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Abstract
Canopy nitrogen content (CNC, kg/ha) provides crucial information for site-specific crop 
fertilization and the usability of Sentinel-2 (S2) satellite data for CNC monitoring at high 
fertilization levels in managed agricultural fields is still underexplored. Winter wheat 
samples were collected in France and Belgium in 2017 (n = 126) and 2018 (n = 18), ana-
lysed for CNC and S2-spectra were extracted at the sample locations. A comparison of 
three established remote sensing methods to retrieve CNC was carried out: (1) look-up-
table (LUT) inversion of the canopy reflectance model PROSAIL, (2) Partial Least Square 
Regression (PLSR) and (3) nitrogen-sensitive vegetation indices (VI). The spatial and 
temporal model transferability to new data was rigorously assessed. The PROSAIL-LUT 
approach predicted CNC with a root mean squared error of 33.9 kg/ha on the 2017 dataset 
and a slightly larger value of 36.8 kg/ha on the 2018 dataset. Contrary, PLSR showed an 
error of 27.9 kg N/ha (R2 = 0.52) in the calibration dataset (2017) but a substantially larger 
error of 38.4 kg N/ha on the independent dataset (2018). VIs revealed calibration errors 
were slightly larger than the PLSR results but showed much higher validation errors for the 
independent dataset (> 50 kg/ha). The PROSAIL inversion was more stable and robust than 
the PLSR and VI methods when applied to new data. The obtained CNC maps may sup-
port farmers in adapting their fertilization management according to the actual crop nitro-
gen status.
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Introduction

Nitrogen (N) fertilization is of high importance in crop production since it is directly 
related to the photosynthetic process (Andrews et al., 2013). Furthermore, N is a critical 
factor for crop growth and consequently yield (Erisman et al., 2008). An excess application 
of N may lead to N leaching and increased nitrate concentrations in the surrounding water 
bodies and the groundwater (Cameron et al., 2013), which has major negative impacts on 
the environment, including on human health.

In intensive wheat cropping systems, N fertilizer application is split up into three frac-
tions to minimize the nitrogen loss and to optimize the N uptake by the crops. The esti-
mation of canopy nitrogen content (CNC, kg/ha) during stages 30–39 (stem elongation) 
provides crucial information that may allow for the adjustment of fertilization to the crops’ 
needs (Delloye et al., 2018). The relevant CNC information for variable rate N-fertilization 
can be derived from optical reflectance data. With the launch of the multispectral Senti-
nel-2 satellite constellation (S-2), which is part of the European Commission’s Copernicus 
programme, an observation of agricultural areas is possible every 5 days under cloud-free 
conditions. The spatial resolution of 10–20 m and repetition time seem suitable for moni-
toring CNC at the sub-field scale during the growing season. However, there is a need 
to assess the retrieval of CNC from operational S-2 data over conventionally managed 
agricultural fields following common agricultural practices, as opposed to many studies 
that use fertilizer trials with artificially increased fertilizer rates that result in large CNC 
variation.

In general, remote sensing-based methods for the retrieval of CNC or related biophysi-
cal attributes can be divided into four major approaches: (1) Parametric regression or 
vegetation indices (VI), (2) empirical models including multivariate statistical (MS) and 
machine learning (ML) methods, (3) physically based radiative transfer models (RTM), 
and (4) hybrid methods, a combination of RTM and ML (Berger et  al., 2020a; Verrelst 
et al., 2019). Wheat CNC was retrieved using different combinations of sensors (field spec-
trometer to satellite) and methods. Among the available body of literature, some papers 
looked at CNC retrieval in managed wheat fields from satellite data: Using RapidEye data 
and the normalized difference red-edge index (NDRE), Magney et  al. (2017) achieved a 
root mean squared error (RMSE) of about 16 kg N/ha of CNC on conventional managed 
fields over 3 years (2012–2014) but did not transfer the model to other study sites or differ-
ent years. Söderström et al. (2017) used MSAVI-2 based on the DMC satellite constellation 
(www. dmcii. com) and NDRE based on the S-2 and obtained accuracies of 11–15 kg N/ha 
on winter wheat fields in central and south-west Sweden under consideration of the variety. 
MS and ML methods were mostly applied in studies that are based on hyperspectral (HS) 
measurements acquired from field spectrometers, but increasingly also from drone-based 
HS sensors (Abdelbaki et al., 2021). Thorp et al. (2017) used a genetic algorithm and par-
tial least square regression (PLSR), resulting in a cross-validated RMSE of about 16%. 
Hansen and Schjoerring (2003) compared RMSE values obtained using PLSR (7.8 kg N/
ha) and RMSE using all possible normalized difference VIs (8.3 kg N/ha). Due to their 
empirical nature, VIs, MS and ML methods are considered to have limited transferability 
in space and time and are specific to the sensors on which they were calibrated.

Studies using retrieval methods based on RTMs, e.g. PROSAIL (Jacquemoud et al., 
2006), mostly focus on the estimation of the model variables leaf area index (LAI), leaf 
chlorophyll content (Cab), or canopy chlorophyll content (CCC) (e.g. Botha et al., 2010; 
Croft et al. 2020; Darvishzadeh et al., 2008; Si et al., 2012; Verrelst et al., 2014, 2015a, 

http://www.dmcii.com
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2015b; Danner et  al., 2017). Most of the studies using a PROSAIL inversion scheme 
end with the prediction of LAI, Cab or CCC. From LAI or CCC, CNC can be obtained 
using an empirical relationship that first needs to be established based on a sample of 
field and lab measurements. One of the few studies that linked a PROSAIL-retrieved 
variable empirically with CNC is Delloye et  al. (2018); the authors used an artificial 
neural network (ANN) in the inversion procedure to retrieve the CCC from winter wheat 
on managed fields and linked it with the CNC, thereby achieving accuracies of approxi-
mately 11–36 kg N/ha depending on the growth stage.

