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Abstract
Several remote sensing-based methods have been developed to apply site-specific nitrogen 
(N) fertilization in crops. They consider spatial and temporal variability in the soil-plant-
atmosphere continuum to modulate N applications to the actual crop nutrient status and 
requirements. However, deriving fertilizer N recommendations exclusively from remote 
proximal and remote sensing data can lead to substantial inaccuracies and new, more 
complex approaches are needed.

Therefore, this study presents an improved approach that integrates crop modelling, 
proximal sensing and forecasts weather data to manage site-specific N fertilization in win-
ter wheat. This improved approach is based on four successive steps: (1) optimal N supply 
is estimated through the DSSAT crop model informed with a combination of observed and 
forecast weather data; (2) actual crop N uptake is estimated using proximal sensing; (3) 
N prescription maps are created merging crop model and proximal sensing information, 
considering also the contribution of the soil N mineralisation; (4) N-Variable Rate Ap-
plication (N-VRA) is implemented in the field. A VRA method based on DSSAT fed with 
historical weather data and a business-as- usual uniform fertilization were also compared.

The methods were implemented in a 23.4 ha field in Northern Italy, cropped to wheat 
and characterized by large soil variability in texture and organic matter content. Results 
indicated that the model-based approaches consistently led to higher yields, agronomic 
efficiencies and gross margins than the uniform N application rate. Furthermore, the proxi-
mal sensing-based approach allowed capturing of the spatial variability in crop N uptake 
and led to a substantial reduction of the spatial variability in yield and protein content. 
This study grounds the development of web-based software as a friendly tool to optimize 
the N variable rate application in winter cereals.

Keywords Winter wheat · Nitrogen Fertilization · DSSAT · Proximal sensing · Variable 
rate
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Introduction

Feeding an estimated global population of 9 billion people by 2050 represents a signifi-
cant challenge for agriculture. According to FAOSTAT (2021), wheat (Triticum aestivum 
L. and Triticum durum Desf.) is the crop with the largest harvested area worldwide and in 
Europe. In Italy, winter wheat is the most widely grown cereal and accounts for approxi-
mately 62.1% of the total cereal-cultivated land and for 47.1% of the total cereal production 
(ISTAT Agricoltura, 2021).

Nitrogen (N) fertilization in wheat is commonly based on yield goals, derived by apply-
ing uniform rates without considering the spatial and temporal variability in the soil-plant-
atmosphere continuum (Johnson & Raun, 2003). Plant response to different N fertilization 
rates highly depends on the weather conditions occurred in a given growing season (Basso 
et al., 2007; Dumont et al., 2015). Therefore, uniform fertilization rates can lead to a mis-
alignment between the N supply and the crop demand, resulting in economic and environ-
mental losses. While an insufficient N supply leads to economic penalties by inhibiting crop 
development, yield and grain quality (Karatay & Meyer-Aurich, 2020), overfertilization 
causes environmental problems, such as N leaching, ammonia volatilization and N2O emis-
sions (Perego et al., 2013; De Antoni Migliorati et al., 2014).

To this end, several site-specific approaches have been proposed to optimize the fertil-
izer rates. They mainly collect in-season spectral data to detect differences in crop growth 
and nutrient uptake and are then translated into site-specific N rates through algorithms 
relating optical measures to potential yield (Erdle et al., 2011). Unfortunately, although 
these approaches increase N use efficiency and yields while reducing N losses, they pro-
vide unsatisfactory results when adverse post-sensing weather conditions occur, leading to 
unexpected reductions in crop production (Raun et al., 2005). In addition, other adverse 
conditions (e.g. water stress) could be a confounding factor when sensing N status through 
proximal sensors (Colaco and Bramley, 2018). Therefore, a viable solution to this drawback 
relies on coupling process-based crop simulation models and seasonal weather forecasts 
(Hoogenboom, 2000; Jha et al., 2019; Morari et al., 2021). The latter are seasonal time-
scale predictions of changes in the climate system, typically provided as monthly anomalies 
of meteorological variables up to three to six months ahead of time (Cantelaube & Terres, 
2005).

Crop simulation models (CSMs) have been primarily employed to quantify the long-
term effects of nutrients and water availability on crop growth and development over dif-
ferent environmental conditions (Delin & Stenberg, 2014; Jones et al., 2003). However, 
their point-based application across the whole field is not feasible due to processing costs 
and information availability. To address this issue, fields can be divided into homogeneous 
management zones (MZs) to simulate the crop-soil interactions within such zones to imple-
ment a variable rate application (VRA) approach (Basso et al., 2011; Cammarano et al., 
2021). To implement this strategy, CSMs can be run with two distinct approaches: (i) using 
historical weather data (Basso et al., 2011, 2012; Miao et al., 2006; Wong & Asseng, 2006) 
or (ii) using seasonal forecasts (Cantelaube & Terres, 2005; Pagani et al., 2017). On the one 
hand, historical weather data are often freely available even though not as sensitive to cur-
rent weather trends or climate shocks as the weather forecasts. On the other hand, seasonal 
forecasts and their reliability is strongly related to the geomorphology and atmospheric 
variability of the investigated area (Pavan & Doblas-Reyes, 2013). Crop simulation models 
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and winter wheat are highly affected by the variability in agrometeorological variables, 
especially rainfall and temperature. Therefore, accurate seasonal seasonal forecasts are nec-
essary for an early prediction of the final crop yield. In particular, seasonal forecasts are 
more reliable in areas where climate variability is driven by solid climate signals (such as 
in the United States; Basso & Liu 2019) than those produced in the Mediterranean region, 
where climate signals are less evident (Morari et al., 2021). In the next decades, advances in 
the science of seasonal forecasting will need to allow accurate and reliable forecasts even in 
areas, such as the Mediterranean Basin, where today they often perform poorly.

However, studies to date have only evaluated the performance of either CSMs fed with 
historical weather data (Giola et al., 2012; Brown et al., 2018) or seasonal forecasts (Fer-
rise et al., 2015; Togliatti et al., 2017), while comparisons among these methodologies have 
been limited (Basso & Liu, 2019). Significantly, so far, no on-farm N-VRA study has com-
pared the agronomic and economic gains of using the uniform N application rate approach 
with adopting a CSM-based approach that integrates remotely sensed plant N status, sea-
sonal forecasts or historical weather data.

