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Abstract
Within the soil spectroscopy community, there is an ongoing discussion addressing the 
comparison of the performance of prediction models built on a global calibration database, 
versus a local calibration database. In this study, this issue is addressed by spiking of 
global databases with local samples. The soil samples were analysed with MIR and XRF 
sensors. The samples were further measured using traditional wet chemistry methods to 
build the prediction models for seventeen major parameters. The prediction models ap-
plied by AgroCares, the company that assisted in this study, combine spectral information 
from MIR and XRF into a single ‘fused-spectrum’. The local dataset of 640 samples was 
split into 90% train and 10% test samples. To illustrate the benefits of using local calibra-
tion samples, three separate prediction models were built per element. For each model, 
0%, 50% (randomly selected) and 100% of the local training samples were added to the 
global dataset. The remaining 10% local samples were used for validation. Seventeen soil 
parameters were selected to illustrate the differences in performance across a range of soil 
qualities, using the validation set to measure performance. The results showed that many 
models already exhibit an excellent level of performance (R2 ≥ 0.95) even without local 
samples. However, there was a clear trend that, as more local calibration samples were 
added, both R2 and ratio of performance to interquantile distance (RPIQ) increase.

Keywords  Soil testing · Prediction model · Mid-infrared spectroscopy · X-ray 
fluorescence · Spiking

Introduction

Hungarian agricultural soil fertility has been decreasing due to the imbalance between 
nutrient input and output. Simultaneously, soils have become more vulnerable due to the 
extreme weather conditions (e.g. drought sensitivity, erosion). Management of the steadily 
decreasing soil organic matter and lack of organic matter (manures, crop residues, etc.) 
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therefore becomes crucial in maintaining soil fertility in the middle term. To harmonize the 
preservation of soil fertility with farming objectives and environmental requirements in the 
2021–2027 Common Agricultural Policy (CAP) of the European Union, there is a need for 
proper soil nutrient management strategies. These strategies should be based on information 
about the current status of soil fertility. Since traditional soil testing is time-consuming and 
expensive, there is a need for techniques and instruments that allow rapid, affordable and 
precise routine soil testing. As a result, general interest in using diffuse reflectance infra-
red spectroscopy testing of soil physical, chemical and biological properties has increased 
(Soriano-Disla et al., 2014).

This technique has various advantages such as (a) it is non-destructive, (b) requires rela-
tively little sample preparation and (c) does not involve any (hazardous) chemicals. Mea-
surements only take a few seconds and many soil properties can be estimated from a single 
scan. Moreover, the technique allows for flexible measurement configurations, and in-situ 
as well as laboratory-based measurements (Viscarra Rossel et al., 2006).

Mid-infrared (MIR [3–50 μm]) spectroscopy is a widely used tool to estimate particle 
size distribution, organic carbon content and other chemical and physical soil properties 
(Terra et al., 2015) based on the detection in the 4000 — 400 cm− 1 wave number range. It 
typically performs better than near-infrared spectroscopy, detecting the fundamental vibra-
tions instead of overtones (Seybold et al., 2019). Some soil properties, such as organic mat-
ter (aliphatics, aromatics, carbonyls, etc.) and mineral components (CaCO3; clay minerals, 
etc.) are believed to connect to distinct wavenumbers. In contrast, others with no standard 
chemical composition (pH, texture, cation exchange capacity, aggregate stability) are esti-
mated based on the whole spectrum (Ma et al., 2018). Prediction accuracy, however, is 
affected by potential overlaps of the peaks in the former case, and noise and multicollinear-
ity in the latter.

X-ray fluorescence (XRF [0.01 to 10 nm]) spectroscopy is based on detecting the second-
ary spectral lines at various wavelengths emitted by chemical elements (Nawar et al., 2019). 
This is a robust method for predicting heavy metals. However, it is less effective for analyz-
ing low atomic number elements, i.e., K, P, Ca and Mg (Kaniu et al., 2012). The combined 
application of MIR and XRF spectroscopy was first reported by Towett et al., (2015) and 
found to be promising due to their synergistic effect on predicting soil properties (Naimi et 
al., 2022; O’Rourke et al. 2016).