N mapping is often realised via the significant link between Cab content and N (Baret 
et al., 2007; Croft et al., 2020). Even if the Cab pigments represent a rather small por-
tion of N (approximately 2%), for certain crops and growth stages good Cab-N correla-
tions are present. In general, Cab can be retrieved through RTM inversions with a good 
accuracy (Delloye et al., 2018). For instance, Croft et al. (2020) demonstrated the use 
of Landsat-8 imagery for the retrieval of CCC utilizing also a PROSAIL inversion pro-
cedure with an RMSE of 49.6 µg/cm2 and an R2 of 0.87 and mentioned the usability of 
CCC for quantifying the crop N status due to the strong relationship of Cab and N (Sage 
et al., 1987).

Nevertheless, the relationship gets lost after the mature growth stage when leave N is 
translocated to other plant organs like grains (Berger et  al., 2020a, 2020b). Contrary, N 
fertilisation and CNC assessment are relevant mostly at early crop development stages and 
thus, weakening of Cab-N relations at mature stages is less of problem.

PROSAIL has been further developed to allow for studies on Yang et al. (2015) replaced 
the Cab absorption coefficients in PROSPECT with a N-specific absorption coefficient to 
directly simulate a N-specific response (N-PROSPECT) in winter wheat. This offers the 
opportunity to retrieve the leaf N density in an inversion of the N-PROSPECT model. 
Wang et al. (2015) studied the accuracy of PROSPECT-5 in the SWIR domain based on 
leaf-optical properties from 50 species to derive protein content on leaf-level. Li et  al. 
(2018) extended the N-PROSPECT by coupling it with the SAIL model to create N-PRO-
SAIL and retrieved an RMSE of 9.5 kg N/ha in its estimation of the CNC of winter wheat, 
using hyperspectral data recorded with an ASD FieldSpec spectrometer. Another develop-
ment in this direction is PROSAIL-PRO (Berger et al., 2020b), which includes newly cali-
brated specific absorption coefficients of proteins. PROSAIL-PRO requires high resolution 
hyperspectral full range measurements including the SWIR domain. Recently, this promis-
ing approach has been used to estimate CNC is via the protein absorption features located 
in the SWIR domain using hybrid RTM inversion (Verrelst et  al., 2021) with promising 
results (RMSE = 21–23  kg  N/ha). Such approaches will be applicable in agricultural N 
monitoring once hyperspectral satellite missions like CHIME or SBG become operational.

Contrary, this study intends to use operational S-2 data for continuous monitoring of 
crop N status which is unsuitable for N-PROSAIL or PROSAIL-PRO applications. Instead, 
it is assumed that there is a relationship between CNC and LAI or CCC, based on the 
assumption that spatial variations in CNC are mostly caused by variations in biomass and 
less by variations in leaf N concentration, which are often at elevated levels in managed 
agricultural fields.

The hypothesis of this study is that a CNC retrieval method based on an RTM is more 
reliable by transferring the model in space and time compared to widely utilized models 
based on statistical approaches (PLSR) or N-sensitive VI’s. All of these methods are highly 
established and widely used in remote sensing science. Most studies often use a soft vali-
dation scheme, e.g. leave-one-out cross validation, and thus lack transferability to other 
study sites and growing seasons (e.g. Magney et al., 2017; Thorp et al., 2017). As PLSR 
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and VI’s are mainly data driven it is assumed that the RTM based method will show more 
reliable error margins by using different validation schemes.

Therefore, following objectives were addressed:
(1) The assessment of CNC retrieval accuracy from S-2 derived imagery using three 

established methods usable also for operational services: empirical (N-sensitive VIs), sta-
tistical (PLSR) and physically based (PROSAIL canopy reflectance model) and assess the 
feasibility of the approaches for operational use with reliable error margins.

(2) Evaluate two validation schemes to assess the influence of the validation proce-
dure on the accuracy assessment of the three different remote sensing based CNC retrieval 
methods.

(3) Based on the PROSAIL retrieved variables there were three strategies identi-
fied to link those variables to field-measured CNC: (i) relate LAI to CNC, (ii) compute 
LAI*Cab = CCC, and link CCC to CNC, iii) relate Cab to lab-measured leaf N concentra-
tion (LNC) and multiply LNC with biomass to retrieve CNC. The last objective addresses 
the assessment of the best retrieval strategy based on PROSAIL retrieved variables.

Materials and methods

Study area

In the study area in northern France and southern Belgium, a total of eleven study sites 
were identified that were probed either in 2017 or in 2018 (Fig. 1). Climatically, the study 
area belongs to the Cfb class (temperate oceanic climate) of the Köppen–Geiger climatic 
classification system. From south to north within the study area, the average temperature 

Fig. 1  Overview of the 2017 and 2018 field sites in France and Belgium. In 2017 the field sites were 
selected along a north to south gradient, and in 2018, on an east–west orientation
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drops from 10.5 °C (Troyes, France) to 9.8 °C Namur (Belgium) and the average precipita-
tion rises from 650 to 819 mm. During the field campaigns in France, a drought occurred 
in April until mid-May 2017, which affected plant growth.

From west to east, the average climatic condition changed from 10.7 °C and 688 mm 
precipitation per year (Le Havre) to 9.7 °C and 731 mm rainfall (Nancy). In 2018, no sig-
nificant weather anomalies were noticed during the field campaign.

