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Abstract
Yield assessment is a highly relevant task for the wine industry. The goal of this work was 
to develop a new algorithm for early yield prediction in different grapevine varieties using 
computer vision and machine learning. Vines from six grapevine (Vitis vinifera L.) varie-
ties were photographed using a mobile platform in a commercial vineyard at pea-size berry 
stage. A SegNet architecture was employed to detect the visible berries and canopy fea-
tures. All features were used to train support vector regression (SVR) models for predicting 
number of actual berries and yield. Regarding the berries’ detection step, a F1-score aver-
age of 0.72 and coefficients of determination  (R2) above 0.92 were achieved for all varieties 
between the number of estimated and the number of actual visible berries. The method 
yielded average values for root mean squared error (RMSE) of 195 berries, normalized 
RMSE (NRMSE) of 23.83% and  R2 of 0.79 between the number of estimated and the num-
ber of actual berries per vine using the leave-one-out cross validation method. In terms of 
yield forecast, the correlation between the actual yield and its estimated value yielded  R2 
between 0.54 and 0.87 among different varieties and NRMSE between 16.47% and 39.17% 
while the global model (including all varieties) had a  R2 equal to 0.83 and NRMSE of 
29.77%. The number of actual berries and yield per vine can be predicted up to 60 days 
prior to harvest in several grapevine varieties using the new algorithm.
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Introduction

Yield prediction has been recognized as a key subject in agriculture (Klompenburg et al., 
2020), and particularly in the grape and wine industry (Carrillo et al., 2016; Clingeleffer 
et  al., 2001; Dunn & Martin, 2003; Laurent et  al., 2021; Taylor et  al., 2019). Vineyard 
yield prediction is crucial to achieve the desired fruit quantity and quality (Krstic et  al., 
1998; Taylor et al., 2019), therefore, the objective and fast estimation of vine yield would 
be very valuable for grapegrowers (Dunn & Martin, 2000; Laurent et  al., 2021; Martin 
et al., 2003). Several works on yield estimation and forecasting in vineyards have been pub-
lished in the last decades. An interesting review of the approaches, methods and challenges 
for vineyard yield estimation, prediction and forecasting was recently published by Laurent 
et al. (2021). In this review, the most relevant features regarding yield development in an 
operational scenario that have to be considered by yield assessment methods are summa-
rized and discussed. Moreover, the yield assessment methods reported in the literature are 
classified and compared in light of the measurement, estimation and modelling approaches. 
Conventional methods for assessing yield are destructive, labour-demanding and time-con-
suming (Clingeleffer et al., 2001; Martin et al., 2003), thus accurate, objective and rapid 
approaches are needed for improving yield assessment in operational contexts (Dunn & 
Martin, 2004; Laurent et al., 2021; Taylor et al., 2019). Moreover, the new methods should 
consider the high spatial and temporal variability of yield components (Bramley et  al., 
2019; Carrillo et al., 2016; Li et al., 2017; Oger et al., 2021a, 2021b; Taylor et al., 2005).

Yield components including the number of clusters per vine, cluster weight, berry num-
ber per cluster and berry weight are important in vineyard yield estimation. High annual 
variation (60 to 70%) of final yield is explained by the number of clusters per vine (Cling-
eleffer et al., 2001). However, recent trials in several vineyards in southern France (involv-
ing different training system, age of vines and grapevine variety) across different seasons 
revealed that the role of the number of clusters per vine was more variable, explaining from 
39 to 99% of the temporal yield variance (Carrillo et al., 2016). Clingeleffer et al. (2001) 
also reported that the number of berries per bunch, the berry weight and the interaction 
between the number of clusters per vine and the number of berries per cluster respectively 
explained 11%, 4% and 20% of the spatial yield variability. Laurent et al. (2021) suggested 
that the classical values of vineyard yield components variability (60%, 30% and 10% for 
number of clusters per vine, number of berries per cluster and berry weight, respectively) 
should not be established for all situations in yield assessment.

Novel sensing technologies enable an efficient acquisition of data and precise forecasts 
in agriculture. Optical sensors are widely proposed for assessing vineyard spatial variabil-
ity in precision viticulture (Ballesteros et al., 2020; Hall et al., 2011). Spectral sensors are 
applied to detect vegetation features, yield and canopy characteristics. A high correlation 
value was found between vegetation indices and yield using both remote (Hall et al., 2011) 
and proximal sensing technologies (Sozzi et al., 2019). Moreover, crop models can be used 
for yield prediction of different vineyard zones (Laurent et al., 2021). Vineyard yield was 
predicted by combining vegetation indices (using a spectral sensor mounted in UAV) and 
computer vision to obtain the vegetated fraction cover as an indicator of vine vigour (Bal-
lesteros et al., 2020).

Computer vision systems are powerful tools to automate inspection tasks in agriculture 
and food processing (Cubero et al., 2011; Tian et al., 2020). Typical target applications of 
such systems include grading, yield component monitoring (Cubero et al., 2011; Liu et al., 
2018; Nuske et al., 2014a, 2014b). With computer vision techniques, a large set of samples 
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can be evaluated to provide more objective information (Cubero et al., 2011; Grimm et al., 
2019; Liu & Whitty, 2015).