To make better use of spectroscopy, the establishment of soil spectral libraries covering 
different soil types has been strongly recommended (Viscarra Rossel, 2009). Most investi-
gations have been focused on a single, quasi-homogeneous spectral library dataset. None-
theless, these datasets are not necessarily comparable directly due to their various sample 
handling (e.g. drying, milling, sieving) and spectroscopic conditions. Extending the appli-
cability of such libraries by spiking with local samples was introduced (Brown, 2007; Vis-
carra Rossel, 2009), which significantly improved prediction accuracy (Guerro et al., 2016; 
Seidel et al., 2019) even at the field scale (Breure et al., 2022).

Eight years ago, AgroCares, a company utilising spectroscopic sensors to estimate soil 
and feed quality, started a research program focusing on the development and implementa-
tion of a soil testing method using mid-infrared (MIR) and X-ray fluorescence (XRF) sen-
sor technology (Dimpka et al., 2017). One of the major challenges of such a concept is the 
derivation of reliable prediction models. For this, machine learning techniques were applied 
to link the wet chemical parameters of the soil calibration samples to spectra obtained from 
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the MIR/XRF sensors. To make better use of spectroscopy, the establishment of soil spec-
tral libraries covering different soil types has been strongly recommended (Viscarra Ros-
sel, 2009). AgroCares utilises its global spectral calibration library of various soil types by 
building temporary local models to produce one-off predictions when prompted to produce 
a prediction. In order to develop prediction models for Hungary, a calibration and validation 
study started in 2017. In total 640 geo-referenced samples were collected to cover the differ-
ent soil properties in Hungary. These samples are suitable for testing the effect of localised 
sample injection in a global model for Hungary. The aim of this study is to compare the 
effect of adding variable numbers of local calibration samples to a global soil calibration 
database on model performance within that local region.

Materials and methods

In Hungary, 640 geo-referenced soil calibration samples were taken. The locations were 
selected using the conditioned Latin Hypercube method (Minasny & McBratney, 2006; 
Roudier & Hedley, 2013). Variables used to stratify the samples were land use, soil type, 
climate data, accessibility and market value. In the selection of sample locations, it was con-
sidered if it is a high-priority agricultural area or not. The focus was on the most intensively 
used arable land (Fig. 1).

1 – Stony soils (solid rock os on or near the surface), 2 – Blown sand, 3 – Humous 
sandy solis, 4 – Rendzinas, 5 – Erubase soils, 6 – Acidic, non-podzolic brown forest soils, 
7 – Brown forest soils with clay illuviation (Sol brun lessivee), 8 – Pseudogleys, 9 – Brown 
earth (Ramann brown forest soils), 10 – „Kovárvány” brown forest soils (sandy brown 

Fig. 1  Location of the local calibration and validation samples
 (Source of background soil map: Agrotopo (2008) database)
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forest soils with thin interstratified layers of colloid and sesquioxide accumulation), 11 – 
Chernozem brown forest soils, 12 – Chernozem-type sandy soils, 13 – Pseudomyceliar 
(calcareous) chernozems, 14 – Lowland chernozems, 15 – Lowland chernozems with salt 
accumulation in the deeper layers, 16 – Meadow chernozems with salt accumulation in 
the deeper layers, 17 – Meadow chernozems with salt accumulation in the deeper layers, 
18 – Solonetzic meadow chernozems, 19 – Terrace chernozems, 20 – Solonchaks, 21 – Sol-
onchak-solonetzes, 22 – Meadow solonetzes, 23 – Meadow solonetzes turning into steppe 
formation, 24 – Solonetzic meadow soils, 25 – Meadow soils, 26 – Meadow alluvila soils 
and alluvial meadow soils, 27 – Peaty meadow soils, 28 – Peats, 29 – Ameliorated peats, 
30 – Soils of swampy foreasts, 31 – Alluvial soils.

Soil samples were taken with an Edelman auger from the 0-200 mm top layer from one 
point. The top 20 mm of soil from the sample auger were removed, in order to remove any 
plant debris that might have fallen into the drill hole. 1 kg each of the soil samples were 
placed into 2 bags.