The objectives of the current study were therefore to (1) evaluate an improved N-VRA 
method based on a CSM integrated with remotely sensed plant N status, seasonal forecasts 
or historical weather data, and (2) compare the CSM-based N-VRA approaches to the farm-
er’s uniform fertilization in terms of harvested crop yield and N use efficiency.

Materials and methods

Study site

The experiment was conducted over two growing seasons (2018–2019 and 2019–2020) 
on a 23.4 ha field divided into 16 plots (1.45 ha each) located at Vallevecchia di Caorle 
(45°37’44.3"N 12°57’07.8"E), Italy. The area belongs to the Venice Lagoon watershed and 
is classified as vulnerable to nitrate pollution according to the Nitrates Directive 91/676 
(EEC 1991). Each plot was rectangular (320 m x 32 m) and bordered by open ditches 
along the two longer sides. Soil type was mainly sandy-loam (Molli-Gleyic, Cambisols; 
FAO, 2001), and most of the experimental area was below sea level. The climate is sub-
humid, with annual rainfalls of 829 mm and a monthly mean temperature increase from 
January (-0.1 °C) to July (29.6 °C). The reference evapotranspiration (ET0, yearly average 
of 860 mm) exceeds rainfall from May to September.

Winter wheat (Triticum aestivum L.) cv. Rebelde (APSOV sementi, Italy) was cultivated 
during the 2018–2019 season (planting date, November 19th, 2018; harvest date July 6th, 
2019) on plots 9–16 and 2019–2020 season (planting date, December 12th, 2019; harvest 
date, July, 1st, 2020) on plots 17–24 (Fig. 1). Winter wheat was cultivated in the northern 
part during 2018–2019 and in the southern part during 2019–2020 to test the different meth-
odologies in all management zones.

Minimum and maximum temperature (°C), solar irradiance (W m− 2), rainfall (mm), rela-
tive humidity (%), wind speed (m/s) and direction were collected hourly from an on-site 
automatic weather station (DeltaOHM Srl, Italy). The data was sent via GSM technology to 
an FTP server weekly. In addition, historical weather data (1992–2018) was retrieved from a 
nearby weather station (Agenzia Regionale per la Prevenzione e Protezione Ambientale del 
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Veneto, ARPAV) located in Lugugnana, Italy. During the two growing seasons, the area was 
rainfed and managed according to minimum tillage practices and conventional herbicide, 
fungicide and insecticide treatments.

Definition of homogeneous management zones

To identify the management zones (MZs), soil properties and yield data were combined 
using a fuzzy c-means unsupervised clustering algorithm (Odeh et al., 1992) in the Manage-
ment Zone Analyst (Fridgen et al., 2004) software as reported by Cillis et al., (2018).

The analysis resulted in four different management zones (Fig. 1): two high yielding 
zones in the northern part of the experimental area (zones 3 and 4) and two low yielding 
zones (zones 1 and 2) in the southern part. The main soil properties of the four management 
zones are reported in Table 1.

Fertilization treatments

In this study, three fertilization treatments were tested:

1) Uniform rate: 32 kg N ha-1 (both 2018–2019 and 2019–2020) applied before planting, 
70 kg N ha-1 for 2018–2019 and 40 ha-1 for 2019–2020 supplied at tillering, and 70 kg 
N ha-1 supplied at flag leaf in 2018–2019 and 2019–2020 for both zones. The prescribed 
rates at tillering followed the business-as-usual quantity of fertilizer supplied by the 

Fig. 1 Aerial image of the experiment area, field boundaries, and management zones. Different colours rep-
resent the four management zones (red-MZ1, yellow-MZ2, green-MZ3, and blue-MZ4) used in this study
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farmer, higher in 2018–2019 than in 2019–2020 because of plots located in different 
fertility zones.

2) VRA1: 32 kg N ha-1 applied at planting, N rates for the side dressing 1 and 2 defined by 
using the DSSAT crop simulation model fed with historical weather data;

3) VRA2: 32 kg N ha-1 applied at planting, N rates for the side dressing 1 and 2 defined 
by coupling the DSSAT crop simulation model with seasonal forecasts and proximal 
sensing;

The locations of the different fertilization treatments evaluated in this study are presented 
in Fig. 2.

Crop and soil samples

2018–2019 and 2019–2020 seasons

Sixteen soil samples, distributed across the field to cover the different fertilization treatment 
x MZ combinations, were collected prior to the commencement of the growing seasons at 
three depths (0-0.2 m, 0.2–0.4 m and 0.4–0.6 m) on plots 9–16 during the 2018–2019 sea-
son and on plots 17–24 during the 2019–2020 season. Samples were then analyzed for bulk 
density, soil texture, pH, soil organic matter and total nitrogen. From sowing to harvest, soil 
moisture was recorded hourly at three different depths (0.2, 0.4 and 0.6 m) on four sampling 
points (Fig. 2) using fixed soil moisture sensors (HD3910.1; DeltaOHM Srl, Italy).

Soil preparation was carried out following a conventional tillage technique for both 
growing seasons. Prior to wheat planting, the plots were fertilized using NPK 8-24-24 at a 
uniform rate of 400 kg ha− 1 (32 kg N ha− 1, 96 kg P2O5 ha− 1 and 96 kg K2O ha− 1). Winter 
wheat seeds (cultivar Rebelde from Apsov Sementi, Italy) were planted on November 19th, 
2018, on plots 9–16, and on December 12th, 2020, on plots 17–24 at an inter-row spacing 
of 0.125 m and a seeding rate of 220 kg ha− 1. The location of the different fertilization treat-
ments (uniform, VRA1, and VRA2, discussed in the “CSM-based approaches for defining 
optimal N rates” section) evaluated in this study are presented in Fig. 2. During 2018–2019 

Table 1 Main soil properties across the four management zones. Data are presented as average ± standard 
error
MZ depth (m) SOIL TEXTURE CHEMICAL PROPERTIES

sand (%) clay (%) pH SOC (%) total N (%)
1 0-0.2 65.8 ± 2.5 12.3 ± 0.9 7.60 ± 0.04 0.66 ± 0.06 0.55 ± 0.07

0.2–0.4 65.3 ± 2.5 11.5 ± 1.0 7.70 ± 0.04 0.63 ± 0.05 0.50 ± 0.04
0.4–0.6 63.3 ± 2.3 12.0 ± 1.1 7.70 ± 0.06 0.64 ± 0.04 0.48 ± 0.02

