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Abstract
Detailed knowledge of a soil’s lime requirement (LR) is a prerequisite for a demand-based 
lime fertilization to achieve the optimum soil pH and thus sustainably increasing soil fer-
tility and crop yields. LR can be directly determined by the base neutralizing capacity 
(BNC) obtained by soil-base titration. For a site-specific soil acidity management, detailed 
information on the within-field variation of BNC is required. However, soil-base titrations 
for BNC determination are too laborious to be extensively applied in routine soil testing. 
In contrast, visible and near-infrared spectroscopy (visNIRS) is a time and cost-effective 
alternative that can analyze several soil characteristics within a single spectrum. VisNIRS 
was tested in the laboratory on 170 air-dried and sieved soil samples of nine agricultural 
fields of a quaternary landscape in North-east Germany predicting the soil’s BNC and the 
corresponding lime requirement  (LRBNC) at a target pH of 6.5. Seven spectral pre-pro-
cessing methods were tested including a new technique based on normalized differences 
(ND). Furthermore, six multivariate regression methods were conducted including a new 
method combining a forward stagewise subset selection algorithm with PLSR (FS-PLSR). 
The models were validated using an independent sample set. The best regression model for 
most target variables was FS-PLSR combined with the second Savitzky-Golay derivation 
as pre-processing method achieving  R2s from 0.68 to 0.82. Finally, the performance of the 
direct prediction of  LRBNC  (R2 = 0.68) was compared with an indirect prediction that was 
calculated by the predicted BNC parameters. This resulted in slightly higher correlation 
coefficients for the indirect method with  R2 = 0.75.
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Introduction

In recent years, visible and near-infrared (visNIR) spectroscopy has been increasingly 
applied to quantify a broad variety of chemical and physical soil constituents (e.g. Ben-
Dor & Banin, 1995; Christy, 2008; Dalmolin et al., 2005; Kodaira & Shibusawa, 2013; Liu 
et al., 2017; Reeves et al., 2002; Viscarra Rossel et al., 2009). This technique has several 
methodological benefits for soil analysis such as time and cost saving, little sample prepa-
ration without environmentally harmful chemicals and a non-destructive sample analysis. 
Furthermore, it can address several soil characteristics with a single spectrum (Reeves, 
2010; Viscarra Rossel et al., 2006a). However, the latter advantage entails a major chal-
lenge of visNIR soil spectroscopy, i.e. the complex nature of spectral data and the manifold 
and mostly overlapping interactions of molecules with radiation that are not fully under-
stood. Disentangling these interactions requires sophisticated data pre-processing and che-
mometric analysis methods to correlate specific spectral features with a single soil param-
eter (Dotto et  al., 2017; Viscarra Rossel et  al., 2006b; Wight et  al., 2016) as well as an 
appropriate amount of reference soil samples for calibration and validation (Pinheiro et al., 
2017).

Lime fertilization is one of the most fundamental management strategies in agronomy 
to increase soil fertility and optimize crop yields. A precise lime application requires 
detailed knowledge about the field’s soil acidity and its pH buffer capacity to deduce its 
lime requirement (LR), i.e. the amount of lime needed to raise the soil pH to an optimum 
value. This information can be derived directly from conventional field or pot experiments 
(e.g. soil–lime incubations) or from laboratory analysis (e.g. soil-base titrations). The base 
neutralizing capacity (BNC) is a soil parameter, which is determined by a soil-base titra-
tion where the response of the soil to the addition of increasing concentrations of a basic 
solution (e.g. Ca(OH)2) is recorded. Subsequently, the soil’s LR can be derived by calcu-
lating the amount of Ca(OH)2 used to reach the optimum soil pH (target pH). However, 
this method is too laborious, time-consuming and expensive to be extensively applied in 
routine soil testing. In contrast, pedotransfer functions could be used to estimate the lime 
requirements using the statistical relationship with other soil properties which can be meas-
ured more effectively (Merry & Janik, 1999), such as visNIR spectra.