Soil samples were prepared according to ISO norm 11464:2006. The preparation included 
drying at 40 ºC, and if necessary, the soil sample was crushed and sieved through a 2 mm 
sieve. The fraction less than 2 mm was divided into a portion mechanically using a divider. 
A subsample of 30 g was retrieved and milled with a ball mill to 0.2 mm particle size. Each 
milled sample was analysed with Alpha I Bruker (MIR) (Bruker Corporation, Billerica, 
USA) and Epsilon 1 (EDXRF) (Malvern Panalytical, Malvern, UK) sensors. The exact 
same instrumentation and procedures were used to create the AgroCares spectral library. 
This adherence to protocol helped eliminate potential discrepancies related to analytical 
procedure.

The samples were measured using traditional wet chemistry methods to define the refer-
ence dataset for the calibration and validation sets. Seventeen parameters were measured:

	● pH in a 1:5 (volume fraction) suspension of soil in water (pH in H2O), in 1 mol/l potas-
sium chloride solution (pH in KCl) according to NEN-ISO 10,390, 2005,

	● organic carbon (Organic C) by dry combustion, quantified with Elemental analyzer 
Rapid CS Cube (Elementar) according to EN 15,936, 2012,

	● total nitrogen (total N) determined via Dumas method using elemental analyzer Vario 
MAX CN Cube (Elementar) according to NEN-EN 16168:2012,

	● clay content (Clay) by using laser diffraction method by Mastersizer 3000 (Malvern 
Panalytical) according to ISO 13320:2009,

	● total phosphorus (total P), calcium (total Ca), magnesium (total Mg) potassium (total K), 
measured with Epsioln 3, EDXRF (Malvern Panalytical)(according to ISO 18227:2014,

	● exchangeable calcium (exchangeable Ca), magnesium (exchangeable Mg), potassium 
(exchangeable K) and cation exchange capacity (CEC) using a hexamminecobalt tri-
chloride solution as extractant, quantified with ICP-MS 7700 (Agilent) according to 
ISO 23470:2007,

	● Plant available phosphorus (plant available P), calcium (plant available Ca), magnesium 
(plant available Mg), potassium (plant available K), determined using Mehlich-3 extrac-
tion, quantified with ICP-MS 7700 (Agilent) according to Wolf and Beegle (2009).

The AgroCares workflow creates prediction models that combine the spectral information 
from MIR and XRF into a single ‘fused-spectrum’. This means that spectral information 
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present in either sensor are simultaneously utilised for a better overall prediction than either 
sensor individually (Elmenreich, 2002). This can be seen in the results section in Table 1.

To build a prediction model, spectral data from both sensors is required, as well as the 
wet-chemical reference data to be predicted by the model. In 2021, the models of AgroCares 
were built on approximately 17,000 soil samples, collected from 35 countries (primarily in 
Africa, Asia and Europe). The prediction models were built using the WEKA software (Hall 
et al., 2009) and used the ADAMS knowledge flow (Reutemann & Vanschoren, 2012) to 
prepare the data. Before training the primary model, the data was first cleaned of outliers by 
training a simple linear regression algorithm with 10-fold cross validation. All samples that 
were misclassified by this cleaning algorithm by a factor of m (m = 6 in experiments) were 
removed. The cleaned samples were then used to build each prediction model, one model 
per soil property. Each model was built by first applying a Segmented Savitzky-Golay 
(SSG) filter (Geise and French, 1955) with n = 4 segments for both MIR and XRF spectra, 
then partial least squares (PLS) regression (Vinzi et al., 2010) to decompose the spectral 
information into approximately 10–20 components per sensor input (this varies per model). 
The PLS data from both MIR and XRF was then concatenated and used as input for a locally 
weighted learning (LWL) algorithm (number of neighbours, k = 300) (Atkeson et al., 1997) 
wrapped around a Gaussian Processes (GP) regressor (Rasmussen & Williams, 2006). The 
parameters for each of these processes (e.g. number of PLS components, window size of 
Savitzky-Golay, etc.) were defined through an optimisation process for each soil property 
using the full global dataset. The LWL component is the crucial component here – despite 
using a global dataset, the LWL builds a temporary GP regressor on k of the most similar 
training samples (based on the PLS components) at prediction time, and uses this model to 
predict the soil property value.