2 0-0.2 56.0 ± 8.9 12.4 ± 0.9 7.70 ± 0.05 0.64 ± 0.13 0.48 ± 0.11
0.2–0.4 55.0 ± 8.2 12.6 ± 0.8 7.70 ± 0.06 0.61 ± 0.09 0.46 ± 0.09
0.4–0.6 54.0 ± 7.8 13.2 ± 0.9 7.80 ± 0.06 0.70 ± 0.08 0.54 ± 0.07

3 0-0.2 39.6 ± 8.6 16.2 ± 1.4 7.50 ± 0.05 1.04 ± 0.14 0.88 ± 0.14
0.2–0.4 37.0 ± 7.4 16.6 ± 0.7 7.40 ± 0.07 1.07 ± 0.13 0.86 ± 0.13
0.4–0.6 40.0 ± 6.9 16.2 ± 0.7 7.50 ± 0.10 1.06 ± 0.10 0.82 ± 0.12

4 0-0.2 28.5 ± 1.9 17.3 ± 0.6 7.60 ± 0.05 1.26 ± 0.06 1.05 ± 0.06
0.2–0.4 27.8 ± 1.8 16.3 ± 0.6 7.50 ± 0.08 1.12 ± 0.08 0.90 ± 0.06
0.4–0.6 30.3 ± 2.8 16.0 ± 0.3 7.40 ± 0.15 1.05 ± 0.09 0.85 ± 0.06
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and 2019–2020, the uniform treatment was tested over four different plots, while VRA1 and 
VRA2 treatments were tested over two plots.

During both growing seasons, normalized difference vegetation index (NDVI), leaf area 
index (LAI), plant height and total aboveground biomass were measured on each of the 16 
sampling points at five specific growth stages: tillering (February 27th, 2019 and March 
31st, 2020), stem elongation (April 16th, 2019 and April 21st, 2020), flag leaf (May 8th, 
2019 and May 12th, 2020), flowering (May 24th, 2019, not collected in 2019–2020), and 
harvest (July 6th, 2019 and July 1st, 2020). LAI was determined using an AccuPAR LP-80 
(Decagon Devices Inc., Pullman, WA, USA) ceptometer. LAI readings were taken within 
± 2 h from solar noon. Plant height was measured on five plants per sampling point to moni-
tor plant growth.

Estimation of the optimal N rates with a CSM

Crop simulation model

The decision support system for agrotechnology transfer (DSSAT; Jones et al., 2003)-CERES-
Wheat model was used in the study to simulate winter wheat responses to different fertiliza-
tion rates. The DSSAT crop simulation model has been extensively used over a wide range 

Fig. 2 Location of the different fertil-
ization treatments, sampling points, 
and soil moisture sensors during the 
2018–2019 and 2019–2020 growing 
seasons
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of soil, environmental conditions, and crops (Anar et al., 2019; Cammarano et al., 2020). 
The soil water movement is simulated with a tipping bucket approach where saturated 
downward flow occurs when a soil layer has a water content greater than the drain upper 
limit (Ritchie et al., 1998). In the CERES-wheat model, plant development is divided into 
specific phases and the rate of development is calculated as a function of growing degree 
days (GDDs). In addition, daily dry matter accumulation is computed using the intercepted 
photosynthetically active radiation (PAR) and crop-specific radiation use efficiency (RUE) 
values (Jones et al., 2003). The input dataset used in this study consisted of daily weather 
data (minimum and maximum air temperature, solar radiation and precipitation), soil tex-
ture and chemical (organic carbon, pH and total nitrogen) properties, agronomic manage-
ment and crop parameters.

Crop model calibration and evaluation

The crop parameters were manually calibrated for the Rebelde cultivar through an itera-
tive, trial-and-error procedure. The crop parameters involved in the calibration process 
were optimum vernalizing temperature (P1V), photoperiod response (P1D), phyllochron 
(PHINT), kernel number per unit canopy weight at anthesis (G1), standard kernel size under 
optimum conditions (G2) and non-stressed mature tiller weight (G3). First, the phenology 
was calibrated by adjusting P1V and P1D. Next, the aboveground biomass and the final 
yield were calibrated by acting on PHINT, G1, G2 and G3.

The calibration procedure was performed on an independent winter wheat dataset that 
included phenology (emergence, anthesis and maturity dates) and yield data collected dur-
ing the 2014–2015 and 2015–2016 seasons in the same experimental field (Cillis et al., 
2017). The calibration dataset included yield and phenology data from 8 different fertiliza-
tion treatments in 2014–2015 and 15 fertilization treatments in 2015–2016, for a total of 23.

In addition, the model was evaluated using phenology (emergence, anthesis, harvest), 
plant biomass and N uptake, leaf area index and yield over the 2018–2019 and 2019–2020 
growing seasons. The dataset included data from 7 different fertilization treatments in 2018–
2019 and 6 fertilization treatments in 2019–2020, for a total of 13.

CSM-based approaches for defining optimal N rates

The calibrated model was adopted to determine optimal N rates for the 2018–2019 and 
2019–2020 growing seasons for the VRA1 and VRA2 methods. DSSAT was run for the dif-
ferent MZs using two approaches: (1) using 27 years (1992–2018) of historical weather data 
(VRA1), and (2) informing the model with measured weather data up to the fertilization 
date, integrated with seasonal forecasts from the fertilization date up to harvest (VRA2).

In the VRA1 method, a set of simulations was run immediately before tillering using 
historical weather data (1992–2018). Then, the same set of simulations was rerun at the flag 
leaf stage, specifying the actual fertilization date for the 2nd top dressing.

For VRA2, following the approach described in Morari et al., (2021), the N rate was 
calculated according to the following steps: (1) use of the DSSAT crop simulation model 
to estimate the optimal N rates for each MZ; (2) estimation of the actual N uptake with 
proximal sensing technologies; (3) building of N prescription maps; (4) N variable rate 
application (VRA).
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In the VRA2 method, two distinct sets of simulations were run, one at tillering (1st top 
dressing) and one at flag leaf (2nd top dressing). On the one hand, DSSAT was run at til-
lering using the combination of observed weather from sowing date to the 1st top dressing 
date, and seasonal forecasts from the 1st top dressing up to the harvest date. On the other 
hand, the weather dataset used for the simulations run at the flag leaf stage included the 
combination of measured data from sowing date to the 2nd top dressing and seasonal fore-
casts from the 2nd top dressing up to harvest.

