAE
GAISRww crop-specific SR for GAI prediction of winter wheat, GAISRwosr crop-specific SR for GAI predic-
tion of winter oilseed rape, GAISRuni universal SR for GAI prediction, NSRww crop-specific SR for N con-
tent prediction of winter wheat, NSRwosr crop-specific SR for N content prediction of winter oilseed rape, 
NSRuni universal SR for N content prediction, DMSRww crop-specific SR for DM prediction of winter wheat, 
DMSRwosr crop-specific SR for DM prediction of winter oilseed rape, DMSRuni universal SR for DM predic-
tion

Crop parameter SR VI Equation R2 adj. MAE (rMAE)

GAI R760/R740 GAISRww – 10.79 + 10.36 ⋅ SR 0.91 0.37 (18%)
R750/R730 GAISRwosr – 2.71 + 0.315 ⋅ SR + 2.284 ⋅  SR2 0.89 0.18 (22%)
R810/R710 GAISRuni – 0.97 + 0.91 ⋅ SR – 0.02 ⋅  SR2 0.90 0.32 (22%)

N content [g  m−2] R780/R740 NSRww – 30.68 + 29.57 ⋅ SR 0.93 0.94 (14%)
R750/R730 NSRwosr 8.47–38.43 ⋅ SR + 29.5 ⋅  SR2 0.92 0.91 (21%)
R720/R710 NSRuni 18.72–40.47 ⋅ SR + 22.25 ⋅  SR2 0.88 1.24 (24%)

DM [g  m−2] R760/R750 DMSRww – 2747 + 1921 ⋅ SR – 801 ⋅  SR2 0.92 36.23 (16%)
R770/R430 DMSRwosr – 41.6 + 17.1 ⋅ SR + 0.12 ⋅  SR2 0.85 27.02 (28%)
R810/R670 DMSRuni – 15.1 + 23.02 ⋅ SR – 0.26 ⋅  SR2 0.87 38.10 (27%)
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0.85 to 0.92 (Table 2). However, the evaluation revealed crop, year, and N treatment effects 
(Fig. 2; Table 4). This led to much higher MAEs (50.41–63.48 g  m2) and rMAEs (29–48%) 
regarding the evaluation (Fig. 2; Table 3).

Table 3  Mean absolute error (MAE) and the relative MAE (rMAE) of the established vegetation indices 
(VIs) for the estimation of green area index (GAI), total aboveground dry matter (DM), and total above-
ground nitrogen content (N content) for the crops winter wheat (WW), winter oilseed rape (WOSR), winter 
barley (WB), and silage maize (SM) comprised in the Evaluation Set (Dataset I)

GAISRww crop-specific SR for GAI prediction of winter wheat, GAISRwosr crop-specific SR for GAI predic-
tion of winter oilseed rape, GAISRuni universal SR for GAI prediction, NSRww crop-specific SR for N content 
prediction of winter wheat, NSRwosr crop-specific SR for N content prediction of winter oilseed rape, NSRuni 
universal SR for N content prediction, N2step two-step model for N content prediction, DMSRww crop-specific 
SR for DM prediction of winter wheat, DMSRwosr crop-specific SR for DM prediction of winter oilseed rape, 
DMSRuni universal SR for DM prediction, DM2step two-step model for DM prediction

Crop parameter VI MAE (rMAE)

WW WOSR WB SM 

GAI GAISRww 0.41 (15%)
GAISRwosr 0.25 (25%)
GAISRuni 0.42 (16%) 0.24 (24%) 0.35 (21%) 0.22 (20%)

N content [g  m−2] NSRww 1.62 (24%)
NSRwosr 1.09 (43%)
NSRuni 1.53 (22%) 1.76 (69%) 1.63 (34%) 2.43 (68%)
N2step 1.38 (32%) 0.68 (16%) 0.87 (20%) 0.93 (21%)