During the last decades, the potential of visNIR and mid-infrared (MIR) spectroscopy to 
predict soil pH and LR for digital soil mapping was discussed in several publications. Therein, 
diverse prediction methods such as Multivariate Regression (MVR), Partial Least Squares 
Regression (PLSR), or Support Vector Machines (SMV) were tested. Due to the complexity 
of soils and soil spectra, each of these methods had their advantages in certain environments 
and certain tasks and probably there is no ultimate best method. Viscarra Rossel and McBrat-
ney (2008) reviewed studies conducted between 1986 and 2006 that used visNIR spectroscopy 
to predict soil pH and LR. They averaged the coefficients of determination  (R2) for pH and LR 
and concluded that soil spectra in the NIR region result in higher  R2s (pH: Ø of  R2 = 0.68; LR: 
Ø of  R2 = 0.62) compared to soil spectra in the visible (vis) region (pH: Ø of  R2 = 0.36; LR: Ø 
of  R2 = 0.25). Pinheiro et al. (2017) evaluated the performance of visNIR spectral data for the 
prediction of soil properties in the Central Amazon (Brazil) using PLSR and a set of 41 pre-
processing methods. For soil pH, they obtained a rather low  R2 of 0.4, which, they state, cor-
responds with findings of Terra et al. (2015) where Brazilian soil reactive properties like pH 
could not be well predicted from the visNIR spectra using support vector machines (SVM). 
Merry and Janik (1999) analyzed the relationships between pH buffering capacity (pHBC) 
and related Australian soil acidity properties, such as pH, carbon content, clay content and LR 
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using Fourier transform (FT)-NIR and FT-MIR spectrometers. They found MIR to be superior 
to NIR in most of the PLSR models. For soil pH and LR, they obtained  R2 values of 0.45 and 
0.77 for NIR spectra and 0.80 and 0.85 for MIR spectra, respectively. Viscarra Rossel et al. 
(2001) predicted pH and LR for Australian soil using MIR diffuse reflectance spectroscopy 
combined with PLSR and obtained an  R2 of 0.85 for pH and 0.75 for LR. D’Acqui et al. (2010) 
used a FT infrared spectrometer in the near-to-mid-infrared spectral range to characterize soils 
typical for Italian Mediterranean offshore environments. Their best prediction of the soil pH 
using PLSR showed an  R2 after validation of 0.72. Viscarra Rossel et al. (2006a) reviewed a 
large number of previous studies focusing on the prediction of various soil properties includ-
ing pH and LR using vis, NIR and MIR spectroscopy. They reported  R2s for soil pH ranging 
from 0.54 (Wijaya et al., 2001; using visNIR and stepwise multiple linear regression (SMLR)) 
to 0.74 (Reeves & McCarty, 2001; using NIR and PLSR).  R2s for LR ranged from 0.73 (Janik 
et al., 1998; using FT-NIR and PLSR) to 0.86 (Janik et al., 1998; using MIR and PLSR). Their 
own predictions of LR were moderate using NIR  (R2 = 0.50; PLSR) and improved using MIR 
 (R2 = 0.75; PLSR). Leenen et al. (2019) predicted pH and LR using MIR and PLSR for six 
soil locations (pH:  R2 = 0.63–0.93; LR:  R2 = 0.47–0.92). Finally, Metzger et al. (2020) pub-
lished  R2s in the range of 0.41 to 0.86 for LR using MIR and PLSR. Additionally, they moved 
from laboratory to field analysis resulting in a promising  R2 of 0.85 for LR using a handheld 
MIR spectrometer (Metzger et al., 2021). These results indicate that a higher precision and 
accuracy in predictions of soil pH and LR can be achieved with MIR spectroscopy and PLSR. 
This is because visNIR spectra show no distinct features that can be unambiguously related to 
molecules in the sample. Instead, absorption bands strongly overlap, especially in heterogene-
ous media like soils. Such absorption bands belong to molecular overtone and combination 
vibrations and occur in the NIR, while MIR spectra capture fundamental molecular vibrations, 
which are more intensive than overtone and combination vibrations (Sjaunja, 2005). However, 
MIR spectrometers are still more expensive rendering visNIR spectroscopy a more feasible 
and affordable alternative.

The main hypothesis (H1) of the present study states that visNIR spectroscopy has the 
capability to predict LR, for the first time based on lab-analysed BNC, for a target pH value of 
6.5  (LRBNC) with particular regard to agricultural fields of a quaternary landscape of Central 
Europe (North-east Germany). In order to confirm the hypothesis, several data pre-processing 
techniques and multivariate calibration procedures including new chemometric techniques 
were applied searching for the best correlation with spectral reflectance signatures. In the few 
publications using optical spectroscopy to predict LR, except in Metzger et al., (2020, 2021), 
prediction models were not validated with a new and independent validation set, where  R2 
values are generally lower compared to the calibration set. Thus, the performances of the pre-
diction models will be validated by an independent data set. Furthermore, it is hypothesized 
(H2) that important wavelength regions can be identified, which are most relevant for  LRBNC 
prediction. In a novel approach, it is finally tested if the hypothesis (H3) is true that  LRBNC can 
be determined more precisely by predicting  LRBNC directly from the soil spectra than by pre-
dicting  LRBNC indirectly using the predicted BNC parameters.
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Materials and methods

Research area

Nine agricultural fields on three farms were studied in a quaternary landscape of the North-
east German Plain, which is part of the broader geomorphological region of the North 
European Plain (Fig. 1). The landscape is the result of repeated Pleistocene glaciations by 
the continental Scandinavian ice sheet as well as by subsequent periglacial and interglacial 
Holocene geomorphic processes. In the study area, the landforms and soils were particu-
larly shaped by the advances of the Weichselian (115–12 ka BP) and the preceding Saalian 
glacial belt (150–130 ka BP; Krbetschek et al., 2008). Climatically, it is situated in a transi-
tional zone between oceanic climate of Western and continental climate of Eastern Europe. 
Regional climatic differences are rather low due to a relatively low altitudinal range of 
the land surface of ~ 0 to 200 m a.s.l. Following the Koeppen–Geiger Climate Classifica-
tion System, the climate of the study region can be classified as temperate oceanic with an 
increasing influence of continental circulations. The mean annual air temperature is around 
9 °C. The coldest and warmest months are January and July with mean temperatures of − 1 
and 18 °C, respectively. With a mean annual total precipitation of less than 550 mm, it is 
one of the driest regions in Germany.

The three farms are situated in the east and in the north of the federal state of Branden-
burg (North-east Germany). They are mainly located in the Pleistocene young morainic 
landscape of the Weichselian glaciation as well as in the Holocene river valley of the 

Fig. 1  Map of Central Europe with the location of the study sites in the federal state of Brandenburg (Ger-
many) [Projection: UTM ETRS89 33 N]. The inlay map indicates the detailed location of the study sites in 
Brandenburg
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Oderbruch showing a high within-field soil variability. Soil acidity of these soils often 
necessitates liming. However, at some places, the pH is naturally high due to the occur-
rence of carbonates from glacial till.