The forecast data were provided as seasonal forecasts, a set of monthly anomalies of 
meteorological variables for the months following the prediction date (Ferrise et al., 2015), 
and coupled with the crop model following the approach described in Morari et al., (2021). 
Seasonal forecasts were produced by the United States National Centers for Environmental 
Prediction Climate Forecast System version 2 (CFS2; http://cfs.ncep.noaa.gov), which is a 
fully coupled model representing the complex interaction among the atmosphere, oceans, 
land and sea-ice extension (Saha et al., 2014).

Two different seasonal forecast datasets were employed for the VRA2 method: (i) the 
dataset utilized at the 1st top dressing (Forecast 1), which consisted of a combination of 
actual weather data (covering from planting date to the 1st top dressing) and seasonal fore-
casts (from the 1st top dressing to harvest date), and (ii) the dataset utilized at the 2nd top 
dressing (Forecast 2), which combined actual weather data (spanning from planting date 
to the 2nd top dressing) and seasonal forecasts (from the 2nd top dressing to harvest date).

Definition of the optimal N rates

DSSAT was run with either VRA1 and VRA2 method in each MZ with incremental N rates 
(from 0 kg N ha− 1 to 100 kg N ha− 1) for both top-dress applications. The optimal combina-
tion (1st + 2nd top dressing) was determined using the DSSAT economic analysis package to 
identify the most economically efficient among the simulated N combinations.

Base production costs were estimated using reference prices for each tillage and harvest 
operation. Grain price and N fertilizer cost were retrieved immediately before the fertiliza-
tion date from the Bologna cereal market (http://www.agerborsamerci.it). The price for each 
N fertilization was set at 20 €/application.

Estimation of the actual N uptake with proximal sensing technologies

Definition of NDVI to N uptake relationships

During the 2018–2019 and 2019–2020 growing seasons, normalized difference vegetation 
index (NDVI) maps were generated on the aforementioned sampling dates using a Trimble 
FMX 1000 integrated display (Trimble, Sunnyvale, CA, USA) with data acquired by two 
proximal GreenSeeker (NTech Industries Incorporation, Ukiah, CA, USA) sensors placed 
6-m apart on a bar mounted on a tractor.

On each of the aforementioned sampling dates, all the plants over a 1 m2 area around each 
sampling point were destructively harvested to determine the total aboveground biomass. 
Harvested plant samples were dried at 65 °C in a forced-air oven for 72 h for dry weight 
determination and total nitrogen content (Italian Ministry of Agricultural Food and Forestry 
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Policies, 1999). Then, plant N uptake was calculated by multiplying the N content (in %) 
by the total aboveground dry biomass weight. Finally, NDVI to N uptake relationships were 
compared to those reported in Morari et al., 2021 (Figure S1, supplementary materials).

Definition of the actual N uptake maps

NDVI measurements collected immediately before the fertilization dates were converted 
into N uptake using the linear equation proposed by Bruce et al., (2019):

 logNup = −1.035 + (0.0015xGDDacc) + (3.77xNDV I) − (0.0018xGDDaccxNDV I) (1)

where GDDacc is the cumulative growing degree days from planting to the fertilization date.
The NDVI map was built using a 1 × 1 m-grid kriging analysis, and the N uptake was 

computed for each pixel according to the aforementioned linear equation. Since the N uptake 
and its variability at tillering are usually low, the N rates estimated by the CSM for VRA2 
were corrected with in-season estimates of crop N status only at the second top-dressing.

N prescription maps and N variable rate application

While for the VRA1 methodology, the most economically convenient N amounts defined by 
the CSM were directly assigned in the prescription map, the most economically convenient 
N amounts for the VRA2 method were coupled with in-season estimates of crop N status 
following the methodology presented in Morari et al., (2021) and modified as follows:

 
Nrate =

OPTIMALNup − ACTUALNup − No(tend − ti)
EFFC(tend − ti)

 (2)

where OPTIMAL Nup is the total N uptake (in kg N ha− 1) simulated by the model at harvest; 
ACTUAL Nup (in kg N ha− 1) is the average N uptake estimated in 15 × 30 m pixels using 
the relationship between NDVI and N uptake, No is the soil N contribution (in kg N ha− 1) 
from the fertilization date (ti) to the end of the season (tend). EffC is the average fertiliza-
tion efficiency calculated by the crop model from the fertilization date (ti) to the end of the 
season (tend).

The optimal N rates defined using the aforementioned methodology for the VRA1 and 
VRA2 approaches were assigned to the specific polygon in the prescription map. In the 
VRA2 method plots, N fertilization rates were defined on the basis of the spatial resolution 
of the fertilizer spreader, which resulted in 15 × 30 m pixels (Fig. 3b, d).

The uniform fertilization treatment consisted of 32 kg N ha− 1 (both 2018–2019 and 2019–
2020) applied before planting, 70 kg N ha− 1 for 2018–2019 and 40 ha− 1 for 2019–2020 
supplied at tillering, and 70 kg N ha− 1 supplied at flag leaf in 2018–2019 and 2019–2020 
for both zones. The prescribed rates at tillering followed the business-as-usual quantity of 
fertilizer supplied by the farmer, higher in 2018–2019 than in 2019–2020 because of plots 
located in different fertility zones. (Table 2).

Fertilizers were supplied using a DCM SW5 (DCM, Verona, Italy) ISOBUS, double disk 
centrifugal spreader equipped with a load cell system. The prescription maps were uploaded 
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to a Trimble GFX-750 (Trimble, Sunnyvale, CA, USA) display with RTK correction. The 
spreader was calibrated right before each fertilization date. After each fertilization, the map 
with the applied N rates (as-applied map) was downloaded from the GFX display.

Yield and protein data collected at harvest

Yield data was recorded using a John Deere S680 (Deere & Co, Moline, IL, USA) equipped 
with a yield monitor and a differential global positioning system. The combine had a 9 m 
header and collected data every second. Raw yield data was imported using FarmWorks 

Fig. 3  N fertilization rates supplied to the crop at the 1st top dressing (a, b) and at the 2nd top dressing) (c, 
d) during the 2018–2019 (a, c) and 2019–2020 (b, d) growing seasons
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(Trimble, Sunnyvale, CA, USA) cleaned to exclude field-edge effects and harvester manoeu-
vres using the methodology described in Vega et al., (2019). Yield data were expressed as 
grain dry matter per hectare (t DM ha− 1).