Grapevine yield estimation has been widely addressed using computer vision at differ-
ent phenological stages, such as budbreak (Liu et al., 2017), flowering (Liu et al., 2018; 
Palacios et al., 2020), pea-size (Aquino et al., 2018; Liu et al., 2020; Palacios et al., 2021, 
2022), and harvest (Dunn & Martin, 2004; Liu et al., 2013, 2015; Nuske et al., 2014b; Xin 
et al., 2020). A recent work (Hacking et al., 2020), concluded that the final stage of berry 
ripening was the ideal phenological stage for grapevine yield estimation. Information about 
the number of berries can lead to an adequate and early estimation of the yield in grape-
vine. Most of the previous works have focused on the detection of visible fruits. Some 
authors have developed algorithms capable of quantifying the number of visible berries in 
RGB images acquired under natural conditions, using traditional image analysis methods 
(Aquino et al., 2018; Nuske et al., 2014b) or newer deep learning techniques (Buayai et al., 
2021; Grimm et al., 2019; Klompenburg et al., 2020). These works have suggested a pro-
cedure on yield forecasting for defoliated vineyards where the number of visible berries in 
the images was proportional to the total number of berries. However, the number of visible 
berries was only a fraction of the actual number of berries in the vine, as the percentage 
of exposed berries may vary beyond lineal relationships according to canopy conditions 
in the fruiting zone (Iñiguez et  al., 2021). Leaf and berry occlusions are the main chal-
lenges for yield forecasting using computer vision based methods in commercial vineyards 
(Iñiguez et al., 2021; Victorino et al., 2020). As leaf occlusion rate (cluster occlusion by 
leaves) increased, the relationship between fruit pixels and yield was gradually reduced 
(Iñiguez et  al., 2021). Yield prediction based on computer vision can also be benefited 
by leaf removal (a common practice in many winegrape regions) in the fruiting zone to 
decrease the berry occlusion affected by leaves (Iñiguez et al., 2021). Additionally, differ-
ent grapevine varieties develop canopies of variable vigour, leading to occlusion situations 
of different extent (Diago et al., 2016; Nuske et al., 2014b), so new algorithms for yield 
prediction using vine images in different grapevine varieties need to be investigated.

The yield spatial variability within a commercial vineyard is a well-known fact (Bram-
ley et  al., 2019; Taylor et  al., 2005). For this reason, understanding and monitoring the 
spatial distribution of yield variation is essential. This cannot be achieved using classical, 
destructive methods, as a large number of measurements are required for adequate repre-
sentativeness and yield estimation. Indeed, it is a highly relevant task to perform and to 
obtain more precise early yield predictions in commercial vineyards. The image acquisition 
for monitoring commercial vineyards could be carried out using mobile sensing platforms. 
These moving platforms (e.g. All-terrain vehicles, tractors, agricultural machinery) can be 
used to improve yield estimation following the suggestions of several authors (Arnó et al., 
2017; Oger et al., 2021b; Tisseyre et al., 2018).

Machine learning is an important element of a decision support tool for crop yield pre-
diction in agriculture (Klompenburg et  al., 2020). Several machine learning algorithms 
have been applied for predicting the number of actual berries and final yield at harvest 
(Zabawa et  al., 2020) under different levels of leaf and berry occlusions in grapevines. 
Similarly, Monga et  al. (2018) used convolution neural networks to develop models that 
can estimate yield using RGB images. A new approach for vineyard yield estimation was 
recently suggested by Ballesteros et al. (2020) combining remote sensing, computer vision 
and artificial neural network techniques.

The research idea was guided by a heuristic engineering method proposed by Koen 
(1988), which involves defining a problem, proposing a solution and testing that solution. 
Aiming at the task of early yield prediction in commercial vineyards, a method based on 
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computer vision and machine learning using RGB images acquired on-the-go was devel-
oped. To test the solution, the evaluation results were also compared with the reference 
method and the limitations of the method proposed were analysed. Moreover, the differ-
ences in the method performance when prediction modelling was conducted individually 
for each grapevine variety versus a general model were evaluated.

Materials and methods

The experimental procedure comprised several steps (Fig.  1). It started from on-the-go 
image acquisition of six grapevine varieties under field conditions at night time. The clus-
ters were then segmented in the vine images, and the output was used for berries’ and 
canopy elements’ segmentation. The number of berries, obtained after a second segmen-
tation step, and several features related to elements of the canopy, obtained after canopy 
elements’ segmentation, were then combined into a dataset, and used in regression models 
to obtain an estimation of the number of actual berries and the yield per vine. Two pos-
sible scenarios of applicability were considered for these models: global models, where 
the training set contained multiple varieties, and local models, where a different model was 
trained and tested on each variety individually. For global models, three cross validation 
methods were considered: leave-one-out (LOOCV) and eightfold, where test sets contained 

Fig. 1  Flow-chart of the full process for the estimation of the number of actual berries and yield in com-
mercial vineyards
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varieties already included in the training set (to analyse the behaviour on varieties pre-
viously known by the model), and leave-one-variety-out (LOVOCV), where the test sets 
included a variety not included in the training set (to analyse the behaviour on varieties 
unknown by the model). In the case of local models, only LOOCV was performed on each 
variety individually to test the performance of a model trained only with the variety on 
which it will be applied.

Experimental layout

A set of six grapevine (Vitis vinifera L.) varieties were selected for the experiment in a 
commercial vineyard during season 2018.Three red (Cabernet Sauvignon, Syrah and Tem-
pranillo) and three white (Malvasia, Muscat of Alexandria and Verdejo) varieties were 
used in this work (Fig. 2). The vineyard was located in Vergalijo (lat. 42°27′46.0″ N; long. 
1°48′13.1″ W; Navarra, Spain). A set of 96 vines (16 per grape variety) were selected and 

Fig. 2  Examples of vine canopy images of each grapevine variety: a Cabernet Sauvignon, b Malvasia, c 
Muscat of Alexandria, d Syrah, e Tempranillo and f Verdejo
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vertically delimited using a plastic strip. Each grapevine variety was planted in a single 
row. In total six rows were monitored (one per variety). A vertical shoot positioned (VSP) 
trellis system was used for training the vines, with 2 m row spacing and 1 m vine spacing. 
Partial defoliation, a common viticultural practice in northern Spain, consisting of removal 
of three leaves per shoot around the fruiting zone was applied to the vines at fruit-set stage 
(Fig. 2). Partial defoliation in this work was manually applied in order to remove precisely 
the same number of main basal leaves per each shoot (only three leaves per shoot were 
removed).