Field and laboratory work

On each of the eleven sites, one to four agricultural fields were selected and, in each field, 
two to four plots were established (Table 1). In total, 204 samples were taken in the field in 
April to May 2017, and 21 samples in May 2018 (Table 1). Of those 204 samples in 2017, 
11 samples had to be discarded due to inappropriate cooling prior to N analysis, resulting 
in a final number of 193 samples for 2017. From the 2018 sampling set, two samples were 
withdrawn from further analysis due to mouldy sample material. Finally, 212 samples were 
analysed for CNC. For this dataset the statistical relationship between field observations 
(e.g. LAI) and laboratory measurements was carried out (n = 193), while just for the sam-
ples with available cloud-free S-2 imagery (n = 126) the modelling part of this study was 
conducted. Table 2 gives an overview on the dates of the field campaigns and the BBCH 
stages.

Each plot was 40 × 40  cm2 and established along transects with an approximate distance 
of 100 m between neighbouring plots to best cover the variation within a field. Within each 
plot, Cab content, LAI and canopy reflectance were measured. Afterwards the plots were 
harvested, and the fresh biomass was recorded. In the lab, dry matter and N content were 
determined with a CNHS analysis (LECO TruSpec Elemental Determinator). CNC was 
calculated as

Table 1  Overview of the sampling sites and the collected samples during the 2017 and 2018 campaigns

In 2017, six field sites were probed in four campaigns during the growing season. In 2018, five sites were 
probed in one campaign. N north, E east, S south, W west. The wheat samples covers BBCH stages 31–39

Year Field site Cities next to 
field site

Fields Plots Campaigns Collected 
samples

Lab-
analysed 
samples

Corresponding 
image spectra 
available

2017 A S-E of Troyes 4 3 4 48 48 32
B N-E of Troyes 4 3 4 48 47 35
C N of Reims 3 3 4 36 36 25
D S of Namur 2 3 4 24 23 12
E W of Liège 2 3 4 24 21 13
F N-W of Liège 2 3 4 24 18 9
Sum 204 193 126

2018 G S of Nancy 1 4 1 4 4 3
H N of Nancy 1 3 1 3 3 3
I S-E of Hirson 2 4 1 8 7 7
J N-E of Le Havre 1 2 1 2 2 2
K N of Caen 1 4 1 4 3 3
Sum 21 19 18
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The values obtained were converted to units of (kg/ha).
Cab content was estimated indirectly using a Minolta SPAD-502. Five leaves per plot 

were sampled and on each leaf five measurements were taken, so each sampling area was 
represented by 25 measurements. The leaves were chosen randomly within the sampling 
area.

SPAD values were transferred into Cab values using the formula described for wheat 
cultivars by Uddling et al. (2007):

A Licor LAI 2000 was used to measure LAI. Five below canopy and one above canopy 
measurements were taken during overcast weather conditions or during sunshine using 
artificial shading with an umbrella covering the sensor optic from direct illumination. Dur-
ing the 2018 campaign, only biomass and CNC were measured.

Sentinel‑2 data and acquisition

Image data of S-2 were acquired with the Copernicus Open Access Hub (https:// scihub. 
coper nicus. eu/ dhus/#/ home). In spring 2017, only S-2A images were available, with a 
revisit time of 10 days. In total, for 126 plots S-2 data were available with mostly less than 
1 week time distance to the field campaigns under cloud-free conditions in 2017. In 2018, 
18 plots were covered by S-2 in this way, leading to a total of 144 plots with corresponding 
S-2 image spectra (Tables 1, 3). The pre-processing of the images included the resampling 
of all S-2 bands to 10-m pixel resolution and atmospheric correction from L1C level to 
L2A level with the Sen2Cor module of the ESA SNAP toolbox.

(1)CNC
[ g

m2

]

= nitrogen content[%] ∗ dry biomass
[ g

m2

]

(2)y = 0.0599 ∗ e0.0493∗x
[

g∕m2
]

Table 2  Dates of the field 
campaigns 2017 and 2018 and 
BBCH stages of the plants

Campaign Date Country DOY BBCH

1 12/04/2017–14/04/2017 France 102–104 29/31
21/04/2017 Belgium 111

2 25/04/2017–27/04/2017 France 115–117
05/05/2017 Belgium 125

3 09/05/2017–11/05/2017 France 129–131
19/05/2017 Belgium 139

4 22/05/2017–24/05/2017 France 142–144

02/06/2017 Belgium 153 39

2018
5 05/05/2018–11/05/2018 France 125–131 33–37

https://scihub.copernicus.eu/dhus/#/home
https://scihub.copernicus.eu/dhus/#/home
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Retrieval methods

A selection of nine VIs that were described in the literature as sensitive to N were analysed 
(Table 3): Red Edge Inflection Point (REP), Normalized Difference Red-Edge (NDRE and 
NDRE2), Modified Chlorophyll Absorption in Reflectance Index (MCARI), MERIS Ter-
restrial Chlorophyll Index (MTCI), Enhanced Vegetation Index (EVI2), Chlorophyll Index 
red-edge  (CIred-edge), Chlorophyll Index green  (CIgreen) and, because of its widespread use 
in measuring greenness, the NDVI (Normalized Difference Vegetation Index). The formu-
lation and literature sources are given in Table 4.

PLSR is an advanced multiple linear regression method described by Wold et al. (2001). 
The S-2 spectral information is used as independent variables to predict the CNC through 
a dimensionality reduction of the collinear spectral input features (10 S-2 bands) to a few 
non-correlated latent variables by maximizing the variance between the spectral informa-
tion of the S-2 bands and CNC.