In addition, 120 destructive wheat samples were collected in both growing seasons, 
following a mixed sampling scheme based on a regular grid (Chiericati et al., 2007): 40 
samples were collected at the nodes of a 30 × 70 m grid and 80 additional samples were 
collected on transects set out in the east axis at 10 and 20 m from each node. Samples were 
air-dried at 65 °C for 24 h in a forced-air oven, sieved at 2 mm, and analyzed following the 
Kjeldahl method.

Nitrogen agronomic efficiency (AE) was calculated in 2018–2019 and 2019–2020 for 
each 15 × 30 m pixel, dividing the average harvested yield (kg DM ha− 1) by the average 
total N supplied (kg N ha− 1).

Statistical analysis

The goodness of fit between simulated and observed values during the model calibration 
and evaluation was determined using the root mean square error (RMSE), the Pearson’s 
correlation coefficient (r), and the Wilmott index of agreement (D-Index; Willmott 1982):

 
RMSE =

√∑n
i=1(Si − Oi)

2

n
 (3)

where Oi is the observed data, O is the mean of the observed data, Si is the simulated data 
and n is the number of simulated-observed pairs.

 
D = 1 −

∑n
i=1 (Oi − Si)

2

∑n
i=1 (|Oi − O| + |Si − O|)2

 (4)

The D-Index ranges between 0 (poor fit between simulated and observed values) and 1 
(good fit between simulated and observed values).

Yield and protein data were subjected to ordinary kriging using ArcGIS 10.7.1 (ESRI, 
Redlands, CA, USA) to produce field maps.

Treatment effects were assessed for each parameter of interest (yield, protein content 
and AE) using a one-way analysis of variance (ANOVA). Post hoc analysis to test differ-
ences between treatment means was conducted using Tukey’s honestly significant differ-
ence (HSD). For all the analyses, p < 0.10 indicated a significant difference between means.

Results

Weather and soil data

Rainfall totaled 675 mm and 489 mm during the 2018–2019 and the 2019–2020 growing 
seasons, respectively, while the average amount recorded for the same period between 1992 
and 2018 was 485 mm. Both growing seasons were characterized by dry conditions from 
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tillering to the end of April and wet May and June. Daily air temperature ranged from a 
minimum of -3.4 °C and − 4.9 °C in January to a maximum of 31.3 °C and 31.0 °C at the 
end of June, respectively (Fig. 4a, b).

Fig. 4 Rainfall, minimum and maximum air temperature recorded during the 2018–2019 (a) and 2019–2020 
(b) growing seasons
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Model calibration: 2014–2015 and 2015–2016 growing seasons

Cultivar parameters were adjusted manually during the calibration through an iterative, 
trial-and-error procedure. Estimated crop model parameters are reported in the supplemen-
tary material (Table S1). During the 2014–2015 and 2015–2016 seasons, no differences 
were observed in the phenological development among the different MZs.

The emergence date was simulated one day later than the observed date (15 DAP vs. 
14 DAP) in 2014–2015 and 2 days earlier than the observed date (13 DAP vs. 15 DAP) in 
2015–2016. The anthesis date was simulated one day earlier than the observed date (204 
DAP vs. 205 DAP) in 2014–2015 and 2 days later than the observed date (201 DAP vs. 199 
DAP) in 2015–2016. The maturity date was simulated within one day (234 DAP vs. 233 
DAP) in 2014–2015 and 4 days (236 DAP vs. 232 DAP) in 2015–2016 (Fig. 5a).

The model showed a good performance in simulating the harvested yield compared to 
the observed values (Fig. 5b). The harvested yield had an RMSE of 750.7 kg DM ha− 1, a 
D-index of 0.82, and a correlation coefficient (r) of 0.76.

NDVI and N uptake maps

N uptake maps collected immediately before the 1st top dressing ranged between 0.4 and 
23.5 kg N ha− 1 in 2018–2019 and between 1.1 and 10.6 kg N ha− 1 in 2019–2020. Due to the 
early sensing period, both maps showed limited spatial variability, with a standard deviation 
equal to 2.2 kg N ha− 1 for 2018–2019 (Fig. 6a) and 1.4 kg N ha− 1 for 2019–2020 (Fig. 6b).

N uptake maps collected immediately before the 2nd top dressing showed great spatial 
variability, with standard deviations equal to 24.8 kg N ha− 1 in 2018–2019 and 20.5 kg N 
ha− 1 in 2019–2020. Nitrogen uptake ranged between 15.7 and 137.1 kg N ha− 1 in 2018–
2019 (Fig. 6c) and between 9.5 and 111.7 kg N ha− 1 in 2019–2020 (Fig. 6d). During the 
2019–2020 growing season, the unfavorable weather conditions penalized winter wheat 
growth and resulted in an average N uptake at the flag leaf stage of 52.6 N ha− 1 compared 
to the 90.2 N ha− 1 observed in 2018–2019.

Identification of the optimal N rates.

Fig. 5 Comparison between observed and simulated phenology (a) and harvested yield (b). Red dots refer 
to the 2014–2015 growing season, while blue dots refer to the 2015–2016 one. The black line is the line of 
perfect correspondence (1:1)
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Table 2 presents the N fertilization rates for the different treatments (uniform fertiliza-
tion, VRA1 and VRA2) supplied at tillering (1st top-dressing; February 26th, 2019 and 
March 31st, 2020) and at flag leaf swollen (2nd top dressing; May 8th, 2019 and May 12th, 
2020) during the 2018–2019 and 2019–2020 growing seasons. In addition, response curves 
of final yield to different total N fertilization rates for the four different management zones 
simulated using the VRA1 and VRA2 methods are reported in Fig. 7.

During the 2018–2019 season, the VRA1 method identified as optimal N rate 32 kg N 
ha− 1 at planting, 70 kg N ha− 1 at tillering and 60 kg N ha− 1 at flag leaf for zone 3, whereas 
32 kg N ha− 1 + 70 kg N ha− 1 + 80 kg N ha− 1 were recommended for zone 4. During the 

Fig. 6  N uptake maps generated from NDVI measurements collected immediately before the 1st (a, b) and 
2nd (c, d) top dressing on 2018–2019 (a, c) and 2019–2020 (b, d) growing seasons
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2019–2020 season, the VRA1 method recommended 32 kg N ha− 1 at planting, 60 kg N ha− 1 
at tillering, 40 kg N ha− 1 at flag leaf for zone 1 and 32 kg N ha− 1 + 70 kg N ha− 1 + 30 kg N 
ha− 1 for zone 2 (Table 2).