Other studies have also utilised a fusion of MIR and XRF sensors to show improved 
combined performance. O’Rourke et al. (2016) used Cubist regression models (Holmes 
et al., 1999; Quinlan, 1993) to predict soil parameters for the NSDB Republic of Ireland 
Database (Fay et al., 2007). This technique also showed improvements when using fused 
spectral inputs, but the scope of data is much smaller than this study. Kandpal et al., (2022) 
also presented favourable results for fused sensor approaches, using different PLS variants 
as the primary prediction method (and various preprocessing techniques). But this method 
also used a relatively small number of samples (n = 196). The key difference in the work in 
this study is the use of the LWL algorithm to dynamically create localised prediction models 
for every new sample. This technique takes advantage of a large soil library to build focused 
models on the soil sample being predicted.

The local dataset of 640 Hungarian soil samples was split into 90% training and 10% test 
samples. To illustrate the benefits of using local calibration samples, three separate predic-
tion models were built per soil property. For each model, 0%, 50% (randomly selected) 
or 100% of the local Hungarian training samples (90%) were added to the global calibra-
tion dataset of approximately 17,000 samples (where only 300 are selected per sample, 
as defined above). The remaining 10% local samples were used for validation. Seventeen 
soil parameters were selected to illustrate the differences in performance across a range 
of soil qualities, using the validation set to measure performance. Two evaluation metrics 
are presented: R2, the coefficient of determination – a measure of how closely the predic-
tions match the actual values; and ratio of performance to interquantile distance (RPIQ), a 
metric for representing the root mean squared error as a factor of the range (Bellon-Maurel 
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et al., 2010). Because the validation samples are constant, an increase in RPIQ represents 
a decrease in error. To interpret and to compare the results of the model performance in 
Hungary, the predictions based on R2 values were classified according to Malley et al., 
(2004), as follows: excellent (R2 > 0.95), successful (0.90 ≤ R2 ≤ 0.95), moderately success-
ful (0.80 ≤ R2 < 0.90) and moderately useful (0.70 ≤ R2 < 0.80).

Results

The experiment was conducted for: pH(KCl), pH(H2O), organic C, total N, clay content, 
total P, total Ca, total Mg, total K, exchangeable Ca, exchangeable Mg, exchangeable K, 
CEC, plant available P, plant available Ca, plant available Mg and plant available K.

Table 1 shows the results of the experiments incorporating varying levels of local sam-
ples in the calibration set. Many models already exhibit an excellent level of performance 
(R2 ≥ 0.95), even without local samples. Overall, there is a clear trend that as more local cali-
bration samples were added, both R2 and RPIQ increase. For elements with already excel-
lent performance, additional samples had little effect, but the effect is more pronounced 
for lower performing models. Notable examples include: pH(KCl), clay, exchangeable Ca, 
available Ca and Mg and total K – each showing a substantial reduction in RMSE and an 
increase in R2. Some models show no increase in performance: CEC, total Mg and available 
P; local samples have no effect on performance. The worst prediction was for plant available 
K, but adding calibration samples resulted in an R2 improvement from 0.13 to 0.30 and a 
10% increase in RPIQ.

Figure 2 illustrates the differences in performance of the prediction models on the Hun-
garian validation set when different amounts of Hungarian calibration data is used to train 
the prediction models. Those parameters were selected for visualization where the addition 
of local samples has a larger effect on both R2 and RPIQ.

In models where R2 performance is already high (> 0.95), additional Hungarian samples 
increase the RPIQ. In weaker models, such as available Mg and available Ca, the addition 
of local samples has a larger effect on both R2 and RPIQ except for CEC and available P.

Clay showed an overall reduction in error across the entire range. Performance for plant 
available Ca is excellent from 0 to 10,000 in both models, but when local calibration sam-
ples are provided, the error from 10,000 + is notably reduced (by 11.08%). An even bigger 
effect is seen with plant available Mg. While the performance of exchangeable K is poor, the 
addition of local samples aids in centralising the predictions. The model for plant available 
K is very poor, but the trend clearly increases with the addition of local samples. The effect 
of the local sample was most visible on available Mg where the R2 improved by 20% and 
the RPIQ increased by 78%.