PROSAIL (Jacquemoud et al., 2006) is a combination of the SAIL canopy reflectance 
model and the PROSPECT leaf optical properties model, in this study the PROSAIL 5B 

Table 3  Overview of the time 
distance between field campaigns 
and S-2 image acquisition:

S-2 distance to field campaign Number of plots acquired

 ≤ 1 week 86
 ≤ 2 weeks 46 (mostly 10 days)
 ≤ 3 weeks 12

Table 4  Vegetation indices used in this study. Within the formula the S-2 bands with their centre wave-
length are mentioned

Index Formula Source

REP
REP = 705 + 35 ∗

(

(R665+R783)
2

−R
705

)

(R740
−R

705)

Clevers and Gitelson (2012), Guyot 
et al. (1988)

NDRE
NDRE =

(R865
−R

740)
(R865

+R
740)

Fitzgerald et al. (2010), Gitelson and 
Merzlyak (1994, Sims and Gamon 
(2002)

NDRE2
NDRE2 =

(R740
−R

665)
(R740+R665)

Clevers and Gitelson (2012)

MCARI MCARI =
((

R740 − R705
)

− 0.2 ∗
(

R740 − R560
))

∗
( R740
R665

)

Clevers and Kooistra (2012), Daughtry 
et al. (2000), Haboudane et al. 
(2002)

MTCI
MTCI =

(R740
−R

705)
(R705−R740)

Dash and Curran (2004)

EVI2
EVI2 = 2.5 ∗

(

(R865
−R

665)
(R865+2.4∗R665+1)

) Jiang et al. (2008)

CI red-edge CIRedEdge =
(

R783

R705

)

− 1
Clevers and Gitelson (2012, 2013)

CI green CIgreen =
(

R783

R560

)

− 1
Clevers and Gitelson (2012, 2013)

NDVI
NDVI =

(R865
−R

665)
(R865

+R
665)

Rouse et al. (1973)
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model implemented in Matlab (http:// teled etect ion. ipgp. jussi eu. fr/ prosa il/) was deployed 
PROSPECT-5 (Feret et al., 2008; Verhoef et al., 2007) calculates the leaf’s hemispherical 
reflectance and transmittance as function of six input parameters, as described in Table 5. 
The PROSPECT calculations are inputs to the SAIL model (Jacquemoud et  al., 2009). 
SAIL is a one-dimensional turbid medium RTM, which describes the canopy as a horizon-
tally homogeneous and semi-infinite layer that consists of small vegetation elements acting 
as absorbing and scattering particles of a given geometry and density (Darvishzadeh et al., 
2011). This means that the model performs satisfactorily when simulating homogeneous 
vegetation canopies.

PROSAIL inversion strategies can be based on numerical optimization methods, hybrid 
methods including ML algorithms (e.g. artificial neural networks) or radiometric driven 
methods like look-up table (LUT) (Danner et al., 2017; Kimes et al., 2000; Verrelst et al., 
2019). A LUT stores the input variable values of the PROSAIL parametrization and the 
simulated spectra. LUTs permit a global search, which avoids local minima while show-
ing a less unexpected behaviour when the S-2 spectra is not well represented by PROSAIL 
simulations (Darvishzadeh et al., 2008). To find a solution to the inversion, the LUT was 
sorted according to a cost function (Combal et al., 2003; Verrelst et al., 2015a, 2015b; Voh-
land et al., 2010).

Most of the variable ranges, respectively fixed parameters, to generate the LUT were 
estimated using the knowledge gathered in field and laboratory work, as well as being 
based on literature and S-2 metadata (e.g. solar zenith angles). In this way, a suitable LUT 
was established, large enough to find a solution with high accuracy for the inversion prob-
lem (Combal et al., 2003; Darvishzadeh et al., 2008; Weiss et al., 2000). The leaf angles 
were simulated using the leaf inclination distribution function (LIDF). The two parameters 
LIDFa and LIDFb were determined iteratively in the forward mode of PROSAIL until the 
simulated spectra encompassed the observed range of S-2 reflectance. An adjusted spheri-
cal distribution was found to be the best distribution to generate simulations which repre-
sent best the S2 spectra of the wheat plots.

To find a solution for the inversion problem, a cost function had to be defined, which 
gave a measure for the similarity of an observed S-2 spectrum  (Robs) and a simulated spec-
trum  (Rsim) of ProSAIL. In this study, RMSE was used as cost function:

where RMSELUT ,k is the RMSE of LUT entry k, Robs,i is the reflectance of S-2 band i, Rsim,i 
is the simulated reflectance of LUT entry k at band i and n is the number of spectral bands.

The LUT was resampled to the spectral resolution of S-2 using the Spectral Response 
Functions published by ESA. S-2 band 2 (490  nm) and band 8 (842  nm) was excluded 
in the inversion, as they were not well represented in the LUT modelling. RedEdge and 
SWIR bands stabilized the inversion results, excluding them led to a decrease in the model 
accuracy.

The retrievals of LAI and Cab were achieved by searching for the position of the LUT 
entry with minimum RMSELUT and picking the corresponding input variable value of 
this simulation. In several studies, authors achieved better results by using n-best solu-
tions instead of considering the single best (e.g. Combal et al., 2003; Darvishzadeh et al., 
2011). Consequently, a stable solution for the inversion problem was established by testing 
different sizes of n. Using a selection of the 100 LUT-entries with minimum RMSELUT 
led to the most stable solutions with higher accuracy of R2 and RMSE. Averaging these 

(3)RMSELUT ,k =

�

∑n

i=1

�

Robs,i − Rsim,i

�2

n

http://teledetection.ipgp.jussieu.fr/prosail/
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corresponding 100 LAI and Cab input values gave the solution for the inversion problem, 
i.e. the retrieved variables. These retrievals represented the input parameter for the empiri-
cal models obtaining biomass and CNC (Fig. 2).