The optimal N rates for the VRA2 methods were 32 kg N ha− 1 + 80 kg N ha− 1 for both 
zone 3 and 4, during 2018–2019 (Fig. 3a) and 32 kg N ha− 1 + 70 kg N ha− 1 for zone 1 and 
32 kg N ha− 1 + 80 kg N ha− 1 for zone 2 in 2019–2020 (Fig. 3c). In 2018–2019 DSSAT simu-
lations recommended to apply 70 kg N ha− 1 at the second top dressing (zone 3) and 90 kg 
N ha− 1 (zone 4) and no N application in 2019–2020. However, NDVI-derived N uptake 
values on 15 × 30 m pixels (Gobbo et al., 2021) corrected such recommendations suggest-
ing to apply N rates of 20 kg N ha− 1 for zone 3 and 25 kg N ha− 1 for zone 4 in 2018–2019 
(Fig. 3b) and 30 kg N ha− 1 for zone 1 and 15 kg N ha− 1 for zone 2 in 2019–2020 (Fig. 3d).

Comparison among weather datasets.

Table 2 Nitrogen amounts supplied to the crop during the 2018–2019 (top rows) 2019–2020 (bottom rows) 
growing seasons across the different fertilization methodologies
Treatment Year Zone Base dressing

(kg N ha− 1)
Top dressing 1 
(kg N ha− 1)

Top dressing 2 
(kg N ha− 1)

Total 
N
(kg N 
ha− 1)

UNIFORM 18–19 - 32 70 70 171
VRA1 18–19 3 32 70 60 162
VRA1 18–19 4 32 70 80 182
VRA2 18–19 3 32 80 20 132
VRA2 18–19 4 32 80 25 137
UNIFORM 19–20 - 32 40 70 142
VRA1 19–20 1 32 60 40 132
VRA1 19–20 2 32 70 30 132
VRA2 19–20 1 32 70 30 132
VRA2 19–20 2 32 80 15 127

Fig. 7 Harvested yield response curves to different N fertilization amounts (from 50 kg N ha− 1 to 250 kg 
N ha− 1) simulated with DSSAT for the different management zones during the 2018–2019 growing season 
using historical weather data (VRA1, a) and seasonal forecasts (VRA2, b)
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Table 3 presents the average of solar radiation (MJ m− 2) and temperatures (minimum and 
maximum), and the sum of rainfall recorded between the 1st top dressing (February 26th, 
2019 and March 31st, 2020) and the harvest date (July 6th, 2019 and July 1st, 2020).

During the 2018–2019 growing season, the historical dataset was the closest to the 
observed temperatures, solar radiation and rainfall values. Forecast 1 and Forecast 2 
had higher solar radiation (+ 1.3 and + 1.5 MJ m− 2), Tmin (+ 0.2 °C and + 0.4 °C), Tmax 
(+ 0.3 °C and + 1.2 °C) than the observed. In addition, the two seasonal forecast datasets 
severely underestimated the observed rainfall by 249.7 and 297.5 mm, respectively.

During the 2019–2020 growing season, the historical dataset had similar Tmin (+ 0.2 °C) 
and Tmax (-0.1 °C) values to the observed, while Forecast 1 and 2 were similar to the 
observed solar radiation (+ 0.4 MJ m− 2). Forecast 1 was the closest to observed rainfall 
(-10.1 mm), whereas the historical data and Forecast 2 had similar deviations from the 
observed (+ 30.3 mm and − 26.3 mm, respectively).

Yield and protein content maps

Yields measured across the field showed significant spatial variability in 2018–2019, with 
values ranging from less than 1.0 t DM ha− 1 to more than 9.0 t DM ha− 1. Yield averages 
at treatment level ranged from a minimum of 4.72 t DM ha− 1 for the VRA2-Zone 3 treat-
ment to a maximum of 5.77 t DM ha− 1 for VRA1-Zone 3. Higher yields were observed in 
the northern part of the map, while lower values were observed in the southeastern part 
(Fig. 8a). Protein content showed great spatial variability, with values ranging from 13.6 
to 17.0%. Low protein contents were observed in the northeastern part of the experimental 
area and lower values in the south and southeastern parts (Fig. 8b).

During the 2019–2020 season, measured yields were lower than in the 2018–2019 one 
due to unfavourable weather conditions that occurred immediately after planting (wetter 
and colder than usual) and from the 2nd node to booting (dryer than usual). Nevertheless, 
spatial variability in yield was also observed in 2019–2020, with values ranging from less 
than 1.0 t DM ha− 1 to more than 5.5 t DM ha− 1 (Fig. 8c). Treatment yield averages ranged 
from a minimum of 2.72 t DM ha− 1 for the uniform treatment to a maximum of 3.38 t 
DM ha− 1 for VRA2-Zone 1. As in 2018–2019, protein content showed a substantial spatial 
variability (Fig. 8d), with values ranging from 12.4 to 17.8%. On average, higher protein 

Year Parameter Observed Hist. 
Average

Fore-
cast 1

Fore-
cast 
2

2018–
2019

Solar radiation (MJ 
m− 2)

17.8 18.7 19.1 19.3

T min (°C) 10.1 9.9 10.3 10.6
T max (°C ) 20.1 20.2 20.4 21.3
Rainfall (mm) 546.8 470.4 297.1 249.3

2019–
2020

Solar radiation (MJ 
m− 2)

22.2 20.8 22.6 22.6

T min (°C) 11.9 12.1 12.4 12.2
T max (°C ) 22.5 22.4 23.6 23.4
Rainfall (mm) 231.0 261.3 241.1 204.7

Table 3 Comparison between 
main weather parameters ob-
served during the trial, historical 
(1992–2018) averages (Hist. 
Average) and seasonal forecasts 
(Forecast 1 and 2)
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content values were observed in the VRA1 and VRA2 treatments (plots 2, 3, 7, and 8) and 
lower values in the uniform treatment (plots 1, 3, 4, and 5).