At harvest, for each tagged vine their clusters were collected, weighted and transported 
to the laboratory for destemming and manual counting of their berries. Yield, berry num-
ber and berry weight were determined for each vine.

Image acquisition

The acquisition of RGB images was performed the 3rd July 2018 (66 days before harvest), 
at the phenological stage of pea size (green berries of around 7 mm diameter, according 
to Coombe, 1995). A mobile sensing platform developed at the University of La Rioja 
(Fig. 3a) was used for the night-time image acquisition. The main component of this plat-
form was an all-terrain-vehicle (ATV (Trail Boss 330, Polaris Industries, Minnesota, USA) 
customized to incorporate a custom-made aluminium structure. This structure included a 
RGB Canon EOS 5D Mark IV (Canon Inc. Tokyo, Japan) camera, mounting a full-frame 
CMOS (ccomplementary metal–oxide–semiconductor) sensor (35  mm and 30.4 MP) 
and equipped with a Canon EF 35 mm F/2 IS USM lens. The camera was positioned at a 

Fig. 3  Mobile imaging platform and image processing stages: a an all-terrain-vehicle (ATV) modified to 
incorporate a RGB camera for on-the-go image acquisition, b original vine image, c berries’ segmentation 
and d canopy features’ segmentation
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distance of 1.80 m, perpendicular to the canopy and at a 1 m of height from the ground. 
The camera settings were manually fixed at the beginning of the trials with the following 
values: exposure time of 1/1600 s, ISO speed of 2000 and f-number of f/5.6. This camera 
enabled the acquisition of images with a resolution of 6720 × 4480 pixels. The structure 
also included a triggering system for automating the RGB image capture and an artificial 
illumination system for the night-time image acquisition, necessary to obtain vine images 
with homogeneous illumination, and to differentiate the vine under evaluation from the 
vines of the opposite row. This illumination system consisted of a 1200 LEDs NanGuang 
CN-1200CHS panel (72 W, 3681.5 lm) and a 900 LEDs Bestlight panel (54 W, 6480 lm). 
The mobile platform was described and used in previous works (Diago et al., 2019; Pala-
cios et al., 2020).

Image processing

Deep learning (Deng & Yu, 2014) was used in this work to perform the semantic segmen-
tation of the elements presented in the images (Fig. 3b). Each image pixel was assigned to 
a predefined class using the SegNet DL architecture (Badrinarayanan et  al., 2017). This 
architecture was designed with an encoder, that performs down-sampling operations in 
order to extract feature maps from the images, and a decoder, that produces the final pixel-
wise labelling by reversing the operations performed by the encoder. The encoder was 
formed by the layers of a convolutional neural network (CNN) pre-trained model, and the 
decoder mirrored the encoder. The layers for the encoder used in this work were the ones 
from VGG16, introduced by Simonyan and Zisserman (2015).

The segmentation of the berries and canopy elements was previously described in 
Palacios et al. (2022). The first step was to segment the clusters, in order to identify the 
image regions that contained berries, and to reduce false positives at segmenting them. 
Also, the segmented clusters were used in canopy segmentation. SegNet was trained with 
a set of 1646 image patches randomly extracted from 18 full-resolution images from dif-
ferent vines than the 96 presented in the experimental layout section, but from the same 
vineyard and varieties. Two image scales were considered for these images: the original 
full-resolution image scale, of which half of them (823 image patches) contained clusters 
while the remaining ones contained other objects (usually canopy elements). Each pixel of 
these patches was labelled as “cluster” class or “background” class. The size of the image 
patches was 1120 × 1120 but they were resized to 560 × 560 pixels in order to reduce the 
training time.

After performing the segmentation of the clusters, SegNet was trained to segment ber-
ries (Fig. 3c) using the same image patches with a new pixel labelling. In this step pixels 
were labelled as “background”, representing non-berry pixels, “contour” and “center”, rep-
resenting the contour and the center of the berries, defined as berry pixels completely sur-
rounded by “contour” pixels (Fig. 3c).

Finally, the canopy elements were segmented using six canopy classes (Fig. 3d). These 
were “gap”, “leaf abaxial” (lower side of the leaf), “leaf adaxial” (upper side of the leaf), 
“shoot”, “trunk” and “cluster” (segmented previously in the first step). The labelling of 
these classes was achieved using a semi-automatic approach. Six colour features, corre-
sponding to the red–green–blue from RGB colour space, and L-a-b from CIELAB, were 
extracted from the images and a different multinomial logistic regression (MLR) model 
was trained for each variety using these features. Each training dataset contained 300 pixels 
(50 per class). Then, these models were used to segment the images of its corresponding 
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variety and the outputs were used as training masks for SegNet, which enabled performing 
the semantic segmentation of the canopy elements for all varieties (Fig. 3d).

Models for number of actual berries and yield estimation

The canopy features calculated per vine after the canopy segmentation for the number of 
actual berries estimation were the following:

• F1: Number of estimated visible berries (calculated as the number of adjacent pixel 
groups from berry “center” class).

• F2: The average of the ratios between the number of “leaf abaxial” pixels and the total 
area for each bounding box (rectangular regions of the image) containing a cluster.

• F3: The number of “shoot” class pixels in the fruiting zone.
• F4: The number of “leaf adaxial” class pixels in the fruiting zone.
• F5: The ratio between F4 and the area of the fruiting zone.
• F6: The area of the fruiting zone, expressed in pixels.

These features were included in a regression model to estimate the number of actual 
berries (Palacios et al., 2022). For yield estimation, in addition to these features, the aver-
age berry weight determined at harvest for each grapevine variety was also included in 
the model. This was done in order to study the hypothetical improvement that could be 
obtained when the average berry weight per variety (which could be calculated from previ-
ous seasons) is included in the model. Descriptive statistics for each feature included in the 
models and possible outcomes are shown in Tables 1 and 2.