Soil samples were collected from the upper 30 cm of the soils’ Ap horizons. In accord-
ance with the German soil classifcation system KA5, (Eckelmann et al., 2005), soil tex-
tures range from pure sand (class: Ss) to loamy clay (class: Tl) showing a dominance of 
sand and loam (classes: Sl, Su, St, Ls) (Vogel et al., 2022). The pH value of the soils range 
from 3.8 (extremely acidic) to 7.4 (slightly alkaline) with median values of 6.2 (slightly 
acidic). The soil organic matter content is rather low throughout the study region, having 
minima of 0.8%, maxima of 5.6% and median values around 1.4% (Vogel et al., 2020).

Analysis of the base neutralizing capacity (BNC)

A total of 170 soil samples were analyzed for the base neutralizing capacity (BNC), which 
are a partial set of BNC data previously published in Vogel et  al. (2020). The BNC is 
defined as the amount of soil acidity that is neutralized by a base in a given time interval 
targeting a certain pH value (Meiwes et al., 1984; Vogel et al., 2020). To directly determine 
the LR of the studied soils from their base neutralizing capacity  (LRBNC), the procedure 
of Meiwes et al. (1984) and Utermann et al. (2000) was followed. It is a laboratory analy-
sis where a base of increasing concentration is added to a soil sample, the resulting pH 
change is recorded and a titration curve between pH development and the added base con-
centrations is generated. Then, the BNC of the analyzed soil sample for receiving a target 
pH value can be deduced from the parameters of the fitted titration curve and finally, the 
respective LR can be calculated.

In more detail, an air-dried and 2 mm-sieved soil sample is divided into 6 subsamples of 
25 g. Afterwards, a control sample is added with 50 ml of deionized water. Furthermore, 
25 ml of 2 N  CaCl2 and 25 ml of 8 N NaOH solution are added in five concentrations to 
obtain Ca(OH)2 in the following 6 concentration levels: 0, 0.25, 0.5, 1.25, 2.5 and 5  mmolc 
(25 g soil)−1. By adding  Ca2+ and  Na+ ions to the soil solution,  H+ and  Al3+ ions are des-
orbed from the surface of soil colloids and neutralized by  OH− (Meiwes et al., 1984). After 
18 h of overhead shaking, the pH value is measured with a glass electrode (SenTix® 81; 
WTW) in the supernatant solution. For the quantification of the BNC, the pH values and 
concentrations of Ca(OH)2 added are displayed in a scatterplot and a titration curve is fitted 
to the six points by means of a non-linear regression model using the nls function imple-
mented in the free software environment for statistical computing and graphics R (R Core 
Team, 2018). For the soils studied, Vogel et  al. (2020) demonstrated that the non-linear 
reaction of the pH value on the application of increasing quantities of Ca(OH)2 is best 
described by an exponential model (Eq. 1):

where α, β and γ are the regression coefficients of the exponential function. The amount of 
Ca(OH)2 in  mmolc (25 g soil)−1 needed to achieve a target pH of 6.5 was derived based on 
this model (Eq. 2) and the LR, expressed in kg  CaCO3 (ha × dm)−1 (dm: decimeter), was 
calculated by multiplying BNC with the factor 2 000 (Meiwes et al., 1984; Utermann et al., 

(1)pHtarget = � − � ⋅ �Ca(OH)2

(2)BNCCa(OH)2
=

log(6.5 − �) + log(�)

log(�)
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2000). A pH of 6.5 was chosen as the target pH value because fertilization guidelines, e.g. 
for the UK (Devra, 2010) and many other countries advice to maintain a soil pH of 6.5 for 
arable lands to bring most of the nutrients to their optimal availability for plants (Goulding, 
2016). Of course, this does not reflect the fact that arable crops differ in their sensitivity to 
soil acidity. For more detailed information on BNC parameters and how to determine lime 
requirement by using the BNC, the reader is referred to Vogel et al. (2020).

Spectral analysis

Spectral measurements were conducted with an ultra-broadband UV–Vis-NIR spectrom-
eter system by ArcOptix (Arcspectro UV–Vis-NIR fibered, ArcOptix S.A., Neuchatel, 
Switzerland). The device is equipped with a dispersive spectrometer using a silicon array 
detector for the ultra violet (UV) and visual (vis) range (200 to 1000 nm) and a Fourier-
Transform spectrometer for the near-infrared region (FT-NIR; 900 to 2500  nm) with an 
extended range InGaAs photo diode. The spectral resolution is < 5 nm in the UV and Vis 
and < 8 nm in the NIR region with a reporting interval of 1 nm. Samples were irradiated by 
four halogen lamps at 45° inside a box which excluded ambient light. The diffuse reflected 
light was transmitted to the spectrometer via two glass fibres: one high OH fibre for the vis 
range and another one with low OH bindings specialized for the NIR region. For sample 
preparation, each soil sample was sieved to < 2  mm, air dried, filled in a petri dish and 
flattened with a spatula. Measurements were repeated three times in different positions by 
rotating the sample by about 90 degrees. Each spectrum reported by the spectrometer was 
the average of 10 internal replicates in the vis range with an integration time of 1100 to 
1700 ms and 16 replicates in the NIR using the high gain factor setting. After about every 
60 min, the spectrum of a 20% reflection standard (Lake Photonics, Uhldingen-Mühlhofen, 
Germany) with certified reflection grades was recorded. Furthermore, a dark current meas-
urement was carried out twice a day.