DM [g  m−2] DMSRww 50.41 (29%)
DMSRwosr 52.23 (60%)
DMSRuni 68.60 (39%) 55.61 (64%) 89.73 (57%) 45.98 (60%)
DM2step 50.46 (38%) 30.60 (23%) 91.81 (69%) 32.02 (24%)

Fig. 2  Evaluation of the universal simple ratio vegetation indices for the estimation of green area index 
 (GAISRuni), total aboveground N content  (NSRuni), and total aboveground dry matter  (DMSRuni). Equation, 
correlation coefficient  (R2), mean absolute error (MAE), relative MAE (rMAE), and number of observa-
tions (n) of the linear regression of measured vs. predicted values (different colors and shapes represent 
different crops of the Evaluation Set)
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Calibration and evaluation of functional two‑step models for secondary crop 
parameters

The functional two-step models for the estimation of the secondary crop parameters DM 
 (DM2step) and N content  (N2step) based upon the assumption of a strong but crop-specific 
correlation between these secondary traits and the primary trait GAI. GAI was predicted 
by  GAISRuni and multiplied with the species-, N treatment-, and period-specific correlations 
between the crop parameters detected in Dataset II (Fig. 3).

A power function characterized the relation of GAI and DM for all tested crops (Fig. 3). 
The correlations for winter wheat and winter barley of the plots without N fertilization dif-
fered from the plots with added N fertilization. For silage maize and winter oilseed rape, no 
impact of the N treatment occurred.

The power function approach was also used to depict the relation between GAI and N 
content for winter wheat and winter barley. In contrast, the crops silage maize and winter 
oilseed rape showed a linear correlation (Fig. 3). In silage maize, winter wheat, and win-
ter barley the correlations of the plots without N fertilization differed from the plots with 
added N fertilization. In some crops, additionally, significant differences between higher 
N treatments occurred. However, the slopes of the equations varied only slightly. Thus, 
these differences were regarded to be not relevant for the application in the functional two-
step N content model. Only winter oilseed rape did not react on N treatment. However, the 
relationship between GAI and N content was different depending on the sampling period 
(autumn and spring). For the fertilized plots and the data from spring samplings, respec-
tively, a steeper slope was found.

Table 4  Adjusted correlation coefficient  (R2 adj.) and the fraction of additionally explained variance due 
to the factors crop (C), N treatment (N), harvest year (Y), and the combination of these (C x N x Y) of the 
established vegetation indices (VIs) for the estimation of green area index (GAI), total aboveground dry 
matter (DM), and total aboveground nitrogen content (N content) in the Evaluation Set (Dataset I)

GAISRww crop-specific SR for GAI prediction of winter wheat, GAISRwosr crop-specific SR for GAI predic-
tion of winter oilseed rape, GAISRuni universal SR for GAI prediction, NSRww crop-specific SR for N content 
prediction of winter wheat, NSRwosr crop-specific SR for N content prediction of winter oilseed rape, NSRuni 
universal SR for N content prediction, N2step two-step model for N content prediction, DMSRww crop-specific 
SR for DM prediction of winter wheat, DMSRwosr crop-specific SR for DM prediction of winter oilseed rape, 
DMSRuni universal SR for DM prediction, DM2step two-step model for DM prediction

Crop parameter VI R2 adj. Fraction of additional explained variance

C N Y C x N x Y 

GAI GAISRww 0.858 0.028 0.022 0.032
GAISRwosr 0.672 0.06 0.115 0.122
GAISRuni 0.899 0.005 0.006 0.011 0.023

 N content NSRww 0.829 0.05 0.077 0.117
NSRwosr 0.799 0.108 0.066 0.135
NSRuni 0.809 0.055 0.056 0.05 0.125
N2step 0.879 0.025 0.022 0.011 0.066

DM DMSRww 0.773 0.08 0.108 0.151
DMSRwosr 0.669 0.026 0.104 0.146
DMSRuni 0.708 0.024 0.037 0.084 0.177
DM2step 0.771 0.076 0.058 0.091 0.16
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The close relations between the crop parameters existed until BBCH stage 39 (flag 
leave fully unrolled / 9 or more nodes detectable) for all tested crops excluding winter 
oilseed rape. Winter oilseed rape showed a stable correlation up to BBCH stage 59 (first 