The regression method used in this work for both estimation tasks (number of actual 
berries and yield) was a support vector regression (Bishop, 2006).

Evaluation metrics

The metrics used in this work to test the performance of the algorithm at detecting indi-
vidual berries were the following:

Being TP the true positives (number of correctly detected berries), FP the false posi-
tives (number of detected berries that were not actually berries) and FN the false negatives 
(number of actual berries that were not detected). In the context of this work, precision 
(Eq. 1) represents the proportion of correctly detected berries from the whole set of objects 
identified as berries by the algorithm. Recall (Eq.  2) is the proportion of actual berries 
detected by the algorithm from the whole set of berries visible in the images. A perfect 
performance of the algorithm would be achieved with a precision and recall of 1.0. The 

(1)Precision =
TP

TP + FP

(2)Recall =
TP

TP + FN

(3)F
1
score = 2 ×

Precision × Recall

Precision + Recall
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balance between both metrics is represented by the F1-score (Eq. 3), that is defined as the 
harmonic mean of precision and recall (Chinchor, 1992).

For the estimation of the number of actual berries and yield, three regression metrics 
were selected. These include the coefficient of determination  (R2), the root-mean-squared 
error (RMSE) and the normalized root-mean-squared error (NRMSE), calculated as the 
ratio of RMSE over the average of the number of actual berries. The RMSE and NRMSE 
are mathematically defined as:

where yi is the observed value from the i-th vine (the number of actual berries or yield 
weighted), y′i is the estimation performed on the i-th vine and n is the number of vines.

Support vector regression hyperparameters’ tuning

The support vector regression hyperparameter’s tuning was performed using a Bayesian 
Optimization algorithm (Mockus et al., 2014), which aims to minimize an objective func-
tion (a performance metric for the model trained with a set of hyperparameters) using a 
gaussian process model, a bayesian procedure that modifies the Gaussian process model 
at each new evaluation of the objective function, and an acquisition function that is maxi-
mized to find the next point to be evaluated by the objective function (i.e. the next set of 
hyperparameters). The Bayesian optimization algorithm has probed to outperform other 
optimization algorithms (Jones, 2001).

The function fitrsvm implemented in Matlab 2018b was used to train the support vector 
regression and optimize the hyperparameters using the bayesian optimization algorithm. In 
this algorithm a gaussian process with ARD Matérn 5/2 kernel model and the “expected-
improvement-plus” acquisition function were employed, along with the mean-squared-
error (MSE) metric as the objective function (calculated using leave-one-out cross valida-
tion performed on the full set of 95 vines).

Two sets of hyperparameters for support vector regression were obtained: one for the 
actual berry number estimation, and another one for yield estimation. These hyperparam-
eters are shown in Table 3 and remained fixed for all cross-validation methods within each 
estimation task. In addition, these features were standardized before training.

Models’ validation

The validation set for the individual berries’ segmentation step was formed by a set of 60 
full-resolution (6720 × 4480 pixels) images (ten per grapevine variety). The validation was 
focused on testing the accuracy of the method at counting the visible berries, rather than 
testing the quality of the segmentation. Therefore, the centres of the berries were manually 
checked in the images.

(4)RMSE =

�

∑n

i=1
(y�i − yi)

2

n

(5)NRMSE =
RMSE
∑n

i=1
yi

n

× 100%
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For the estimation model, three cross-validation methods were applied on the 96 vines. 
These methods were considered to test the applicability and the performance of the support 
vector regression model as a global model (involving all grapevine varieties) and as a local 
model (separate models for the different varieties). As a global model, two possible cases 
of application were considered. In the first one, the model was trained with data acquired 
from of all varieties and tested on other vines from the same varieties. For this, leave one 
out cross validation (LOOCV) and eightfold cross validation were tested. In LOOCV, in 
each iteration the model was trained with 95 vines and tested on one vine, while in the 
eightfold cross validation, the model was trained with 84 vines and tested with 12 in each 
iteration, randomly selecting the vines included in the training and test sets. In order to 
avoid bias in the partitioning of the data into both sets, eightfold was repeated 30 times, 
and the average of the values obtained for the regression metrics (RMSE, NRMSE and 
 R2) in the 30 repetitions was selected as the final result for eightfold. In the second case 
of application as a global model, this was trained with data acquired from five of the six 
varieties and tested on the remaining variety, in order to verify the generalization capability 
of the model to estimate the number of actual berries and yield in new varieties previously 
unknown to the model. Hence, a leave-one-variety-out cross validation was applied, were 
in each iteration the model was trained with 80 vines from five varieties (all 16 vines from 
five varieties) and tested in the 16 vines of the remaining variety. As a local model, each 
variety was considered a different dataset and the model was trained in each variety inde-
pendently. As the number of vines per variety was low (16 vines), LOOCV was carried out. 
Likewise, for each iteration the model was trained in 15 vines and tested in the remaining 
one.

The average berry weight feature for yield estimation was calculated considering only 
the vines in the training fold for each cross validation method.

Results and discussion

Individual berries’ detection

The performance metrics of the individual berries’ detection step are shown in Table 4. 
It can be observed that the algorithm achieved a precision higher than 0.60 for most 
of the varieties, except for Verdejo (precision = 0.52), indicating a higher false posi-
tive rate for this variety. In terms of recall, similar results, all of them above 0.84, 
were obtained for all varieties. The balance between both metrics is expressed by the 
F1-Score which shows values over 0.70 for all varieties except for Verdejo (with a 
F1-Score of 0.65). The poorer results observed for this white variety could be related 
to the higher size of its clusters, as compared to the other five varieties. Likewise, 

Table 3  Support vector regression hyperparameters sets employed for number of actual berries and yield 
estimation

Estimation parameter Kernel function 
(fixed)

Tuned hyperparameters

Box constraint Kernel scale ε

Number of actual berries Linear 0.0010135 0.0028975 83.947
Yield Linear 852.1 10.254 0.31103
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Verdejo clusters, with a bigger number of berries, may have led the algorithm to detect 
wrong artefacts in the images and identify them as berries. This could be improved by 
training SegNet with a higher number of images from Verdejo and other varieties with 
clusters similar to the ones of Verdejo.