Data modelling

Raw reflection spectra (I) of the soil samples, the reflection standard  (I0) with its reference 
correction values for each wavelength  (zλ) and the dark current  (Id) were converted into 
reflectance spectra (R) using Eq. 3:

Reflection values from 250 to 359 nm were removed due to detector noise. The spectra 
were then smoothed by a Savitzky–Golay filter with a polynomial first order combined 
with 11 or 36 windows (Savitzky & Golay, 1964). Afterwards, several pre-processing tech-
niques were tested for optimizing the prediction of the BNC properties. These included:

(i)Pseudo-absorbance transformation (pA; Eq. 4; analogous to Lambert-Beer’s law 
for transmitted light from 1852),
(ii)Kubelka-Munk transformation (KM; Eq. 5; Kubelka & Munk, 1931),
(iii)Standard normal variate transformation (SNV; Eq. 6; Barnes et al., 1989),
(iv)Multiple scatter correction (MSC; Eq.  7; Martens et  al., 1983; Geladi et  al., 
1985),

(3)Rλ =
I − Id

I0 − Id
× zλ
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(v-vi)Savitzky-Golay first and second derivative (SG1, SG2; Savitzky & Golay, 
1964),
(vii)Orthogonal signal correction (OSC; Wold et al., 1998) and
(viii)A technique based on normalized differences (ND) using dual wavelengths indi-
ces (DWI; Eq. 8; Schirrmann et al., 2013), where all possible normalized differences 
of each wavelength are calculated requiring considerable processing power.

Details for SNV, MSC and the Savitzky-Golay derivatives can be found in (Rinnan 
et al., 2009).

where R is the reflectance spectrum,  yw the reflectance at a specific wavelength, ӯ the mean 
value of all measured values of one spectrum,  ai the additive effect calculated by ordinary-
least-square-regression (OLS) for each spectrum on the mean spectrum of all spectra,  bi 
the multiplicative effect calculated by ordinary-least-square-regression (OLS) for each 
spectrum on the mean spectrum of all spectra, and  Ri and  Rj the reflectance values at the 
ith and jth wavelength of a spectrum. The  LRBNC (BNC-based LR determined for a target 
pH value of 6.5) and the following five parameters were used as dependent variables:

(i) pH0: initial pH value of the soil sample measured in deionized water before base 
addition,

(ii) δpHtotal: total pH increase over all five base additions, and
(iii-v) α, β and γ: regression coefficients of the exponential model.

To find the best correlation between spectral reflectance signatures and the six depend-
ent variables, six regression methods were applied and the results compared:

 (i) partial least squares regression (PLSR; Wold, 1975) with a tenfold cross validation 
using the non-linear iterative partial least squares (NIPALS) algorithm,

 (ii) canonical powered PLSR (CPPLSR; Indahl et al., 2009),
 (iii) least absolute shrinkage and selection operator regression (LASSO; Tibshirani, 

1996),
 (iv) least angle regression (LARS; Efron et al., 2004),
 (v) random forest (RF; Breiman, 2001; Ho, 1995), and
 (vi) forward stagewise subset selection combined with PLSR (FS-PLSR).

(4)pA = ���
(

1

R

)

(5)KM =
(1 − R)2

2R

(6)SNVw =
(yw − y)

�
= (yw − y)∕

�

∑

(yw − y)
2

N − 1

(7)MSC =
yw − ai

bi

(8)NDij =
Ri − Rj

Ri + Rj

;i < j
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The FS-PLSR preselects wavelengths by an algorithm that belongs to the family of for-
ward stagewise regressions (Sen & Srivastava, 1990) before using PLSR. The algorithm 
is inspired by sure independence screening (SIS) from Fan and Lv (2014) and it involves 
the following data processing steps: Firstly, the predictor variable (wavelength) with the 
absolute maximum of Kendall τ correlation to the response variable is selected (Kendalls 
τ is supposed to be a robust variant for correlations of nonparametric variables; Fan & 
Lv, 2014). Secondly, a robust linear model is built between the selected predictor variable 
and the response variable. Thirdly, the residues of this model are taken as new response 
variable and the complete procedure is started again until the same predictor is selected 
twice consecutively. Finally, the set of selected predictor variables is used to build a PLSR 
model.

All 170 spectra were randomly separated into a training dataset for calibration including 
a tenfold cross-validation (repeated for 20 times) and an independent test set for validating 
the model algorithms in a ratio of 3:1. This resulted in 127 samples for calibration and 43 
samples for validation. The prediction models were evaluated by the following diagnostic 
variables: coefficient of determination  (R2; Eq.  9), root mean square error of prediction 
(RMSEP; Eq.  10), (RPIQ; Bellon-Maurel et  al., 2010; Eq.  11) and the number of used 
components.

where N is the number of samples, y is the mean of all reference values, ŷ is the mean of 
all predicted values,  yi is the ith reference value, ŷi is the ith predicted value, Q1 the first 
quartile of all reference values, and Q3 the third quartile of all reference values.

The ratio of performance to interquartile range was displayed to describe the relation-
ship between the spread of the data and error of prediction, e.g. an RPIQ of 2 means that 
the spread of 50% of the data around the median is twice the root mean square error of pre-
diction, thus the higher RPIQ the better the prediction performance (Bellon-Maurel et al., 
2010).

Results and discussion

The descriptive statistics of BNC parameters for all studied soil samples are shown in 
Table 1. The initial soil pH values in deionized water  (pH0) varies from 4.5 to 8.0 with 
a mean value of 6.6 and a strong skewness of − 0.80 towards higher pH values.  pH0 is 
strongly negatively correlated with BNC-based lime requirement  (LRBNC) as given by 
a Pearson’s correlation coefficient of r = − 0.95 (Table 2). When  pH0 is higher than the 
target pH value of 6.5,  LRBNC becomes negative implicating that there is no need for 

(9)R2 =

∑N

i
(̂yi − ŷ)

2

∑N

i
(yi − y)

2

(10)RMSEP =

√

√

√

√

N
∑

i=1

(̂yi − yi)
2

N

(11)RPIQ =
Q3 − Q1

RMSEP
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lime treatment. With higher pH values it might even be considered to use acid fertilizers 
or other soil amendments to lower the pH value (Vogel et al., 2020). As the mean value 
of  pH0 of 6.6 is close to the target pH, the mean value of  LRBNC for all samples is close 
to zero. Moreover, the number of negative  LRBNC values are higher than the positive 
ones because of a skewness of over 0.6. This means that there are less acidic soil sam-
ples than basic soil samples in the present dataset, i.e. 60 soil samples (35%) are below 
the target pH value and 110 (65%) are above.