In 2018–2019, the VRA1 had a significantly higher yield (5.53 t DM ha− 1) than the 
uniform (4.90 t DM ha− 1) and VRA2 (4.84 t DM ha− 1) fertilization treatments. VRA1 and 
VRA2 treatments had slightly higher protein content, on average + 0.4% and 0.5%, respec-
tively, but not significantly different than the uniform treatment. Moreover, the uniform 
treatment had the lowest agronomic efficiency (AE; 28.7 kg grain kg N− 1) when compared 
to VRA1 (31.7 kg grain kg N− 1 applied) and VRA2 (36.2 kg grain kg N− 1 applied). In addi-

Fig. 8 Maps of harvested yield and protein content at the end of the 2018–2019 (a, b) and 2019–2020 (c, d) 
growing seasons
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tion, the uniform fertilization had the lowest gross margin (506.8 € ha− 1), while the VRA1 
and VRA2 methodologies resulted in higher gross margins (659.2 € ha− 1 and 538.0 € ha− 1).

In 2019–2020, the uniform fertilization treatment had the lowest production (2.72 t DM 
ha− 1), with an average loss of 0.22 and 0.39 t DM ha− 1 compared with VRA1 and 2 (Table 4). 
The difference in production between the treatments was, however, not statistically sig-
nificant. Both VRA1 and VRA2 treatments resulted in significantly higher protein content 
(16.4% and 16.3%) than the uniform treatment (14.1%). Moreover, the uniform treatments 
had the lowest agronomic efficiency (AE; 19.2 kg grain kg N− 1) (p < 0.01) when compared 
to VRA1 (22.3 kg grain kg N− 1 applied) and VRA2 (25.4 kg grain kg N− 1 applied).

The VRA1 and VRA2 treatments showed a significantly higher agronomic efficiency 
compared with the uniform application rate (p < 0.10) (Table 4). The uniform fertiliza-
tion had the lowest gross margin (62.3 € ha− 1), while the VRA1 and VRA2 methodolo-
gies resulted in + 101% and + 84% greater gross margins (125.4 € ha− 1 and 167.9 € ha− 1), 
respectively.

Model evaluation: 2018–2019 and 2019–2020 growing seasons

The calibrated model was evaluated using the datasets collected over the 2018–2019 and 
2019–2020 growing seasons. No differences were observed in the phenological develop-
ment among the different MZs. The emergence date was simulated one day earlier than the 
observed date (23 DAP vs. 24 DAP) in 2018–2019 and 3 days later than the observed date 
(31 DAP vs. 28 DAP) in 2019–2020. The anthesis date was simulated one day later than the 
observed date (184 DAP vs. 182 DAP) in 2018–2019 and 3 days earlier than the observed 
date (156 DAP vs. 159 DAP) in 2019–2020. Finally, the harvest date was simulated within 
four days (214 DAP vs. 218 DAP) in 2018–2019 and 2 days (189 DAP vs. 191 DAP) in 
2019–2020.

The model performed well in predicting the observed aboveground crop parameters. 
The comparison between observed and simulated harvested yield resulted in an RMSE of 
437.9 kg DM ha− 1, a D-index of 0.94 and a coefficient of determination (r2) of 0.88 (Fig. 9a). 
The comparison resulted in an RMSE of 0.67 and a D-index of 0.93 for leaf area index (LAI; 
Fig. 9b) and an RMSE of 1263.2 kg DM ha− 1 and 15.5 kg N ha− 1, and a D-index of 0.97 and 
0.96 for aboveground biomass and N uptake, respectively (Fig. 9c, d).

Discussion

Model parameterization

The yields achieved with the three fertilization approaches during the 2018–2019 season 
were in line with the seasonal average winter wheat yields reported for the Veneto region 
(5.5 t ha− 1). However, in 2019–2020, the yields measured at the trial were less than half 
of the average regional yields reported for that year(6.5 t ha− 1; ISTAT Agricoltura, 2021). 
During the 2018–2019, winter wheat was grown on the two most productive managements 
zones (Zone 3 and 4), resulting in yields close to the Veneto regional average. In 2019–
2020, winter wheat was grown on the two least productive management zones, resulting in 
lower crop yields. Low yields in 2019–2020 were also related to outlier weather conditions 
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observed at the experimental area, with planting conditions occurring in sub-ideal soil mois-
ture due to the wet winter.

However, the model was able to successfully reproduce these seasonal dynamics, show-
ing the robustness and importance of the calibration and evaluation process. The calibration 
and evaluation statistics obtained in this study (RMSE and D-index) agree with previous 
results (Attia et al., 2016; Li et al., 2018) and indicate the model evaluation results were 
satisfactory. A recent study by Zhang et al., (2019) used the DSSAT model to evaluate long-
term responses in winter wheat productivity and N use to N fertilization. In this study, the 
calculated RMSE ranged between 1148.3 and 1307.5 kg DM ha− 1 for simulated biomass, 
274.6 and 476.8 kg DM ha− 1 for yield, and between 3.11 and 17.78 kg N ha− 1 for canopy 
N. These results by Zhang et al., (2019) align with the RMSEs obtained in this study, which 
were 1263.2 kg DM ha− 1 for biomass, 437.9 kg DM ha− 1 for yield, and 15.5 kg N ha− 1 for 
canopy N.

Importantly, in the study, model performance during the evaluation dataset was better 
than during the calibration one (RMSE of 750.7 DM ha− 1 in the calibration vs. 437.9 kg DM 
ha− 1 in the evaluation for yields). This result is relatively rare across studies employing crop 
models (Jing et al., 2017; Roll et al., 2020), as weaker model performances in the evaluation 
phase often occur when the dataset used in the model calibration is comparatively small 
and/or contains experimental errors. Therefore, the satisfactory validation results achieved 

Fig. 9 Comparison between observed and simulated harvested yield (a), leaf area index (b), aboveground 
biomass (c) and aboveground biomass (ABG) N uptake (d). Blue dots refer to 2018–2019, while red dots 
refer to 2019–2020. The black line is the line of perfect correspondence (1:1)
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in this study show the importance of parameterizing crop models using large, multi-seasonal 
datasets characterized by limited experimental errors (Ehrhardt et al., 2018).

Proximal sensing and spatial variability

Proximally-sensed NDVI showed low spatial variability at tillering, while substantial spa-
tial variability was observed immediately before the second top dressing at flag leaf. The 
use of proximal sensing captured spatial variability in plant vigor at a high spatial resolu-
tion. This aspect is essential for small fields such as the one used in this study (characterized 
by 30 × 500 m plots), where remote sensing platforms are highly influenced by field-edge 
effects (Mulla, 2013). Proximal sensors and biomass samples (Figure S1, supplementary 
materials) confirmed previous NDVI to N uptake relationships in winter wheat (Li et al., 
2008; Morari et al., 2021).

