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Abstract
Under toxic aluminum (Al) levels in the soil, wheat (Triticum aestivum L.) suffers stress 
and plant growth is affected. A method for diagnosis of plants is proposed that includes the 
following as a strategy: to analyze total Al in the soil, employ satellite radar imagery and 
calculate a vegetation index. The objective of this research, conducted at the field scale, 
was to explore how radar backscattering coefficients from a winter wheat canopy, com-
bined with the normalized difference vegetation index (NDVI) and geographic information 
system (GIS) technology, can be used as a mapping tool for the variability of Al-stressed 
canopies. As a result, an analysis of covariance showed significant differences, and the 
lowest plant height was obtained at a high level of soil Al, as well as the minimum grain 
weight and magnesium content. It was found that a simple model could be used to estimate 
plant height from the backscattering coefficient of vertical transmit-vertical receive polari-
zation (σ°VV), with a strong correlation (r − 0.84). In turn, a third-order polynomial regres-
sion model  (R2 0.70) was proposed to estimate the NDVI from σ°VV. This model provided 
a good estimate of the NDVI at the stem elongation stage of growth (50 days after sow-
ing). Detected NDVI patterns were associated with variation in canopy stress depending 
on polarimetric information, which, in turn, was related to soil Al levels. Thus, the maps 
derived from the model can monitor spatial variability, where NDVI values < 0.68 indicate 
stressed areas. This study provides guidance for in-season stress spatial variability caused 
by Al.
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Introduction

Cereals are by far the world’s main food source, both for direct and indirect human con-
sumption. Wheat (Triticum aestivum L.) is the most widely consumed cereal in the world, 
accounting for approximately 31% of the total. In the European Union, according to area 
and production, Spain ranks sixth (after France, Germany, Poland, the United Kingdom 
and Italy) producing 6.3 Mt from around 1.9 Mha, with approximately 6% of this extension 
land classified as having acidic soils. Acidic soils are widespread worldwide; they cover 
approximately 50% of potential arable land and contain aluminum (Al).

The presence of high Al levels in the soil is associated with mechanisms that determine 
root growth. Thus, Al induces alterations in the molecules of the genetic material, which 
has consequences in mitosis, causing modifications in radicle elongation and changes in 
the external appearance of roots (they become thicker) and considerably reducing the con-
tact area of the epidermis with the soil solution (Xue et al., 2003). Plant roots are particu-
larly susceptible to Al stress.

A relationship has also been found between the soil Al concentration and the pheno-
logical stage at which stress occurs. It is reported to hinder root growth in the first 10 days 
following the coleoptile emergence phase, varying in intensity according to the degree of 
tolerance of the cultivar, which is a dominant hereditary characteristic (Aniol, 1990). It 
also interferes with the absorption, transport and use of essential elements such as phos-
phorus (P), potassium (K), calcium (Ca) and magnesium (Mg), as well as in the absorp-
tion of water (Lofton et al., 2010). During leaf development, it has been observed that the 
Al concentration increases in plant tissues, with damage occurring in the mitochondrial 
membrane of the chloroplast, and the chlorophyll content in leaves is reduced (Meriño-
Gergichevich et al., 2010). At maturity, there is a reduction in yield components (number 
of grains per spike and thousand-grain weight).

To monitor large areas of soil and identify their limitations, it is particularly conveni-
ent to use data acquisition techniques by remote sensing (RS), in which a sensor is used 
for the electromagnetic radiation measurement emitted, which is reflected by objects. Sen-
sors are classified into two types of technologies: passive (optical images) and active (radar 
images). Using this approach, satellite imagery in RS studies is limited by various factors: 
optical image acquisition is only possible during the day (source of emission, the sun), but 
clouds and fog can affect the reflectance captured by the sensor. However, radar images 
have the advantage of operating at night (own emission source) and under conditions of 
cloudiness, fog and rain.