Figure 3 illustrates the performance improvement of using ‘fused’ models for prediction. 
In all but two of the models: total Ca and plant available K, fused performance matches or 
exceeds that of the individual sensor models. In the total Ca model, XRF alone far exceeds 
the performance of the fused model, but performance was already at a very high level for all 
two sensors. For plant available K, performance was quite low for all three models and the 
increase seen for XRF alone is likely due to noise in the training process.
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Soil parameter Evaluation metric Hungarian calibration samples
MIR + XRF MIR XRF
0% 50% 100% 100% 100%

pH(KCl) RMSE 0.26 0.27 0.23 0.31 0.47
R2 0.96 0.96 0.97 0.94 0.87
RPIQ 7.47 7.24 8.54 6.24 4.08

pH(H2O) RMSE 0.30 0.29 0.29 0.32 0.45
R2 0.90 0.91 0.91 0.88 0.78
RPIQ 4.64 4.83 4.80 4.31 3.10

Organic C RMSE 5.37 5.24 5.13 7.82 5.33
R2 0.98 0.98 0.98 0.95 0.98
RPIQ 3.19 3.27 3.34 2.19 3.22

Clay RMSE 4.25 3.76 3.72 4.23 6.26
R2 0.86 0.89 0.90 0.87 0.71
RPIQ 3.91 4.41 4.47 3.92 2.65

CEC RMSE 92.06 92.24 91.74 90.06 108.17
R2 0.72 0.72 0.73 0.74 0.62
RPIQ 2.10 2.09 2.11 2.15 1.79

Total N RMSE 0.73 0.72 0.71 0.88 0.73
R2 0.95 0.95 0.95 0.92 0.95
RPIQ 2.35 2.36 2.39 1.93 2.34

Total P RMSE 0.12 0.11 0.11 0.58 0.11
R2 0.96 0.97 0.97 0.04 0.96
RPIQ 3.72 4.06 4.19 0.76 3.91

Plant available P RMSE 119.49 117.19 120.19 271.18 117.97
R2 0.82 0.83 0.82 0.08 0.83
RPIQ 0.91 0.93 0.91 0.40 0.93

Total Ca RMSE 7.18 7.00 6.49 7.31 3.62
R2 0.98 0.98 0.98 0.98 0.99
RPIQ 6.02 6.17 6.66 5.91 11.95

Exchangeable Ca RMSE 58.13 54.10 51.69 52.96 79.31
R2 0.90 0.92 0.92 0.92 0.82
RPIQ 3.31 3.56 3.72 3.63 2.43

Plant available Ca RMSE 3653.35 3251.64 2764.41 3447.19 5077.21
R2 0.88 0.90 0.93 0.89 0.77
RPIQ 2.63 2.96 3.48 2.79 1.89

Total Mg RMSE 2.17 2.09 2.23 2.23 2.30
R2 0.91 0.92 0.90 0.90 0.90
RPIQ 1.53 1.59 1.49 1.49 1.44

Exchangeable Mg RMSE 18.72 17.29 17.13 24.30 34.77
R2 0.85 0.87 0.87 0.74 0.47
RPIQ 3.19 3.46 3.49 2.46 1.72

Plant available Mg RMSE 414.04 322.03 232.37 341.63 503.75
R2 0.77 0.86 0.93 0.84 0.66
RPIQ 1.50 1.93 2.68 1.82 1.23

Total K RMSE 1.26 1.15 1.03 1.76 1.20
R2 0.94 0.95 0.96 0.89 0.95
RPIQ 4.77 5.22 5.83 3.43 5.01

Table 1  A summary of the performance of the prediction models over the Hungarian validation set of 10% 
samples
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Discussion

The paper aimed to compare the performance of a global dataset to that of a global dataset 
including local samples. Large, country, continental and global soil spectral libraries have 
already been developed and found to be useful for larger scale analyses and interpretation 
(Viscarra Rossel & Webster, 2012; Stevens et al., 2013; Shi et al., 2014; Viscarra Rossel et 
al., 2016). Results have shown that large libraries are not always accurate to predict soil 

Fig. 3   A comparative RPIQ plot of 
MIR + XRF, MIR and XRF perfor-
mance when utilising 100% of the 
local samples in the training set

 

Fig. 2  Plots illustrating the performance of the Hungarian validation samples for clay, plant available Ca, 
plant available Mg, exchangeable K and plant available K. 0% added Hungarian calibration samples on the 
top row, 100% added Hungarian calibration samples on the bottom row

 