Fig. 3  Relationship of green area index (GAI) and total aboveground dry matter (DM) and relationship of 
GAI and total aboveground N content (N content) for the crops of Dataset II (silage maize, winter barley, 
winter oilseed rape and winter wheat) with no N-fertilization and added N-fertilization. Equation and cor-
relation coefficient  (R2) of the relationship, and number of observations (n) (different fill colors represent 
different harvest years, different shapes and different border colors represent different sampling periods)
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petals visible, flower buds still closed). Afterwards the correlations between GAI, DM, 
and N content collapsed (data not shown).

The two-step approach for N content estimation  (N2step) had a  R2 of 0.88, a MAE of 
0.95 g  m−2, and a rMAE of 22% (Fig. 4).  N2step was not improved by crop, year, and N 
treatment, or the combination of these as additional factors (Table  4). The N content 
was well predictable for all crops of the Evaluation Set by using this advanced two-step 
N model (Fig. 4).

The evaluation of  DM2step resulted in a  R2 of 0.77, a MAE of 49.92  g  m−2, and a 
rMAE of 37% and did not show saturation effects (Fig.  4). However, the model was 
biased by additional factors, particularly high by the factor harvest year (Table  4). 
For example, the accumulated DM of winter wheat and winter barley in 2018 was 
overestimated.

Development of an advanced functional model for DM prediction

An advanced functional model for DM prediction throughout the whole growing period 
was devised. The approach based upon a close crop-specific correlation between the 
accumulated DM and the intercepted radiation.

GAISRuni was applied to Dataset III, and a plausible GAI development through the 
whole growing season was estimated for each plot (data not shown). For each crop and 
at any point in time, the calculated radiation absorption showed a close correlation with 
the accumulated DM (Fig. 5). Nevertheless, the relation was affected by crop, harvest 
year, and N treatment. The RUEs for winter wheat, winter barley, and silage maize were 
2.06, 2.23 and 2.22 g  MJ−1, respectively (Fig. 5).

Fig. 4  Evaluation of the functional two-step models for the estimation of total aboveground N content 
 (N2step) and total aboveground dry matter  (DM2step). Equation, correlation coefficient  (R2), mean absolute 
error (MAE), relative MAE (rMAE), and number of observations (n) of the linear regression of measured 
vs. predicted values (different colors and shapes represent different crops of the Evaluation Set)
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Discussion

Model calibration and evaluation of simple ratio vegetation indices for the target 
crop parameters

The best wavelength combination for the universal GAI model  (GAISRuni) combined one 
wavelength of the near-infrared (NIR) and one of the red-edge (RE) region (Table 2). 
This was consistent with several other studies in which the RE region was found to be 
very important for the prediction of various crop parameters (e.g., Delegido et al., 2013; 
Gitelson et al., 2005; Kanning et al., 2018). But for convincing results the exact position 
of the wavelength in the rather small RE range is crucial (Kira et al., 2016; Thenkabail 
et  al., 2000). However, this might cause problems when using data provided by mul-
tispectral remote sensing systems with restricted fixed wavebands, such as Sentinel-2 
(Bukowiecki et al., 2021).

In general accordance with many studies (e.g., Bukowiecki et  al., 2020; Duveiller 
et al., 2011; Haboudane et al., 2004; Kira et al., 2016; Müller et al., 2008; Nguy-Rob-
ertson et  al., 2012), in the presented study crop-specific and universal SRs for GAI 
estimation were derived from the spectral reflectance measurements. The crop-specific 
SRs did not outclass the universal approach  (GAISRuni) neither in the calibration nor in 
the evaluation (Tables 2, 3). Additionally, it should be stressed that  GAISRuni was even 
able to predict reliable GAI values for crops which were not included in its calibration 
(Fig. 2). The high independence from crop and nitrogen fertilization (Table 4) was sur-
prising, considering the strong effect of other canopy and leaf properties like leaf angle 
and chlorophyll concentration that are predicted by radiative transfer models (Berger 
et  al., 2018). No influence of N fertilization and wheat cultivar have been observed 
before by Bukowiecki et al. (2020). This discrepancy between process understanding 
and empirical data seems to be insufficiently understood. Possibly, the effects of differ-
ent optical leaf properties and canopy architectures are just moderate in comparison to 