The regression coefficient α represents the maximum pH value at the endpoint of 
the soil-base titration  (pH5) having a mean value of 12.4. It varies less than all other 
parameters showing a coefficient of variation (CV) of only 2.6%. In contrast, β, which is 

Table 1  Statistical overview of soil parameters

pH0: initial pH value measured in deionized water;  pH0.25,  pH0.5,  pH1.25,  pH2.5 and  pH5: pH values after the 
addition of respective amounts of Ca(OH)2 (mmolc (25 g soil)−1); δpHtotal: total pH increase over all the 
base additions; α, β, γ: parameters of the exponential regression model;  LRBNC: lime requirement based on 
the base neutralisation capacity (BNC) for a target pH value of 6.5 [kg  CaCO3(ha × dm)−1; dm: decimeter]; 
Std.Dev: standard deviation, CV: coefficient of variation

pH0 pH0.25 pH0.5 pH1.25 pH2.5 pH5 δpHtotal α β γ LRBNC

Min 4.51 5.57 6.12 7.03 8.19 9.14 2.49 11.11 4.09 0.14 − 1117
Max 7.99 9.70 10.26 11.59 12.04 12.34 7.59 13.51 8.52 0.86 1484
Mean 6.62 7.39 8.12 9.81 11.24 12.00 5.38 12.38 5.86 0.51 − 4
Std.Dev 0.70 0.75 0.85 0.87 0.65 0.43 0.83 0.32 0.94 0.13 403
Skewness − 0.80 0.24 0.42 − 0.45 − 2.25 − 4.06 0.08 0.27 0.41 − 0.13 0.64
Kurtosis 0.20 0.06 − 0.14 0.39 6.37 19.70 0.97 3.34 − 0.48 0.65 0.99
CV 10.57 10.12 10.53 8.87 5.80 3.61 15.34 2.61 16.11 24.79 –

Table 2  Internal correlations of soil parameters using the Pearson’s correlation coefficient (r)

Strong and significant correlations highlighted in bold (r ≤ − 0.7 and ≥ 0.7); p-values were not calculated 
because of auto-correlated data
r: Pearson correlation coefficient; p: p-value;  pH0: initial pH value measured in deionized water;  pH0.25, 
 pH0.5,  pH1.25,  pH2.5 and  pH5: pH values after the addition of respective amounts of Ca(OH)2 (mmolc (25 g 
soil)−1); δpHtotal: total pH increase over all the base additions; α, β, γ: parameters of the exponential regres-
sion model;  LRBNC: lime requirement based on the base neutralisation capacity (BNC) for a target pH value 
of 6.5 [kg  CaCO3(ha*dm)−1; dm: decimeter]

r pH0 pH0.25 pH0.5 pH1.25 pH2.5 pH5 δpHtotal α β γ

pH0.25 0.90
pH0.5 0.83 0.96
pH1.25 0.65 0.82 0.89
pH2.5 0.17 0.40 0.53 0.78
pH5 − 0.01 0.21 0.33 0.58 0.88
δpHtotal − 0.85 − 0.65 − 0.54 − 0.25 0.32 0.53
α − 0.58 − 0.56 − 0.54 − 0.41 0.02 0.38 0.69
β − 0.95 − 0.89 − 0.83 − 0.63 − 0.10 0.14 0.88 0.79
γ − 0.40 − 0.68 − 0.80 − 0.92 − 0.83 − 0.61 0.02 0.35 0.43
LRBNC − 0.91 − 0.80 − 0.71 − 0.52 − 0.07 0.08 0.82 0.61 0.91 0.24
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the difference from the starting point  (pH0) to the end point  (pH5) of the titration curve, 
has a mean value of 5.4. Thus,  pH0 should be equal to α–β. However, small differences 
between experimentally determined titration points and the fitted exponential func-
tion can occur (Vogel et al., 2020). There is strongly negative correlation of r = − 0.95 
between  pH0 and β (Table 2). The third regression coefficient γ varies between 0 and 1 
and refers to the curvature of the titration curve, whereas 1 results in a linear and near 
0 in an almost right-angled curve. In this sample set, γ varies more than all other BNC 
parameters showing a coefficient of variation of almost 25% (Table 1). This indicates a 
high variability in the pH buffer capacity of the investigated soils (Vogel et al., 2020).

The BNC parameters  pH0, δpHtotal, β and  LRBNC are strongly correlated with absolute 
Pearson’s r coefficients between 0.82 and 0.95 (Table 2). Although the correlation of γ to 
 pH0, δpHtotal, α, β and  LRBNC is less pronounced, a higher correlation to single titration 
points  (pH0.5,  pH1.25 and  pH2.5) exists. Parameter α shows the lowest correlations. It only 
exhibits closer relationship with β (r = 0.79).

The descriptive statistics of the 170 reflectance spectra used in this study are presented 
in Fig. 2. The samples show a classical spectral signature of mineral soils in the visNIR 
region from 360 to 2450 nm with reflectances up to 50%. Three absorption bands can be 
recognized in the region of 1400, 1900 and 2200 nm. According to Bishop et al. (1994), the 
absorptions around 1400 and 1900 nm belong to combination vibrations of water bound as 
hydrated cations in the interlayer lattices or water adsorbed on particle surfaces. Moreover, 
the absorption at around 1400 nm can also occur due to overtone O–H stretch vibrations, 
as they exist in e.g. octahedral lattices of clay minerals. Absorptions near 2 200 nm result 
from O–H stretch combination vibrations or overtone bending vibrations of aluminium 
hydroxides (Al–OH) as they occur in kaolinite, illite and montmorillonite (Stenberg et al., 
2010).