CNC retrieval models

The estimation of CNC with PROSAIL LAI and Cab retrievals requires a transfer function 
between LAI to biomass and CNC or between CCC and CNC. Hereby, the CCC is calcu-
lated by multiplying LAI with Cab.

Three different methods for estimating CNC were established using the field and labora-
tory measurements of LAI, Cab (respectively CCC), biomass and LNC:

(1) Directly link LAI and CNC (CNC-LAI)
(2) Calculate CCC (LAI * Cab) and link it to CNC (CNC-CCC)
(3) Model the relationship of LAI to dry biomass (DM) and the relationship between DM 

and CNC. (CNC-DM)

Calibration and validation schemes

The first strategy (scheme A) used the 2017 (n = 126) sampling set for the calibration of the 
PLSR and the VI-based empirical models, with the internal calibration using a leave-one 
out cross-validation (LOO-CV). Those models were validated with the independent sam-
pling set of 2018 (n = 18) and the RMSE, RRMSE and  R2 are reported.

Within the second strategy (scheme B), the 2017 and 2018 datasets were pooled to 
one dataset and randomly partitioned into 70% for calibration and 30% for validation. To 
avoid biased results due to an inconvenient sample choice of the calibration and validation 

Fig. 2  Overview of the different strategies to retrieve CNC. On the left side, the use of the field and labora-
tory data for model calibration is shown. The right side displays the application of the derived PROSAIL-
LAI/Cab retrievals as the input for the empirical models to derive CNC
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datasets, this was repeated 50 times in a bagging procedure and the mean of RMSE, 
RRMSE and  R2 of the 50 iterations were reported.

In contradistinction to the PLSR and VI-based models, the PROSAIL inversion scheme 
does not require a calibration dataset. However, the PROSAIL LUT was generated with the 
basic knowledge of the field campaigns, laboratory measurements and the S-2 ensembles 
gathered for the plots.

Empirical linear relationships were only necessary in the second step of the PROSAIL 
retrieval chain. Those empirical models were set up with the relationships between the field 
data and the laboratory data of the 2017 field campaign. The models were generated in a 
repeated tenfold cross-validation in R (R Core Team, 2021).

The comparison of the three models (PLSR, VI-based models and PROSAIL) was done 
on the CNC retrievals of each model group using the same sampling sets used for the cali-
bration and validation of the PLSR and the VI models. In the following section, the PRO-
SAIL results therefore also refer to the terms “calibration” and “validation” dataset. Nev-
ertheless, PROSAIL was not calibrated, rather model parameters were chosen from values 
reported in literature for them to provide a good representation of the variability of the 
wheat properties observed in the 2017 field campaigns. The validity of this parametrization 
was then checked against the 2017 field measurements.

Model accuracy estimation

The R-squared, RMSE and relative RMSE (RRMSE) express the model accuracy for the 
retrievals of each model group:

The RRMSE refers to the mean ( Ymean ) of the observed field and laboratory measure-
ments. The mean of CNC was calculated from the pooled 2017/2018 dataset, while the 
mean for LAI, Cab and CCC was calculated from the 2017 sampling set:

Results

Descriptive statistics of field and laboratory data

Descriptive statistics of the measured variables separated by year (Tables 6, 7) reveal that 
the 2018 samples lie well within the ranges of the 2017 samples. The 2017 data, since it 
was collected over four campaigns during the growing season, have a larger value range 
and larger standard deviations and variation coefficients than the 2018 samples that were 
collected during a single growth stage.

The correlation matrix (Table 8) shows correlations higher than 0.8 between LAI, fresh 
biomass (FM), dry biomass (DM) and CNC. The correlation of 0.81 between remote 
sensing-based LAI and CNC may allow for an empirical estimation of CNC. LNC is not 

(4)RMSE =

�

∑n

i=1

�

Yobs − Ypred
�2

n

(5)RRMSE(%) =
RMSE

Ymean
× 100
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correlated to Cab (r = − 0.08), so the retrieval of CNC based on an empirical relationship 
between the two variables was not pursued in this study.

Figure  3 (left) illustrates the distribution of the LAI measurements for all field cam-
paigns in Belgium and France. In general, LAI and vegetation cover at the Belgian and 
French sites have a comparable value range, except for the Belgian sites during the first 
campaign, where LAI observations were lower.

In general, CNC (Fig. 3, right) values followed the observed LAI trends and increased 
during the growing season. However, there were large differences in the absolute CNC lev-
els between Belgium and France. In Belgium the first field campaign, CNC median values 

Table 6  Descriptive statistics of field and laboratory measurements for 2017 (n = 193)

LAI Leaf area index, Cab Chlorophyll content, FM fresh matter, DM dry Matter, CNC canopy nitrogen con-
tent, LNC leaf nitrogen concentration (related to dry matter)

Variable Unit Min Max Mean Median Range SD Var coef (%)

LAI – 0.83 6.33 3.59 3.58 5.5 1.11 30.8
Cab g/m2 0.37 1.16 0.70 0.69 0.79 0.13 19.0
FM kg/ha 4122 62,188 28,645 26,750 58,066 12,710 44.4
DM kg/ha 922 14,420 5801 5321 13,498 2825 48.7
LNC % 1.26 4.8 2.61 2.46 3.54 0.8 30.8
CNC kg/ha 37.19 269.83 135.7 133.4 232.6 44.31 32.7
CCC g/m2 0.51 5.39 2.57 2.58 4.88 1.02 39.8

Table 7  Descriptive statistics of field and laboratory measurements for 2018: n = 18