Fig. 5  Correlation of the cumulated intercepted radiation and the accumulated total aboveground dry matter 
(DM) for the crops of Dataset III (silage maize, winter barley, and winter wheat). Equation and correlation 
coefficient  (R2) of the relationship (different colors represent different harvest years, different shapes repre-
sent different developmental stages)



620 Precision Agriculture (2023) 24:607–626

1 3

other sources of variation. Nevertheless, on the base of the given process understand-
ing all transfers of the empirical equations should be conducted with great care.

The quadratic fit of the universal GAI model and the slope of the evaluation (0.871) 
indicated that higher GAI values were slightly underestimated by  GAISRuni (Table  2; 
Fig. 2). Many published models are only sensitive to a specific range of GAI values. 
This strongly limits their applicability because, for example, GAIs exceeding certain 
values are not predictable in a conceiving way (Bukowiecki et  al., 2020; Delegido 
et  al., 2013; Nguy-Robertson et  al., 2014; Rosso et  al., 2022; Serrano et  al., 2000). 
However, Dataset I included a very wide range of GAI values (0–7.7, Table  1), and 
in the evaluation no obvious saturation was apparent (Fig.  2). Hence,  GAISRuni was 
assumed to be well applicable at least for the crops and the GAI range considered in 
this study and the close relation between GAI and the spectral reflectance signal was 
confirmed.

The established universal SRs for the prediction of DM and N content were not 
robust, i.e., affected by harvest year, crop, and N treatment (Fig.  2; Table  4). How-
ever, also the evaluation of the crop-specific SRs showed scattering and saturation due 
to confounding factors resulting in sharply increased MAEs and rMAEs (Table  3). 
Saturating and varying (by harvest year, growing stage, and N treatment) relation-
ships between VIs and these crop parameters have often been mentioned in literature 
(e.g., Basso et  al., 2016; Hansen & Schjoerring, 2003; Müller et  al., 2008; Serrano 
et al., 2000; Winterhalter et al., 2011). A close nearly linear relation between spectral 
reflectance and GAI is a well-known fact (e.g., Christensen & Goudriaan 1993; Tucker 
et al., 1981; Weiss et al., 2020) and was also apparent in Dataset I (Fig. 2; Tables 2, 3). 
Hence, the results concerning SRs for the prediction of N content and DM indicated 
that the relationship between these crop parameters and the spectral reflection was 
affected by further confounding factors. Strong correlations between DM, N content, 
and GAI during the vegetative growth period are accepted (e.g., Gabriel et al., 2017; 
Lemaire et al., 2008; Vos & van der Putten, 1998). However, GAI and DM as well as 
N content and DM are allometrically related (Lemaire et al., 2007; Ratjen et al., 2018). 
Presumably, the strong saturation effects determined for  DMSRuni (Fig. 2) were due to 
the non-linear relation between GAI and DM in contrast to the nearly linear relation 
between GAI and the spectral reflectance. Additionally, the relation between GAI and 
N content is crop-specific and depends on metabolic differences, the “leafiness coef-
ficient”, and the response patterns towards N deficiency. This results in a different DM 
accumulation or N content at the same GAI unit depending on the crop species and the 
N availability (Lemaire et al., 2008; Ratjen et al., 2018). Obviously, such differences 
were not depictable by the established SRs. This was supported by the fact that Dataset 
I (except of winter oilseed rape) had to be restricted to samples collected before the 
end of BBCH main stage 3 (stem elongation). Afterwards, N and the accumulated DM 
are stored in parts of the plants that are no longer green (Christensen & Goudriaan, 
1993).