In Fig. 2, a relationship between the original reflectance spectra and LR is not visi-
ble. In contrast minimum and maximum LR show only a small difference in reflectance. 
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Fig. 2  Descriptive statistics of 170 soil reflectance spectra from 360 to 2450 nm. Min and Max: minimum 
and maximum of all reflectance spectra; Q1 and Q3: first and third quartile of all reflectance spectra; LR-
Min: spectrum of the sample with the lowest LR; LR-Max: spectrum of the sample with the highest LR
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However, from the concavity of the spectral curves (Fig.  3) highlighted by the 2nd 
derivative, an inverse correlation at around 1914 nm can be recognized showing a more 
pronounced concavity of low LRs compared to high LRs. This is mathematically con-
firmed, because the 2nd derivative was the best performing pre-processing method for 
predicting LR with 1914 nm being the most important wavelength (Tables 3 and 4).

 

Fig. 3  Second derivative of 170 soil reflectance spectra, coloured by the intensity of LR

Table 3  Best predictions of soil parameters in the validation set

* Savitzky-Golay  2nd derivation (SG2) parameters (p,n,m): p polynomial filter order, n filter length (num-
ber of windows), m  mth derivation; KM Kubelka–Munk Transformation; ND normalized differences; SNV 
standard normal variate transformation
# FSx-PLSR: Forward stagewise subset selection of x wavelengths of the total sample set with subsequent 
PLSR

Parameter Pre-processing* Regression# R2 RMSEP RPIQ Number of 
compo-
nents

pH0 SG2 (3,31,2) FS30-PLSR 0.76 0.28 3.09 5
δpHtotal SG2 (3,31,2) FS30-PLSR 0.82 0.32 3.56 5
α 2 outliers removed PLSR 0.67 0.16 1.12 5
β KM and ND FS15-PLSR 0.79 0.39 3.16 8
γ SNV PLSR 0.73 0.05 1.52 16
LRBNC (direct) 

[kg  CaCO3 
(ha*dm)−1]

SG2 (2,11,2) FS70-PLSR 0.68 221.00 2.45 7

LRBNC 
(indirect) 
[kg  CaCO3 
(ha*dm)−1]

using α, β and γ (Eq. 2) 0.75 191.49 2.83 –
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The model performances of all examined pre-processing and regression methods are 
shown in Appendix  1. Table  3 displays the best-performing prediction models for each 
soil parameter including the pre-processing methods and the evaluation parameters  (R2, 
RMSEP, RPIQ and the number of components used). The frequently published ratio 
of performance to deviation (RPD) with its classifications for quality control of predic-
tion models (Chang et  al., 2001) was not calculated because of its equivalence with  R2 
(Minasny & McBratney, 2013) and its inappropriateness for skewed parameters (Bel-
lon-Maurel et al., 2010). Best predictions for four out of six parameters  (LRBNC, β,  pH0, 
δpHtotal) were achieved by the regression model FS-PLSR. As pre-processing method, the 
second Savitzky-Golay derivation (SG2) produced best results for three out of six models 
 (LRBNC,  pH0, δpHtotal). PLSR achieved best prediction performances for α and γ. The best 
pre-processing method for the BNC curve parameter β was Kubelka–Munk (KM) transfor-
mation combined with normalized differences (ND) and for γ the standard normal variate 
(SNV) transformation. For α, no pre-processing method optimized prediction performance. 
However, the removal of two outliers out of 43 samples in the validation set improved  R2 
for α from 0.49 to 0.67.  R2 in the validation set for all parameters were in the range of 0.67 
(α) to 0.82 (δpHtotal) demonstrating the good model performances. Except for α and γ, the 
predictive power explained by RPIQ was good for of all models with RPIQs higher than 
2.4. The reason, why α has the lowest  R2 and RPIQ could be attributed to the generally 
poor correlations to the other BNC parameters. Although the  R2 of γ is good with 0.72, the 
RPIQ is lower due to a centred distribution of the reference values which is responsible for 
a smaller interquartile range (Q3-Q1). The prediction models required a small number of 
PLSR-components from 5  (pH0, δpHtotal, α) to 8 (β) with one exception for γ, which needed 
16 components. In general, a high number of components can include too much noise of 
the data set and thus might lead to overfitting when applying the model to independent data 
(Gowen et al., 2011). However, in this case, a reduction by e.g. 5 components to 11 compo-
nents would decrease  R2 from 0.73 to 0.62 and is thus not recommended.

From the current knowledge, the soil pH value, i.e. the soil’s proton concentration, does 
not seem to be directly spectrally active but it is suspected to correlate with other parame-
ters that show spectral response such as soil organic matter (SOM) content or clay minerals 
(Chang et al., 2001). However, there could be a problem of predicting soil properties being 
only correlated to spectrally active components because the type and intensity of these cor-
relations may differ from site to site (Stenberg et al., 2010). Nevertheless, comparing the 
prediction results for the initial pH value  (pH0) of the examined nine study fields with pre-
vious studies, a validated  R2 of 0.76 and an RMSEP of 0.28 can be considered quite good 
since the published  R2 values for pH at an equal scale (country or state scale) vary from 

Table 4  Importance ranking of different wavelength regions for the prediction of the BNC parameters

Importance ranking of wavelength regions [nm]

Parameter #1 #2 #3 #4 #5

pH0 612 659 613 858 710
δpHtotal 1910 1878 710 669 612
α  ~ 360–500  ~ 1900  ~ 1000–1200  ~ 2250–2300  ~ 2400–2450
β 650 & 660 2320 & 2410 2310 & 2430 2350 & 2430 2330 & 2350
γ  ~ 500–700  ~ 1400  ~ 1000  ~ 1900  ~ 1990–2000
LRBNC 1914 608–610 708 1029 1122
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0.55 to 0.77 with an RMSEP of a third to half a pH unit (Stenberg et al., 2010). Only at a 
smaller spatial scales like farm or field scale, literature results are sometimes better because 
of less variations in soil characteristics receiving  R2s from 0.54 to 0.92 with RMSEPs from 
0.17 to 0.31 (Stenberg et al., 2010).