The correlation between the number of estimated visible berries (using the detec-
tion algorithm) and the actual visible berries per image is shown in Fig. 4. A strong 
correlation was found for all varieties, with coefficient of determination  (R2) above 
0.92, suggesting that the error made by the algorithm is proportional to the number of 
visible berries, while a fixed deviation still existed for all varieties. Generally speak-
ing, the algorithm overestimated the number of visible berries, but this was more pro-
nounced in Cabernet Sauvignon (Fig. 4a), Malvasia (Fig. 4b) and Verdejo (Fig. 4f).

In the work of Nuske et al. (2014b), the berries’ detection algorithm presented by 
these authors obtained different recall values depending on the illumination condi-
tions and the variety. These values ranged from 0.66 to 0.89. For some varieties the 
recall values were inferior to the ones presented in Table  4, while for the remaining 
ones (Traminette, Chardonnay, Flame Seedless and Petite Syrah) the recall values were 
similar. In good agreement with the present study, Aquino et al. (2018) reported recall 
values between 0.83 and 0.89 for Cabernet Sauvignon, Syrah and Tempranillo while 
the precision values ranged from 0.94 to 0.97. This means that Aquino et  al. (2018) 
detected a similar rate of berries potentially due to the lower amount of canopy ele-
ments that can be mistaken for berries by the algorithm (mainly leaves), as the fruiting 
zone was fully defoliated. As in the case of the work of Aquino et al. (2018), the recall 
values (also the F1-scores) were higher in Grimm et  al. (2019) while the precision 
achieved was very similar to that of the present study. In this case, the difference in 
colour of the ripe berries versus the canopy leaves (images were acquired after verai-
son and near harvest) made have played a significant role in the segmentation step, 
making the berries more distinguishable from the remaining canopy elements, lead-
ing to lower false positives’ rates. So, either occlusion phenomena (for instance by 
leaves) or similarities in the green colour of the berries at the pea-size phenological 
stage with that of leaves, shoots, or other elements of the canopy seem to difficult the 
proper identification and counting of berries, leading to a considerable number of false 
positives. In an interesting and recent work, Zabawa et al. (2020) reported high preci-
sion and recall values for Riesling berries detection. However, an artificial background 
was attached to the mobile phenotyping platform, which, from a practical perspective 
may have more limited application in an operational context.

Table 4  Performance results of 
the detection of the number of 
visible berries

The validation set included 60 images (10 images per variety)

Grapevine variety Precision Recall F1-Score

Cabernet Sauvignon 0.642 0.851 0.730
Malvasia 0.652 0.865 0.741
Muscat of Alexandria 0.689 0.857 0.763
Syrah 0.635 0.885 0.739
Tempranillo 0.617 0.842 0.710
Verdejo 0.520 0.863 0.648
Average 0.626 0.860 0.722
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Estimation of the number of actual berries

The correlations between the number of estimated visible berries and the number of actual 
berries per vine for each grapevine variety is shown in Fig. 5. These results show high  R2 
values for Muscat of Alexandria, Syrah, Tempranillo and Verdejo varieties, while for Cab-
ernet Sauvignon and Malvasia lower  R2 were obtained. These results proved that a linear 
relationship between the number of visible berries in the images and the number of actual 
berries in the vines existed for four of the six studied varieties. However, this linear rela-
tionship was only achieved within each variety independently, but not combining multiple 

Fig. 4  Correlation between the number of estimated visible berries (F1 feature) and the number of visible 
berries per image, for each grapevine variety (10 images per variety): a Cabernet Sauvignon, b Malvasia, c 
Muscat of Alexandria, d Syrah, e Tempranillo and f Verdejo. Determination coefficients  (R2) were signifi-
cant at p = 0.001 (***). The solid line represents the correlation line and the dotted line represents the 1:1 
line
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varieties (global model). This can be inferred from the observation of the variability pre-
sented in the slopes of the linear functions for the different varieties, as these ranged from 
1.19 (Syrah, Fig. 5d) to 2.18 (Muscat of Alexandria, Fig. 5c). Therefore, it was not pos-
sible to estimate the number of actual berries per vine using a global linear regression that 
included only the number of estimated visible berries from different varieties.

The performance of the estimation models that involved the number of estimated visible 
berries along canopy features is shown in Tables 5 and 6.

The results obtained for the application of a global model, where multiple varieties 
were used for training, are presented in Table 5. It can be observed that similar results 

Fig. 5  Linear correlation between the number of estimated visible berries (F1 feature) and the number of 
actual berries per vine (manually counted in the laboratory), for each grapevine variety: a Cabernet Sau-
vignon, b Malvasia, c Muscat of Alexandria, d Syrah, e Tempranillo and f Verdejo. Determination coeffi-
cients  (R2) were significant at p = 0.05 (*) and p = 0.001 (***). The solid line represents the correlation line, 
and the dotted line represents the 1:1 line
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were obtained between the two cross validation methods that used all varieties for train-
ing and the test set (leave-one-out and eightfold) either for each individual variety  (R2 
ranged between 0.59 to 0.86 and NRMSE ranged from 17.9 to 35.7%) and the average 
for all of them  (R2 ~ 0.78; RMSE ~ 200; NRMSE ~ 24%). Regardless the use of LOOCV 
or eightfold, the estimation of the actual number of berries was more accurate for Syrah 
and Malvasia, while the poorest estimation was achieved for Muscat of Alexandria. 
When the LOVOCV was used (five varieties were used for training and the remaining 
one for testing) the performance metrics did not improve for any variety and particularly 
the NRMSE notably increased in Syrah (NRMSE = 55.96%) (Table 5).