During the 2018 campaign, no LAI and SPAD/Cab measurements were taken

Variable Unit Min Max Mean Median Range Stdev Var. Coef. (%)

LAI – – – – – – – –
Cab g/m2 – – – – – – –
FM kg/ha 15,060 50,330 32,832 33,000 35,270 10,308 31.4
DM kg/ha 2444 10,534 6188 5644 8090 2223 35.9
LNC % 1.88 3.24 2.63 2.78 1.36 0.43 16.3
CNC kg/ha 77.63 213.02 155.64 162.47 135.4 37.74 24.3
CCC g/m2 – – – – – – –

Table 8  Correlation matrix of 
the 2017 samples (n = 181)

High correlation > 0.8 are marked italic

R (2017) LAI Cab FM DM LNC CNC CCC 

LAI 1.00
Cab 0.31 1.00
FM 0.86 0.34 1.00
DM 0.73 0.38 0.92 1.00
LNC − 0.32 − 0.08 − 0.58 − 0.70 1.00
CNC 0.81 0.44 0.84 0.81 − 0.23 1.00
CCC 0.90 0.68 0.81 0.74 − 0.30 0.81 1.00
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started from a lower level of around 55 kg/ha and increased to about 185 kg/ha, whereas 
the sites in France started at CNC median values of about 120 kg/ha and reached values of 
175 kg/ha in the last campaign. The stagnation of CNC between the second and third cam-
paign is again associated with the drought.

Comparison of CNC retrieval methods

Figure 4 displays the detailed 2017 and 2018 results for the PLSR and LUT inversion mod-
els. PLSR in the 2017 data achieved better CNC retrievals (R2 = 0.52, RMSE: 27.9  kg/
ha) compared to LUT inversion, but in the independent validation of 2018 data, PROSAIL 
LUT inversion performed better than PLSR. Values of R2 and RMSE for LUT inversion 
remained almost unchanged, but PLSR results (R2 and RMSE) decreased substantially. 
The 2017 dataset showed two samples with very high CNC values of more than 240 kg/ha, 
but neither a statistical outlier test nor field or laboratory protocols indicated them as outli-
ers and therefore both samples remained in the analysis. Nevertheless, the model accuracy 
in terms of R2 and RMSE is labelled both with and without those samples (Fig. 4).

All VIs showed a large decrease in accuracy, when models were calibrated based on 
2017 data and applied to 2018 data (Table 9). Among the VIs, REP (similar results for 
NDRE) performed well on the 2017 data (R2 = 0.49, RMSE = 30.5 kg/ha), but showed a 
decrease on the 2018 data (R2 = 0.03, RMSE = 49.0 kg/ha). The others performed similarly 
or worse.

The weaker scheme B in general resulted in lower calibration, but higher validation 
accuracies compared to scheme A. In scheme B, differences between methods were 
less pronounced. There is in general a smaller drop in accuracy between calibration 
(RRMSE = 22–30%) and validation (RRMSE = 24–32%). Again, the smallest drop 

Fig. 3  Boxplot of the LAI and CNC development throughout the different field campaigns in Belgium and 
France 2017 (n = 181)
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between calibration and validation data was demonstrated by PROSAIL LUT inversion 
(accuracy increased from 25.7 to 23.6%).

Obtaining CNC from PROSAIL variables

Three strategies were identified to derive CNC from PROSAIL-retrieved variables (see 
Fig. 2), where each strategy was intended to examine relations between the remotely 
sensed LAI or CCC with field measured variables (Table 10). The three retrieval paths 
were also tested with the LAI product of the SNAP biophysical processor and the LAI 
product provided by the Sentinel-2 Value Adder of BOKU (Vuolo et al., 2016, https:// 
s2. boku. eodc. eu/), hereafter referred to as BOKU-LAI. For all products, the retrieval 
path through dry biomass as an intermediate variable worked most reliably compared 
to the other paths (Table 10).

Figure  5 displays the retrieval path using PROSAIL retrieved LAI for estimating 
CCC and afterwards estimating the CNC with the relationship deducted from the field 
and laboratory data. Although the estimation of CCC was of medium accuracy, CNC 
was estimated with a RMSE of 35.4 kg/ha (24.8%). LAI and CCC reveals at lower val-
ues an underestimation, while on higher values a larger scattering occurs. In contrast 
the behaviour of the CNC retrieval shows a scattering along the 1:1 line neither with 
an under- nor an overestimation in the observed value range.

Fig. 4  Results of the PROSAIL-based CNC retrieval and the PLSR estimation of CNC for the 2017 and 
2018 samples. The values in blue are the results excluding the two high CNC samples

https://s2.boku.eodc.eu/
https://s2.boku.eodc.eu/
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Monitoring of wheat CNC

The CNC retrievals based on a PROSAIL LUT inversion or on a PLSR seems suitable 
to derive CNC status on winter wheat fields during the critical growth stages (BBCH 
30–39) to support farmers with their N treatment decision. The map (Fig.  6) shows 
winter wheat fields in France during the critical vegetation stages in 2017 and the 
development of CNC from April to begin of June 2017. Mostly an increase of CNC 
can be depicted until end of May, the June image also shows already a reduction of 
CNC. The fourth date (12. June 2017) is already outside of the investigated period 
of the vegetation development and so the model performance should be interpreted 
carefully.