Figure 4 shows the plotted validation results for predicted and measured values of LR 
and the five BNC parameters. For the  LRBNC, the two best direct modelling methods with 
two different prediction results are displayed (model A, Fig. 4A and model B, Fig. 4B). 
Although  R2 is almost the same (0.67 vs. 0.68), the RMSEP of the predictions calculated 
with FS-PLSR and SNV pre-processing (model A) is with 144  kg  CaCO3 (ha  ×  dm)−1 

Fig. 4  Validation results for predicted and measured values for A  LRBNC (directly predicted, Model A); B 
 LRBNC (directly predicted, Model B); C  LRBNC (indirectly predicted by BNC parameters α, β, and γ); D 
initial pH value of the soil sample  (pH0); E total pH increase (δpHtotal); F,G,H regression coefficients of the 
exponential model α, β and γ including 1:1-line (grey, regression line (black) as well as R.2, RMSEP, bias 
and slope of the regression model)
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much better than the other one calculated with FS-PLSR and SG 2nd derivation (model 
B) with 221 kg  CaCO3 (ha × dm)−1. One reason is that the slope factor of model A is with 
0.59 poorer than of model B having 0.91. This results in a smaller range of the predicted 
values of model A compared to model B. A comparison of the ratios of slope and RMSEP 
shows that they are the same for the two methods (0.65). This indicates that both models 
can be considered of equal quality if the prediction results of model A are corrected by 
the slope factor. Nevertheless, model B was regarded as best-performing prediction model 
because it avoids slope factor correction. Comparing the performance of direct predic-
tion of  LRBNC with the indirect prediction using the BNC parameters α, β and γ (Fig. 4C), 
the indirect method achieved slightly higher correlation coefficients of 0.75 versus 0.68, 
respectively. This is the opposite behaviour as one would expect, because the accumulated 
error of the three predicted variables α, β and γ was assumed to be higher than the error of 
the directly predicted variable  LRBNC. Nevertheless, with the present data, it is not possible 
to give a general preference of either the direct or the indirect prediction method due to the 
relatively small number of samples in the validation set. This means that the two methods 
may just mathematically vary around the same expected value.

Figures 4D–H show the regression lines of the five BNC parameters. The reader should 
be aware that for alpha, two outliers, which were removed for modelling, are still displayed 
in the plot (Fig. 4F). The overall bias (intercept of the regression line and representative of 
the systematic error) for the best predictions of all BNC parameters is low and the slope 
factor is good with values close to 1 (0.79 to 0.95).

The influence of each individual wavelength by variable importance projection (VIP) 
scores on the PLSR prediction models, as well as the selected wavelengths by forward 
stagewise subset algorithm for each response variable are displayed in Table  4. VIP 
scores for wavelengths higher than 1 have a higher influence on the prediction results 
than the average. The prediction model for α mainly used wavelengths (i) < 500 nm, (ii) 
1 000–1 200 nm and (iii) at the water band around 1900 nm, which were also important for 
δpHtotal, γ, and  LRBNC. The model for γ mainly used wavelengths (i) 500–700 nm (ii) at the 
water band around 1400 nm, and between 2250 and 2450 nm, which were also particularly 
important for β. The region between 610 and 710 nm was important for all BNC param-
eters except α. Further less important wavelengths with VIP-scores can be seen in Appen-
dix 2. The attempt to assign the important wavelengths to optically active components was 
not accomplished in this study as the potential compounds of soil organic matter or clay 
minerals have many different, wide and strongly overlapping vibrations, such as first, sec-
ond, or third overtone vibrations as well as combination vibrations (e.g. of O–H, C–H, 
 CH2,  CH3, C = C, C-O, C = O, S–H, N–H etc.) including Fermi resonance shifts (Fang 
et al. (2018). Finding corresponding vibrations for the important wavelengths could be the 
scope of further research.

In the literature, LR predictions by spectroscopic methods are relatively rare. Reported 
 R2 values are 0.73 (Janik et al., 1998), 0.77 (Merry & Janik, 1999), and 0.50 (Viscarra Ros-
sel et al., 2006a, 2006b) using NIR as well as 0.75 (Viscarra Rossel et al., 2001 republished 
in Viscarra Rossel et  al., 2006a, 2006b), 0.86 (Janik et  al., 1998), 0.45 to 0.92 (Leenen 
et al., 2019), and 0.41 to 0.76 (Metzger et al., 2020) using MIR spectroscopy. However, in 
contrast to the present study, except for Metzger et al. (2020), they did not validate their 
models with a new and independent validation set, where  R2 values are generally lower 
compared to the calibration set. In this regard, an  R2 of 0.68 or 0.76 obtained in this study 
can be considered as good model performance.