All in all, these results supported the classification of crop parameters in primary 
and secondary traits as proposed by Weiss et  al. (2020). Additionally, the first work-
ing hypothesis was partly confirmed: GAI can be assumed as the primary determinant 
of the spectral reflectance. Hence, VIs for the estimation of this crop parameter can be 
calibrated universally over a wide range of different crop species. In contrast, secondary 
traits, such as N content and DM, are not directly derivable from spectral reflectance 
measurements because they depend on underlying factors which do not directly affect 
spectral reflectance signal.
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Calibration and evaluation of functional two‑step models for secondary crop 
parameters

Functional two-step models were proposed for the prediction of the secondary crop 
parameters DM  (DM2step) and N content  (N2step). The approach based on the disentan-
glement of the primary and the secondary traits and existing fundamental relationships 
between these crop parameters (Lemaire et al., 2019). Close crop-specific correlations 
between GAI and DM or GAI and N content, respectively, were confirmed in Dataset 
II supporting findings from other authors (e.g., Lemaire et al., 2008; Massignam et al., 
2011; Plénet & Lemaire, 2000). For winter wheat, scattering occurred which was partly 
explained by the weather conditions in the different years, primary the precipitation dur-
ing the main growing period in April and May. Since the only response of winter oil-
seed rape to N limitation was a GAI reduction, this crop might be a good predictor for 
soil N supply. In accordance with Lemaire et  al. (2007), all tested relationships were 
restricted to the vegetative growth period (Fig. 3). This is because afterwards the accu-
mulated DM and N were stored in parts of the plants which are no longer green result-
ing in a collapse of the correlations.

The estimation of the N content was considerably improved by the application of 
 N2step (Table 3). However, it is vitally important that detected response patterns between 
N content and GAI are only applicable for the specific conditions under which the data 
were collected (Lemaire et  al., 2019). Consequently, Fu et  al. (2021) stated that data-
driven models for crop N status prediction must be handled with extreme care because 
the calibration is only valid for datasets with the same or at least similar conditions 
(e.g., environment, water status, crop species). However, the underlying datasets com-
prised various growing seasons. Thereby, different weather conditions were depicted. 
Additionally, the proposed  N2step approach seems to be generally promising for the 
application in site-specific N management strategies. Because GAI was shown to be pre-
dictable quite robustly, only knowledge about the specific correlation between N content 
and GAI is needed. Due to various works, such data are already available for many envi-
ronments and crops.

Compared to the universal and crop-specific SRs for DM estimation, the application 
of  DM2step mostly resulted in better evaluation results (Table  3). However, following 
Lemaire et  al. (2008) the crop-specific relation between GAI and accumulated DM is 
strongly affected by environmental conditions. For example, such effects were reflected 
in the overestimation of DM of winter wheat and winter barley in 2018 because this 
vegetation period was particularly dry at the experimental side resulting in different 
relationships between GAI and DM.

In general, the disentanglement of secondary and primary traits by the consideration 
of fundamental relationships provided more robust prediction models as stated in the 
second working hypothesis. However, especially the DM prediction was still affected by 
confounding variables which were not depictable by  DM2step. Additionally, both estab-
lished functional two-step models were only valid for the vegetative growth period. In 
context of crop N status estimation, this is no disadvantage since N fertilization takes 
place during this period. However, the prediction of DM accumulation is mainly of 
interest for final yield prediction, thus, the limitation to the vegetative growth period of 
 DM2step is problematic.
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Development of an advanced functional model for DM prediction

The applicability of many VIs in agricultural research and precision agriculture is 
strongly limited since the large majority of VIs was calibrated for a specific crop and 
a certain period (e.g., Aase & Siddoway, 1981; Hansen & Schjoerring, 2003; Mül-
ler et al., 2008; Rosso et al., 2022). This also applied to the established models in the 
presented study since Dataset I and Dataset II were restricted to measurements within 
the vegetative growth period. However, an accurate DM estimation is important for 
the final yield prediction. Thus, a whole-season model for DM prediction would be 
desirable.