Table 10  Results for the estimation of the retrieval of CNC using the BOKU/SNAP and PROSAIL LAI 
product

Chlorophyll (Cab or CCC) is not retrieved by BOKU (https:// ivfl- arc. boku. ac. at/ eodc/). The SNAP biophys-
ical processor offered a retrieval of the LAI and CCC and the PROSAIL inversion scheme retrieved LAI 
and Cab, both multiplied result in the CCC. The best CNC retrieval for all three LAI products was achieved 
with the retrieval path using dry matter as an intermediate step

CNC (kg/ha) retrieval

LAI (-) CCC (g/m2) LAI CCC DM

2017
BOKU

R2 0.63 – 0.48 – 0.48
RMSE 1.474 – 50.83 – 38.68
RRMSE 42% – 37% – 28%

2017
SNAP

R2 0.66 0.40 0.47 0.45 0.47
RMSE 1.465 1.63 51.56 55.01 39.23
RRMSE 41% 62% 37% 40% 28%

2017 PROSAIL LUT 
inversion

R2 0.55 0.37 0.30 0.41 0.39
RMSE 0.901 0.96 36.20 35.40 33.93
RRMSE 25% 36% 26% 25% 24%

Fig. 5  CNC retrieval path using CCC as intermediate product to estimate CNC on wheat fields 2017

https://ivfl-arc.boku.ac.at/eodc/
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Discussion

Model validation and transferability

PROSAIL LUT inversion-based CNC retrievals were successfully used to map the actual 
N status in agricultural fields. The prediction showed a stable error range of 34–37 kg N/
ha utilizing different Cal / Val strategies. Delloye et al. (2018) also conducted field work on 
conventional fields with common management practices and used a PROSAIL LUT inver-
sion approach with an artificial neural network on a multi-year and multi-cultivar model. 
They achieved a comparable prediction error of 32.4 kg/ha based on S-2 data in the period 
of the third N-supply in May.

Regarding transferability in space and time, the PROSAIL LUT inversion scheme 
achieved better results than empirical VI models and the multivariate PLSR. However, the 
PLSR achieved better results (RMSE = 31–34 kg N/ha) on validation scheme B than PRO-
SAIL LUT inversion (RMSE = 34–37 kg N/ha) and PLSR could be argued to be the more 
suitable approach for CNC prediction in the regions from which the calibration samples 
were taken. In contrast, VIs showed very poor results applying the independent valida-
tion (around 50 kg N /ha) and are therefore not suitable for practical application in preci-
sion agriculture where transferability is needed. While PROSAIL and PLSR use the entire 
information of the spectra, VIs are limited to a few spectral bands. Nevertheless, VIs are 
easy to use and the results can be achieved quickly, but they reduce the spectral information 
in such a way that it can also result in a loss of prediction accuracy.

Compared to the achievement of PROSAIL LUT inversion, VIs could not show bet-
ter results in scheme B. In general, the better results of the validation scheme B showed 
the influence of the sample population on the accuracy of the empirical (VI) models and 
the multivariate PLSR. In scheme A, the validation data was not in the parent popula-
tion of the calibration, while with scheme B, the validation data belongs to the same 

Fig. 6  Application of the PLSR—CNC-DM model for different time steps on wheat fields in 2017. For the 
June images, cloud influences were masked out
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population, due to the bagging procedure with randomly generated calibration and 
validation data sets. Therefore, the 2018 samples were part of the parent population in 
scheme B. That prediction accuracy is strongly dependent on the validation approach 
confirmed by other studies: For instance, Jay et al. (2017) observed that VIs performed 
better than a PROSAIL inversion scheme as long as a LOO-CV was applied; changing 
to an independent calibration and validation data set, the PROSAIL inversion was closer 
to or better than the VI models estimating crop attributes in sugar beet crops (e.g. LAI, 
Cab and CNC). It is also important to note that the validation dataset in scheme B was 
larger (n = 43) than the independent one of scheme A (n = 18). The size of the validation 
dataset has an influence on the prediction accuracy, as with larger datasets the influence 
of outliers, respectively uncertainties within the radiometric correction of the spectral 
reflectance, will be diminished.

Some studies stated that CNC with empirical VI models would achieve better results in 
the range of 8–15 kg N/ha, however, they used ground-based measurements from hyper-
spectral sensors (e.g. Hansen & Schjoerring, 2003; Thorp et al., 2017). The scale differ-
ences between field and satellite measurements are attributed to this offset. For instance, 
Li et  al. (2014) simulated S-2 and Venµs data and calculated 3 band indices, reaching 
27.8 kg N/ha RMSE for CNC estimation with simulated S-2 data, which is in a comparable 
range to the results of this study.

Another limitation is the non-uniformity of N distribution in the vertical structure of 
a plant, as pointed out by Li et al. (2013). S-2 or any other optical EO system is mainly 
observing the upper leaves which could limit the accuracy of the CNC retrievals espe-
cially at later growing stages. The translocation of after maternity stage is also visualised in 
Fig. 6 where CNC is partly decreasing for the maps of June.

In the study of Magney et al. (2017), an accuracy of around 16 kg N/ha was reported 
with NDRE as the best performing index using RapidEye data. The study was conducted 
across a three-year range, on different farms and growing conditions. All farms were con-
ventionally managed with the common practices of the region. However, the study is not 
directly comparable with the results of this research since the transferability from one year 
to another was not tested and the methodology is slightly different due to a comparison 
with CNC at harvest time and not at day of observation.

Furthermore, a slight decrease of LAI between the second and the third field campaign 
must be considered. It occurred during a drought event on the French sites in April 2017, 
resulting in decreased biomass production. Presumably, in this situation, the true LAI had 
not decreased, but a reduction of the hydrostatic pressure in the leaves caused a change in 
leaf angles that affected the optical LAI measurements. In this case, especially the PRO-
SAIL model could simulate a lower CNC than one or 2 weeks before.