An important aspect, which was neglected in this study, is the error of the labora-
tory method for determining BNC data. Janik et al. (1998) determined LR twice for 224 
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samples using a soil–lime incubation method based on a 14-day incubation (Richards, 
1992) similar to this procedure. They found rather low replication  R2 values of 0.73 for 
the slope and 0.85 for the intercept of the titration curves. Currently, it is unclear whether 
prediction errors of visNIR spectroscopy for LR are considerably different from laboratory 
errors. Hence, this topic needs further research.

Conclusions

VisNIR spectroscopy (visNIRS) was successfully used to predict the soil’s lime require-
ment and five parameters of the base neutralizing capacity by testing seven pre-processing 
techniques and six different multivariate regression methods on 170 soil spectra of nine 
agricultural fields, thus confirming the main hypothesis H1. The prediction performance in 
terms of a validated  R2 ranged from 0.67 (α) to 0.82 (δpHtotal). In view of the presumption 
that the soil pH value does not seem to be directly spectrally active, this results indicate 
a good model performance. The good correlation seems to be attributed to other param-
eters that show spectral response such as soil organic matter (SOM) content or clay miner-
als. For four out of six response variables  (LRBNC, β,  pH0, δpHtotal), best predictions were 
obtained by a forward stagewise subset selection combined with PLSR as regression model 
whereas for three out of six models  (LRBNC,  pH0, δpHtotal) the second Savitzky-Golay deri-
vation was the best pre-processing method. Important wavelength regions could be identi-
fied between 300 and 500 for α, between 610 and 710 nm for all BNC parameters except 
α, around 1400 for γ, around 1900 nm for δpHtotal, α, γ, and  LRBNC, and between 2250 and 
2450 nm for α and β. Hence, hypothesis H2 was confirmed. Even though the indirect pre-
diction of  LRBNC (by using the predicted BNC parameters α, β and γ) performed slightly 
better  (R2 = 0.75) than the direct one  (R2 = 0.68), it was not possible to generally prefer 
one of the two methods. Thus, hypothesis H3 could not be confirmed nor refuted. Field-
dependent prediction models may improve the accuracy in comparison to field-independ-
ent models as presented in this study. However, practical agriculture demands rather gen-
eral field-independent prediction models to reduce total soil mapping costs. The effect on 
the prediction performance of iteratively excluding one or more agricultural fields from the 
modelling data was not examined in this study due to a low number of samples. However, 
it is the subject of current research activities.

It can be concluded that visNIRS is a fast and cheap method for predicting lime require-
ments. Hence, much more field samples can be investigated compared to the standard lab 
method. This can make visNIR spectroscopy a very efficient method for soil acidity man-
agement particularly in combination with precision agriculture applications enabling a 
within field spatial analysis. Regarding its applicability for a site-specific soil acidity man-
agement, in a next step, visNIR spectroscopy will also be tested in the field on moist soils 
using an on-the-go sensing system. This transfer from lab to field is also encouraged by the 
promising results of Metzger et al. (2021) using a handheld MIR spectrometer to predict 
LR on field-moist samples.

Appendix 1

(see Tables 5 and 6).
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Appendix 2

(see and Fig. 5 and Table 7).

Fig. 5  VIP-Scores of all wavelengths in the best prediction model for the response variables α (left) and γ (right)

Table 7  Response variables with most sensitive wavelengths [nm] (bold)  and corresponding  VIP-Scores 
(below) by forward stagewise subset selection and PLSR algorithm

pH0 2109 631 437 2331 2325 768 1346 1028 629 380 554
0.34 0.35 0.36 0.46 0.47 0.49 0.50 0.58 0.61 0.62 0.64
1074 1959 748 896 559 389 1963 694 950 1624 390
0.64 0.75 0.77 0.79 0.80 0.81 0.82 0.85 0.94 0.96 1.02
674 710 658 613 659 612
1.38 1.54 1.71 1.73 1.74 1.77

δpHtotal 1742 1482 2109 1299 1043 1300 628 1149 553 554 635
0.25 0.31 0.32 0.45 0.48 0.49 0.52 0.53 0.56 0.56 0.65
2285 1074 1256 830 2345 510 949 948 524 389 613
0.66 0.67 0.70 0.76 0.81 0.91 0.96 0.97 0.98 1.02 1.30
612 669 710 1878 1910
1.36 1.42 1.49 2.14 2.27

β 1080 & 1090 1240 & 1250 1060 & 1070 360 & 1040 800 & 910 450 & 470
0.37 0.38 0.46 0.63 0.70 0.80
1430 & 2040 430 & 440 1470 & 1480 1620 & 1650 2330 & 2350 2350 & 2430
1.03 1.05 1.06 1.06 1.13 1.19
2310 & 2430 2320 & 2410 650 & 660
1.25 1.29 1.62

LRBNC 931 395 2263 2262 524 990 1037 1500 1357 2154 1200
0.29 0.29 0.42 0.43 0.45 0.54 0.58 0.59 0.59 0.60 0.60
1758 1006 790 933 1244 1720 1172 1117 2202 2270 668
0.61 0.63 0.63 0.63 0.68 0.69 0.70 0.71 0.72 0.72 0.72
2133 2006 1749 476 1140 1141 1434 427 557 2100 2094
0.75 0.79 0.80 0.81 0.81 0.82 0.85 0.87 0.88 0.89 0.89
1152 618 618.1 859 1035 989 634 538 554 1311 704
0.91 0.93 0.93 0.95 0.95 0.96 0.96 0.96 0.98 0.99 1.01
2033 583 2118 947 1403 662 443 1045 1558 561 390
1.01 1.05 1.05 1.11 1.11 1.20 1.21 1.22 1.30 1.30 1.33
1122 1029 610 708 608 609 1914
1.36 1.64 1.65 1.78 1.83 2.05 2.09
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