Table  6 summarizes the performance metrics of the individual models, one per 
variety, involving the number of estimated visible berries and canopy features, using 
LOOCV. Overall, the individual or local models did not provide a more accurate estima-
tion than the global models (when LOOCV and eightfold cross validation were used), 
and this was especially evident for Cabernet Sauvignon and Tempranillo, that showed 
 R2 ~ 0.46 and NRMSE of 33.42% and 29.07%, respectively.

Table 5  Number of actual berries’ estimation performance using a support vector machine (SVM) global 
model

Training and testing with all varieties combined (leave-one-out and eightfold cross validation) and training 
using five varieties and testing with the other one (leave-one-variety-out cross validation).

Grapevine variety Cross-validation method

Leave-one-out Eightfold Leave-one-variety-out

RMSE NRMSE (%) R2 RMSE NRMSE (%) R2 RMSE NRMSE (%) R2

Cabernet Sauvi-
gnon

194 23.94 0.72 199 24.61 0.70 195 24.14 0.72

Malvasia 198 19.88 0.84 207 20.82 0.83 221 22.19 0.82
Muscat of Alex-

andria
294 34.32 0.86 306 35.71 0.85 310 36.13 0.85

Syrah 102 17.89 0.85 106 18.57 0.84 320 55.96 0.67
Tempranillo 150 25.44 0.63 155 26.34 0.59 149 25.24 0.64
Verdejo 235 21.49 0.84 241 21.97 0.83 274 25.00 0.84
Average 195 23.83 0.79 202 24.67 0.77 245 31.44 0.76

Table 6  Number of actual berries 
estimation performance using a 
support vector machine (SVM) 
local model

Training and testing were conducted individually for each variety per-
forming leave-one-out cross validation (LOOCV).

Grapevine variety RMSE NRMSE (%) R2

Cabernet Sauvignon 270 33.42 0.44
Malvasia 180 18.13 0.86
Muscat of Alexandria 293 34.17 0.83
Syrah 98 17.07 0.84
Tempranillo 171 29.07 0.48
Verdejo 211 19.25 0.87
Average 204 25.19 0.72
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In general terms, the results obtained for all cross-validation methods (Tables 5 and 6) 
are similar for all varieties excepting for Cabernet Sauvignon, Tempranillo and Syrah. The 
fact that equally good results were obtained for Syrah in both LOOCV for global and local 
model (Tables 5 and 6) and eightfold (Table 5) but a poor performance was achieved in 
LOVOCV (Table 5) suggests that Syrah is highly different from the rest of varieties. In 
fact, the photographed vine canopies of this variety showed a higher canopy porosity or 
canopy gaps abundance in the fruiting zone that imaged canopies for all other five varieties 
(Fig. 2d). From this it can be inferred that the model trained without Syrah data is giving 
a higher relevance to the canopy features (due to the absence of vines with a high porosity 
in the training set) and increasing the training set size by including highly defoliated vines 
should help to improve the performance of the method on more porous vines. For Caber-
net Sauvignon and Tempranillo, the results for the local models (Table  6) suggests that 
either the variability in the canopy conditions of the vines could not be properly captured 
by a model including only those varieties individually, or that the number of samples in 
the local models (16 vines) is not enough to estimate the number of actual berries in those 
varieties, and that a model that included also other varieties or a higher number of vines 
could improve the estimation on Cabernet Sauvignon and Tempranillo vines.

From a viticultural perspective, the most interesting results are presented in Table 5 for 
the LOVOCV, where the use of a global model trained with several varieties yielded prom-
ising results at estimating a new variety previously unknown for the model. Of the six stud-
ied varieties, only Syrah exhibited lower performance using the LOVOCV. This variety, 
together with Muscat of Alexandria showed the highest values of NRMSE. These results 
could be related to differential features of the canopy, clusters and berries in Syrah and 
Muscat as compared to those of the other varieties under study. The absence of Syrah or 
Muscat of Alexandria samples in the training set prevents to capture their singularity and, 
as a result, the estimation of the actual number of berries for these two varieties (when they 
are not included in the training set) is achieved with much higher uncertainty than for the 
other four cultivars.

The relevance of each feature in the dataset was evaluated (for all three cross valida-
tion methods) by testing the performance of the model when that particular feature had 
been removed. This is shown in Table  7 for leave-one-out cross validation, Table  8 for 
eightfold cross validation, and Table 9 for LOVOCV, where features were ordered by their 
relevance to the model, (in decreasing order of the RMSE/NRMSE obtained). As expected, 
regardless the cross-validation method, the number of estimated visible berries (F1) was 
the most relevant feature in the model. In fact, when F1 was not considered in the model 
the average  R2 decreased from 0.77–0.79 to 0.49–0.51 and the NRMSE increased a 17.33% 
(for LOOCV, Table 7), 16.79% (eightfold, Table 8) and 14.08% (LOVOCV, Table 9). The 
relevance of the remaining features was found to be very similar for LOOCV (Table 7) 
and eightfold cross validation (Table 8). Likewise, two close groups of features could be 
identified in these global model validation methods. The first group formed by F2 and F3 
features, whose removal led to models achieving NRMSE between 26 and 27%, and group 
two including F4, F5 and F6 features, whose removal led to models yielding NRMSE 
between 24 and 25%. This could imply that the model could be simplified (not including 
either F4, F5 or F6) with almost no increase in NRMSE and decrease of  R2. For LOVOCV 
removal of a particular feature led to a greater variability in the NRMSE. Differently to 
the LOOCV and eightfold methods, when LOVOCV was used (Table 9) the most relevant 
feature after F1 was not F3 (number of “shoot” class pixels in the fruiting zone) but F2 
(average of all cluster bounding boxes ratios between the number of “leaf abaxial” pixels 
and the total area of the corresponding bounding box). As a matter of fact, F3 was found 
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to be the least relevant feature when LOVOCV was the cross validation method (on aver-
age of all varieties). However, when F3 was removed, the three performance metrics of 
Syrah substantially improved (Table 9), reducing the NRMSE from 55.72% to 25.03%. As 
observed in Fig. 2d, the presence of shoot pixels in the fruiting zone was noticeably higher 
for Syrah than for the remaining varieties (Fig. 2a–f), and this could explain these findings. 
Also, for Syrah in the LOVOCV, the most relevant features were “the average of all cluster 
bounding boxes ratios between the number of “leaf abaxial” pixels and the total area of 
the corresponding bounding box” (F2) and “the number of “leaf adaxial” class pixels in 
the fruiting zone” (F4), in first and second place, respectively, while “the number of esti-
mated visible berries” (F1) was found to be the second least influential factor in the model 
(Table 9). These findings seem to confirm that the whole fruiting zone, rather than exclu-
sively the number of estimated visible berries are particularly meaningful and determinant 
in the assessment of the actual number of berries in Syrah, as compared to the other five 
varieties. As mentioned, this could be explained by the differences in the conditions of the 
Syrah canopy, where a slight lower occlusion was found (Fig. 2d), compared to the condi-
tions of the canopy for the rest of the varieties (Fig. 2a–f). The characterization of the dif-
ferent canopy elements in the fruiting zone has to do with the occlusion phenomena affect-
ing the berries. Berry occlusion by leaves was recently studied by Iñiguez et al. (2021). In 
this work, the leaf occlusion rate (berry occlusion caused by leaves) was computed using 
a pixel segmentation approach. When this rate increased, from low to high, the determina-
tion coefficient between the number of cluster pixels and the yield decreased from 0.77 to 
0.33.