The proposed advanced functional DM model based on a close relation between 
accumulated DM and the amount of intercepted radiation at any given point during 
the growing season (Monteith, 1977). To calculate the intercepted radiation, a GAI 
model that was valid for the whole growing season was necessary. However,  GAISRuni 
was only evaluated for the vegetative growth period. The destructive determination of 
GAI during ripening and senescence is nearly impossible and very error-prone due to 
the inhomogeneous senescence of the plant material and the gradual degradation of 
leaf chlorophyll (Bukowiecki et  al., 2020). Thus, a simple expansion of the Evalua-
tion Set to the generative growth period was not possible. It has been reported that the 
predictive quality of various GAI models significantly decreased during ripening and 
senescence (e.g., Boegh et al., 2002; Dong et al., 2020; Duveiller et al., 2011; Habou-
dane et al., 2004; Richter et al., 2012). However, Bukowiecki et al. (2020) showed that 
different GAI models for winter wheat, which were calibrated without any senescence 
data, were able to predict reliable GAI values throughout the whole growing season. 
Bukowiecki et al. (2020) traced the decreasing performance of GAI models mentioned 
by other authors back to problems in the sampling of the ground truth data rather than 
to a missing correlation between the spectral reflectance signal and GAI within the 
senescence phase.

These hypotheses were implicitly confirmed by the strong correlation between 
the intercepted radiation, which was calculated from predicted GAI values, and the 
accumulated DM at any point in time, including senescence and final harvest (Fig. 5). 
These relationships were crop specific and its slopes represented the RUE. The result-
ing RUEs (Fig.  5) were in accordance with values mentioned by other authors (e.g., 
Fletcher et al., 2013; Jamieson et al., 1995; Lindquist et al., 2005; Rose et al., 2017; 
Sieling et al., 2016). With knowledge of the specific RUE and periodic spectral reflec-
tance measurements (to derive GAI values), quite accurate predictions of the accu-
mulated DM throughout the whole growing period are possible. However, it must be 
pointed out that the RUE depends on various additional factors, such as crop species, 
environmental conditions, and N availability (Ciampitti et  al., 2013; Gabriel et  al., 
2017; Ratjen & Kage, 2016). This fact limits the applicability of this approach for DM 
estimation and might be attenuated by the assimilation of the GAI values into crop 
growth models. Moreover, for final yield prediction, lacking information about the har-
vest index may be seen as a limiting factor. The harvest index is influenced by many 
variables like cultivar, management, and year (Rose & Kage, 2019). Additionally, the 
harvest index is not detectable through spectral reflectance data. Nevertheless, this 
advanced functional model approach seems to be more promising than a simple empir-
ical estimation of grain yield from single in-season spectral reflection measurements.
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Conclusion

The analyzes of the large dataset add evidence that spectral reflectance data (400–900 nm) 
exclusively reveal information about the green parts of a crop. Hence, GAI is the main 
driver of the reflectance signal allowing the calibration of a rather robust and easy-to-han-
dle SR for the prediction of GAI that was applicable throughout the whole growing season 
without a crop-specific parametrization. Nevertheless, the universality of the SR is lim-
ited and should be tested in further datasets containing additional crops and experimental 
sites. Other crop parameters are mainly indirectly derived from reflectance measurements 
in the visible and NIR range. However, these two implicit independent processes were 
made explicit by two-step and advanced functional models which considered fundamen-
tal relationships between the crop parameters. This disentanglement allowed to combine 
non-orthogonal datasets, enhanced the selection of functional representation, facilitated the 
detection of confounding variables, and widened the usefulness of the established univer-
sal (without crop-specific parametrization) GAI model. The relationships between second-
ary and primary crop parameters are influenced by a multitude of factors and the range of 
applicability of empirical equations need to be handled with care.
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