As widely reported, the sensitivity of proximal sensors to changes in plant biomass 
decrease dramatically when approaching NDVI saturation (Aparicio et al., 2000; Naser et 
al., 2020).

To avoid this issue, this study adopted an early application of N fertilizers before the boot-
ing stage and used the linear correlation described in Bruce et al., (2019), which accounts 
for accumulated GDDs.

CSM-based approaches

Crop simulation models have been extensively applied in the scientific literature to deter-
mine optimal fertilization rates (De Antoni Migliorati et al., 2021; Cammarano et al., 2021) 
and assess the impact of climate change on crop production (Asseng et al., 2013, 2019; 
Cammarano et al., 2019). However, no on-farm N-VRA study has compared the agronomic 
and economic gains of the uniform N application rate approach with adopting CSM-based 
methodologies integrating remotely sensed plant N status and seasonal forecasts or histori-
cal weather data.

The two CSM-based approaches resulted in significantly higher wheat yield in 2018–
2019, protein content in 2019–2020 and agronomic efficiency in 2018–2019 and 2019–2020 
growing seasons (Table 4). CSM-based N variable rate resulted in a greater gross margin 
(+ 30% and + 84% for VRA1 and + 6% and + 101% for VRA2) than the values observed 
in the uniform treatment. These findings confirm the accuracy and profitability of CSM-
based N rates when the model is parameterized using high-quality, multi-seasonal datasets. 
These results agree with the findings reported by other authors on N-VRA approaches. For 
example, Basso et al., (2011) utilized the SALUS model to provide N-VRA rates in Italy, 
showing how CSM-based approaches had similar AE and crop yield (on average, + 1.36%) 
and greater NUE than uniform fertilization. In a recent study, Argento et al., (2021) stated 
that variable-rate fertilization resulted in greater yield (from 2 to 10%) and greater profit 
than standard fertilization. Similar results were provided for winter wheat by Stamatiadis 
et al., (2018), where N-VRA utilized 38–72% fewer N inputs and had a 118 € ha− 1 higher 
revenue over fertilizer costs than the farmer’s uniform fertilization approach.

Using a CSM to provide in-season N recommendation offered clear advantages, but its 
implementability depends on the type of weather data used to inform the model. In this study, 
feeding the model with historical weather data resulted in greater agronomic and economic 
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performance than the uniform treatment, requiring only a limited amount of data to run 
the simulations. Moreover, historical weather data are easily and freely accessible in many 
countries and do not require any further steps to be utilized in a CSM. On the other hand, 
feeding the model with seasonal forecasts data requires substantial technical capabilities 
and efforts to produce reliable seasonal forecasts. Of course, producing seasonal forecasts is 
not as easy as downloading historical data from a national or international database, on top 
of which it has to be noted that seasonal forecasts produced in the Mediterranean regions 
are usually less reliable than those produced in areas characterized by solid climate sig-
nals (Pavan & Doblas-Reyes, 2013; Basso & Liu, 2019). As reported in Costa-Saura et al., 
(2022), several sources of uncertainties exist for explaining this poor performance. Beside 
the already mentioned weak relationships between large-scale climate signals and local cli-
mate variability, model approximations of physical processes and the imperfect knowledge 
of the system’s initial conditions may lead to inaccurate predictions. Nonetheless, seasonal 
forecasting since the beginning has experiencing a persistent improvement (Weisheimer & 
Palmer, 2014). In particular, several research programs, in recent years, have been started to 
explore the source of uncertainties and improve seasonal forecasts in areas where they cur-
rently perform poorly, thus increasing their potential usefulness for decision making under 
different geographical and environmental contexts (Costa-Saura et al., 2022).

Togliatti et al., (2017), who coupled seasonal forecasts with the APSIM model, found 
that the accuracy in yield predictions was inversely proportional to the forecast length. In 
the current study, seasonal forecasts performed poorly in the 2018–2019 growing season, 
underestimating the observed rainfall by 45.7% for the Forecast 1 dataset and 54.4% for 
the Forecast 2 dataset. Conversely, seasonal forecasts produced in 2019–2020 had solar 
radiation, Tmin and rainfall values close to the observed ones, while Tmax was on average 
1 °C higher than the observed. During both growing seasons, moving from an early predic-
tion (Forecast 1; 120 days before harvest) to seasonal forecasts produced approximately 60 
days before harvest did not improve the accuracy of the dataset compared to the observed 
weather variables. As discussed in Morari et al., (2021), accurate crop simulations were 
produced when the observed rainfall was similar to or lower than the climatological average 
(i.e. 2019–2020), while the system performed poorly when the growing season was charac-
terized by abundant precipitation (i.e. 2018–2019).

Importantly, the accurate seasonal forecasts in 2019–2020 resulted in substantially bet-
ter model performance, which led to VRA2 recording the higher yields and AE compared 
with running the model with historical weather (VRA1) (Table 4). These results confirm the 
remarks reported by Asseng et al., (2016), who observed how accurate short-term rainfall 
forecasts in dryland agriculture could increase farmer’s benefits because of better sowing, 
fertilization and fungicide application decisions.

Conclusion

Even if weather conditions differed substantially across the 2018–2019 and 2019–2020 
growing seasons in this study, crop model-based fertilization recommendations resulted in 
consistently greater yields, N efficiency and profit for farmers than the uniform N applica-
tion approach. These findings indicate that either (i) the use of historical weather data or 
(ii) seasonal forecasts provide farmers with better fertilization recommendations than the 

1 3

1943



Precision Agriculture (2022) 23:1922–1948

uniform, business-as-usual method, even when outlier conditions occur. In addition, the 
combination of proximally-sensed NDVI with seasonal forecasts well captured the spatial 
and temporal variability in plant vigor immediately before fertilization, which led to sub-
stantial increases in N use efficiency.

The results of this study confirm that a system that integrates crop modelling, proximal 
sensing and seasonal historic or forecast weather data could be used to develop an intuitive 
online tool that allows farmers to define the best N fertilization rates for the simulated crop. 
Therefore, future research will need to focus on integrating proximally and remotely sensed 
data into the crop simulation model through data assimilation or autocalibration strategies, 
leading to accurate yield estimates and optimal N rates for each management zone.
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org/10.1007/s11119-022-09957-5.
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