Victorino et al. (2020) evaluated the use of several canopy features for yield estimation 
and concluded that counting visible vine organs (as shoots, spurs, inflorescences and clus-
ters) in non-defoliated vines could be used as auxiliary features but may not be sufficient 
individually for an accurate yield prediction. Their best result was achieved using the clus-
ter projected area as a yield predictor. Moreover, the estimation of the number of bunches 
is a difficult task under high leaf occlusions conditions using image analysis. Sozzi et al. 
(2021) detected big bunches, which contribute the most to final grape yield. Other works 
have also addressed the problem of estimating the number of actual berries using several 
features extracted from RGB images. Buayai et al. (2021) estimated the number of actual 
berries using five features extracted from individual clusters’ images in which occlusion 
phenomena were only due to other berries, but not to leaves or other canopy elements. In 
this work, the authors achieved the best performance using a random forest regression that 
yielded a mean absolute error of estimation of 3.79 berries per cluster.

Yield prediction

The ultimate goal of identifying and counting the number of visible and actual berries per 
vine is to be able to predict the grapevine yield. Towards this end, the correlation between 
the yield, as estimated by the model, and the final yield (actual yield) at harvest, involv-
ing all six varieties altogether, is shown in Fig. 6. Significantly strong correlations, with 
determination coefficients above 0.82, were found for leave-one-out (Fig. 6a) and eightfold 
(Fig. 6c) cross-validation methods. For LOVOCV (Fig. 6e), a lower  (R2 = 0.76), but still 
strong correlation was found. These correlations were similar to the one obtained between 
the number of actual berries and the actual yield (weight of the clusters) at harvest per 
vine, with a  R2 of 0.81 (data not shown). In terms of accuracy, the RMSE per vine achieved 
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was 0.45 kg for leave-one-out, 0.46 for eightfold, and 0.54  kg for leave-one-variety-out, 
which corresponded to NRMSE values of 30% (Fig. 6a, c) and 36% (Fig. 6e), respectively.

The inclusion of berry weight in the yield estimation model proved to be highly val-
uable. Figure  6b, d and f shows the results of the yield estimation using leave-one-out, 
eightfold and LOVOCV without including the berry weight as a feature, respectively. As 
it can be observed, poorer results were obtained when the berry weight was removed from 
the model. For leave-one-out and eightfold results for  R2 worsened from 0.83 and 0.82 
(Fig. 6a, c) to 0.77 (Fig. 6b, d) and for RMSE and NRMSE the results worsened from 0.45 

Fig. 6  Linear correlation between the estimated yield and the actual yield per vine for a leave-one-out, c 
eightfold and e leave-one-variety-out cross-validation methods and b, d and f the same cross-validation 
methods without including the berry weight as a feature in the model. Determination coefficients  (R2) were 
significant at p = 0.001 (***)
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and 30% (Fig. 6a, c) to 0.52 and 30% (Fig. 6b, d). The most drastic worsening in the results 
occurred for LOVOCV (Fig. 6f), changing from previous results (Fig. 6c) for  R2 of 0.76 to 
0.54, RMSE of 0.54 to 0.75 and NRMSE of 35.89% to 49.75%. As regards the inclusion of 
berry weight (harvest values) in the prediction model, it could be argued that intrinsic vari-
ability of this yield component could affect yield prediction models. However, as pointed 
out by Clingeleffer et  al. (2001) and Dunn (2010) berry weight (as a yield component) 
is not the most relevant factor influencing yield variation, which is mainly explained by 
the number of clusters (around 60–70% of yield variation), and berry number per cluster 
(Dunn, 2010), rather than by berry weight. Moreover, the work of Pagay and Cheng (2010) 
reported berry diameter variations smaller than 11% for two different cultivars at harvest 
time within given vineyards. Furthermore, the use of historical average values of berry 
weight (from longer periods of time, e.g. 10 years) would also contribute to mitigate inter 
seasonal fluctuations, providing a more robust indicator to be considered in yield predic-
tion models based on computer vision and machine learning approaches.