Reasons for the moderate retrieval accuracies are attributed to the spatial scale differ-
ence between the pixel size of S-2 with at least 10  m and the sampled area during the 
field campaigns (40 × 40 cm). Although homogeneous areas were sampled, the variability 
of the wheat biomass and N could not be completely covered. Notwithstanding, the high-
est influence for data-driven influences on the retrieval accuracy is attributed to the time 
lag between the field campaigns and the satellite image acquisition. The maximum time 
lag for a few samples (n = 12) was 3 weeks between satellite acquisition and field work 
(see Table 3), although most acquisitions were less than 1 week apart. Depending on the 
development of the plants and the length of time lag uncertainties to the model accuracy 
can be introduced. However, this problem is already reduced nowadays by the launch of the 
second Sentinel-2B sensor and the resulting higher observation frequency. Still, in Central 
Europe a certain time lag due to cloudy data often needs to be accepted.
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Retrieval strategies

The steadiest retrieval strategy was that using dry biomass as an intermediate step. This 
was observed for all tested input LAI products (PROSAIL-LAI, SNAP-LAI, BOKU-
LAI). The correlation between LNC and biomass was high, which could explain this 
model behaviour. It is known that the N application on high levels like it is the case for 
commercial fields, leads to an increase in biomass production. Thus, it is reasonable that 
the consideration of biomass for the CNC estimation increases the prediction accuracy.

Reasonable retrievals with a similar accuracy as the biomass-driven models would 
also be expected from the direct estimation with CCC, as the Cab is expected to show 
a high correlation with the N content. However, in a non-shortage N situation, CCC 
is probably saturated and then biomass is the better estimator. Delloye et  al. (2018) 
pointed out that the interpolation of Cab in time is challenging and may lead to sig-
nificant uncertainties. Another reason for the weak relationships between CCC and 
CNC can be the way that the CNC was measured: The entire above ground canopy was 
taken and analysed for CNC of the entire wheat plant, while for instance Houlès et al. 
(2007) reported a strong relationship between leaf chlorophyll content (LCC) and leaf 
N content. However, the correlation in between Cab and LNC was practically absent 
(-0.08) in this study. LNC showed moreover moderate negative correlations with FM 
and DM, indicating a dilution effect (Houlès et al., 2007; Justes et al., 1994) where the 
concentration of N decreases with increasing biomass during plant growth. The strong 
positive correlation between CNC and DM or FM and the weak negative correlation 
between CNC and LNC shows that CNC is mostly driven by biomass and not by LNC. 
The product of LAI and Cab to CCC is more reliable than the single estimation of LAI 
and Cab itself (Weiss et al., 2000). The Cab/SPAD values measured were of a compara-
tively high level on all sites. Other authors revealed a larger range of Cab / SPAD values 
(Baret et al., 2007; Uddling et al., 2007; Zhu et al., 2012) mentioning that plant stress 
caused by N shortages could hamper the Cab production and lead to a lower leaf Cab 
content than in a well-supplied N system.

Conclusions

This study analysed the predictive capacity of three widespread methods in estimating 
LAI and CNC with two different validation schemes. The two main conclusions drawn 
from the results are:

1. The PROSAIL retrieval scheme was able to predict CNC (on dry biomass) with an 
RMSE of around 33.9 kg/ha CNC on the 2017 dataset and 36.8 kg/ha CNC on the 
2018 dataset. When using scheme A, PLSR shows a calibration error (2017 dataset) of 
27.9 kg N/ha and a validation error of 38.4 kg N/ha (2018 dataset), and the VI-based 
CNC retrievals also show good results between the PLSR and PROSAIL results, while 
the validation error with scheme A reached around 50 kg/ha or more for all tested VIs. 
This shows that the PROSAIL inversion scheme was more stable than the PLSR and the 
VI methods when applied to new data. Using scheme B, PLSR performed similarly to 
the PROSAIL inversion scheme, while the VIs also showed slightly weaker results here 
in the validation than in both other methods. For unknown data, it seems that PROSAIL 
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retrievals are more predictable concerning the error margins than purely statistics-based 
models.

2. The modelling path using dry biomass as step stone for estimating CNC performed best 
and was most reliable in this study. Using the PROSAIL-LAI, it performed with less 
than 35–40 kg N/ha RMSE. The retrieval method based on fresh biomass or CCC was, 
concerning accuracy, close behind. Nevertheless, both methods were not as steady as the 
dry biomass to CNC model. The same behaviour was observed by running the empirical 
retrieval chains using the LAI product of BOKU and from the SNAP biophysical pro-
cessor (Table 10). Due to the weaker LAI estimation of BOKU and SNAP on the wheat 
samples, the other modelling chains led to much higher RMSE than the PROSAIL-based 
estimates (> 50 kg N/ha).

All methods presented are in principle able to support farmers with knowledge of the 
crop state and can therefore allow them to adapt their fertilization management accord-
ing to the growing conditions. Despite the error margin being around 35 kg N/ha and 
maybe still too high, farmers are experienced on their own field sites (soil, weather, 
potential compaction layers) and can use this additional spatial information (Fig. 6) to 
make better decisions on fertilizer applications.

An important limitation of this study was the temporal gap between image acquisi-
tion and reference data collection which was partly related to the availability of only one 
S-2 satellite in orbit. With the two-satellite constellation of S-2, a denser time-series 
of image data can be expected. A combination of S-2 and Landsat-8/-9 images could 
provide the temporal image density required for an operational service, e.g. bi-weekly 
cloud-free images.

Compared to multi-spectral systems, future candidate operational hyperspectral satel-
lite missions (CHIME, SBG) have a higher potential for accurate N retrieval. They will 
provide a better spectral resolution in absorption features of N-bearing leaf constituents 
in the visible to red edge (chlorophylls) and particularly in the SWIR domain (proteins).
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