Exchangeable K RMSE 7.08 6.79 6.83 9.65 8.86
R2 0.60 0.63 0.63 0.25 0.37
RPIQ 1.49 1.56 1.55 1.10 1.19

Plant available K RMSE 405.69 381.51 364.04 348.37 250.32
R2 0.13 0.23 0.30 0.36 0.67
RPIQ 0.76 0.81 0.84 0.88 1.23

Table 1  (continued) 
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parameters of local samples (Stevens et al., 2013; Gogé et al., 2014; Guerrero et al., 2014; 
Clairotte et al., 2016; Brown, 2007). It was found that the addition of local samples from 
Hungary notably improved the performance for pH(KCl), clay, exchangeable Ca, available 
Ca and Mg and total K. The improvement was mainly expressed as a reduction in RMSE 
values and only moderately improved R2 values, though some models showed no increase 
in performance. In the current study, local samples did not affect the performance of CEC, 
total Mg and available P. It seems that the global dataset of AgroCares already contains sim-
ilar information on comparable soils from other countries in the prediction of these param-
eters and so no further improvements could be gained from local samples. The prediction of 
clay fraction was moderately successful without the local samples and became successful 
with local samples, but 100% of the local training dataset was needed for this improvement.

The predictions for plant available K was very poor, but could be seen to improve with 
the successive addition of local samples, which may indicate that the model performance 
would be further increased with extremely dense sampling. The positive effect of local 
samples on model performance could be explained with the statement of Viscarra Rossel 
et al., (2008): NIR spectra and soil properties can vary under different soil minerology and 
their content in soil organic matter. According to Fabien et al., (2012), when strong spectral 
features are related to the characteristic under study (as for CaCO3 content), a wide national 
database can be used alone to calibrate accurate prediction models. In the other cases, for 
properties involving more diverse spectral regions, the usefulness of a large database spiked 
with local samples should be established. It confirms the study results of Soriano-Disla et 
al., (2014): ‘variables that are predicted by virtue of their correlations with infrared-active 
soil properties (indirect calibrations) frequently require the development of models for spe-
cific soil types, locations and particular environments’.

In the case of CEC, the local dataset involvement did not increase RPIQ, possibly 
because the non-Hungarian soil samples in the database are already good enough. Most 
studies aim to predict soil properties (including CEC) on a catchment or a regional scale. 
For example, Viscarra Rossel et al., (2006) reported a good R2 (0.73) for CEC prediction in 
Australian soils. Terra et al., (2015) and Pinheiro et al., (2017) found R2 = 0.72 and 0.68 and 
RMSE = 0.14 and 5.86 for CEC prediction in south American tropical soils. Also, Ulusoy et 
al., (2016) published R2 of 0.83 and RMSE of 1.45 at field scale investigations in Turkey. 
However, the prediction goodness might drop on a global scale, including several soil types 
with various environmental circumstances.

A notable difference between the correlation of R2 and RPIQ can be seen with the plant 
available P content. The drastic difference between the two measures is likely because the 
validation set contains a few large values which artificially increase the R2. These large 
values would fall outside the inter-quantile range, but their errors are still factored into the 
RPIQ measurement, thereby resulting in a relatively small RPIQ. This is a weakness of the 
RPIQ metric.

Conclusions

In 2021, AgroCares had more than 17,000 soil samples in their global calibration data-
set collected from 32 countries in Africa, Asia and Europe. The results of this study show 
that the global dataset of AgroCares already contains enough information on comparable 
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soils from other countries to predict the total calcium, total nitrogen and total phosphorus 
successfully, regardless of the number of Hungarian samples present. However, in weaker 
models, such as clay content, exchangeable potassium and all magnesium forms with R2 
lower than 0.95, the addition of local Hungarian samples has improved the quality of local 
predictions (except for total Mg where it decreased).

In the case of special soil parameters, it can be important to identify the local effects that 
are unique to a country or a region. Based on the experiment, it can be concluded that the 
model performance in Hungary benefits from the inclusion of local samples. Based on the 
cases where model performance was improved with the increasing number of local samples, 
it can be concluded that more data is useful. However, it is important to state that sample 
numbers did not always improve model performance and/or even decrease it. According to 
the results, the AgroCares concept for routine soil testing using MIR + XRF sensor technol-
ogy is viable for Hungarian agriculture.
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