For each individual variety, the correlation between the estimated yield and the actual 
yield at harvest using leave-one-out cross-validation is shown in Fig. 7. For most of the 
varieties,  R2 values above 0.70 were achieved, except for Syrah (Fig.  7d) and Tempra-
nillo (Fig. 7e), which showed  R2 of 0.65 and 0.54, respectively. RSME values ranged from 
0.27 kg (Tempranillo) to 0.72 kg (Malvasia). In terms of NRSME, values around 30% were 
yielded for four of the six varieties, while Muscat of Alexandria achieved 39.17% and Ver-
dejo 16.47%.

These results prove that the image-based method developed in this work was useful to 
estimate the final yield in partially defoliated vines of several grapevine varieties in com-
mercial vineyards, nearly two months before harvest. Dunn and Martin (2004) suggested 
a digital image analysis to predict vineyard yield. These authors observed that the ratio of 
fruit pixels to total image pixels explained 85% of the variation in yield in progressively 
de-fruited vines. Following a similar approach, Diago et al. (2012) employed a Mahalano-
bis colour segmentation method to extract cluster pixels and linear regressions to estimate 
the yield from the cluster pixels, achieving  R2 values up to 0.73 in progressively de-fruited 
and defoliated vines, which are similar results to the ones presented in Fig. 6. Liu et al. 
(2017) attempted yield estimation based on shoot counting, very soon after budbreak, and 
reported absolute yield estimation errors ranging between 1.18% and 36.02%, which are 
results near to the NRMSE values presented in Fig. 6 (values near 30%). In another work, 
Font et al. (2015) using pixel-based segmentation approaches yielded a relative yield error 
of 16% for 25 non-occluded clusters on images from red grapes acquired using a vehicle 
and artificial illumination at night-time, these results were lower to the ones presented in 
this work but also their error metrics were calculated over individual clusters instead of 
full vines as in this work. On the other hand, Aquino et al. (2018) achieved similar results 
to the ones presented in this work, with  R2 between the number of detected berries and the 
actual yield of 0.74 and a  R2 between the predicted visible yield, calculated from the num-
ber of detected berries, and the actual yield of 0.78, although in this work the fruiting zone 
was fully defoliated, avoiding any occlusion phenomenon. Likewise, Nuske et al. (2014b) 
reported  R2 values in the range between 0.60 and 0.73 (depending on the phenological 
stage and grapevine variety) for the correlation between the number of detected berries 
and actual harvest weight. The models in Nuske et al. (2014a, 2014b) were built individu-
ally for each variety while the yield estimation model in the present study was built from 
six different grapevine varieties overall. Nuske et al. (2014a, 2014b) acquired images from 
intensively defoliated vines in the fruiting zone, where occlusions were mostly due to other 
berries, but not to leaves or shoots. In the work of Nuske et al. (2014a) overall yield-per 
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vine prediction errors based on imaged-based berry counting in Traminette and Riesling 
varieties ten days prior to harvest varied between 15 and 20%. In a more recent work, Vic-
torino et  al. (2020) achieved  R2 values of 0.35, 0.64 and 0.55 (depending on grapevine 
variety) between the yield and the visible cluster area in non-defoliated vines but no yield 
estimation errors were provided, in contrast to the results presented in this work in Figs. 6 
and 7.

Conventional methods for yield predicting used systematic, manual and labour-
demanding procedures under field conditions (Dunn & Martin, 2003; Clingeleffer et al., 

Fig. 7  Linear correlation between the estimated yield and the actual yield per vine including the berry 
weight as feature in the model and using leave-one-out cross validation for each grapevine variety: a Caber-
net Sauvignon, b Malvasia, c Muscat of Alexandria, d Syrah, e Tempranillo and f Verdejo. Determination 
coefficients  (R2) were significant at p = 0.01 (**) and p = 0.001 (***)
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2001). Martin and Dunn (2003) described particular manual protocols to achieve a 15% 
tolerance in yield and yield components’ prediction, but its achievement required inten-
sive manual counting and increased accuracy was expected when estimation was con-
ducted closer to harvest time. In this regard, although prediction errors below 10–15% 
would be desirable, and certainly very useful for the wine industry, it is expected that 
the prediction metrics following the vision-approach of the present work would improve 
should a higher number of data be used to build and validate the models. Moreover, the 
inclusion of data coming for vineyards of increased canopy vigour variability, would 
enlarge the range of the data used for model building and validation. This factor could 
also lead to improved model performance. At this stage, it could be recognized that this 
study may be considered an initial approach that should deserve further development 
with substantially increased data from different cultivars and vigour conditions.

On the other hand, comparing the automated image-developed method in this work 
with conventional methods, it can be pointed out that the method developed in this work 
was non-destructive and applicable in an automated way to a very large number of vines 
o even to a whole vineyard using a mobile sensing platform. Thus, the image-based 
method described in the present study enables the increase of the representativeness of 
the sampled vines in commercial vineyards.

Finally, it is worth mentioning that the developed method was able to estimate yield 
near 60 days before harvest. It was applied in partially defoliated vines in commercial 
vineyards. The potential of addressing the spatial variability of berry number per vine, 
and its subsequent implication in grapevine yield is very informative and relevant, par-
ticularly within a precision viticulture framework. The automated image acquisition per-
formed by a mobile sensing platform enables estimating the berry number and the yield 
on a large number of vines, which leads to a better modelling of the spatial variability of 
the vineyard and a more precise prediction of the total yield at harvest.

Conclusions

The results presented in this work prove the capability of the new method to estimate 
the number of actual berries and yield in different commercial grapevine varieties. The 
algorithm based on deep learning and computer vision was able to quantify the vis-
ible berries and extract canopy features. The cross validation methods proved that the 
model was able to predict the number of actual berries and yield on not only on varieties 
included in the model but also in other grapevine varieties.

The use of a mobile sensing platform eases the industrial applicability of this method 
in commercial vineyards. In addition, the new method allows an early yield estima-
tion two months prior to harvest, which is highly valuable for wine industry, in order to 
understand and anticipate harvest logistics and pricing.
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