A plant stressed modifies in multiple ways the energy flow through the leaf, with the 
result that the absorption, reflectance and transmittance properties of leaves are changed 
(Lichtenthaler, 1996). Hence, vegetation indices can be estimated to monitor crop stress, 
calculated from reflectivity values at different wavelengths. The normalized difference veg-
etation index (NDVI) is the most commonly used index and is calculated from the differ-
ence of two spectral bands (red and near infrared), with values between − 1 and 1. Further-
more, Veloso et  al. (2017) compared C-band synthetic aperture radar (SAR) image data 
correlated to NDVI estimations from optical data and demonstrated that useful informa-
tion on crop development was obtained. This insight has also been corroborated by recent 
research (e.g., Filgueiras et al., 2019).

Optical RS satellites have been widely used to map the spatial distribution of some soil 
properties, such as pH, electrical conductivity or cation exchange capacity. However, this 
technology has not been used to study spatial distribution of soil Al. Recently, a model was 
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proposed on the basis that the soil Al content could be estimated and mapped using spec-
tral bands from satellite imagery (Hernández & Francisco-Bethencourt, 2017). Addition-
ally, optical RS techniques have been used to study changes in spectral reflectance patterns 
as a result of water deficit, nutrient deficiency and crop diseases (Campos et  al., 2018). 
Compared to optical RS, radar RS techniques focus principally on monitoring soil mois-
ture, crop classification, crop growth and its water content. To date, the radar RS technique 
has not been applied in research on plant stressed by Al toxicity.

Furthermore, the success of RS in agriculture depends strongly upon an efficient and 
accurate method for determining within-field variation in soil properties. It has been 
proven that RS is a tool necessary for multiple studies and has the advantages of low cost, 
rapidity and relatively high spatial resolution; e.g., soil maps that can enable lime applica-
tion in specific sites according to the spatial variability of acidity are needed (Adamchuk 
et al., 2004; Aggelopoulou et al., 2011). In fact, these soils will require applications of lime 
periodically to neutralize acidity. Additionally, an appropriate use of calcium will displace 
 Al3+, which causes a decline in crop yields. The literature review shows that a variable 
lime application rate can lead to improved soil acidity at a low cost (e.g., Holland et al., 
2019).

The current study focuses on the potential of radar images for monitoring wheat cultiva-
tion areas with high cloud coverage. The within-field variability of soil Al and its effects 
were evaluated. For this, SAR backscatter and NDVI were used, as also employed by other 
researchers (Bousbih et al., 2017; Filgueiras et al., 2019). The overall goal was to develop 
an alternative method to estimate and map the canopy of wheat plants stressed by soil Al. 
The specific objectives were to (i) evaluate the relationship between phenological wheat 
development and NDVI and how it is affected by soil Al levels, (ii) investigate the cor-
relation of reflectance and backscatter values with NDVI and plant height in these soil 
conditions, (iii) develop a model for the estimation of NDVI through polarimetric data, 
(iv) determine whether spatial variability in canopy backscatter follows a pattern of stress-
associated changes by soil Al, and (v) analyze the effect of three levels of soil Al on plant 
height, yield components and grain quality.

Materials and methods

Site description and soil sampling criteria

Tenerife (Spain) is an island in the Canary archipelago, situated in the Eastern Central 
Atlantic Ocean (27° 60′ to 28° 35′ lat. N; 16° 05′ to 16° 55′ long. W), with a volcanic ori-
gin. The study was conducted at Icod el Alto (municipality Los Realejos) over a portion 
of territory at an altitude between 520 and 1000 masl and comprised an area of 556 ha 
(Fig. 1). This area, typical of agricultural land use in winter for cereal production, is char-
acterized by a rainfed production system and local variety cultivation. It has a very stable 
climate throughout the year because it is under the direct influence of the trade wind belt, 
with an annual precipitation of approximately 662 mm and an average annual temperature 
of 15.1 °C.

In the study area, the soils are classified in the alfisols order (USDA soil taxonomy) and 
ustic moisture regime; moreover, acidification together with the mineral transformation of 
allophane and imogolite to crystalline phyllosilicates and gibbsite would lead to the pre-
dominance of Al, according to Tejedor et al. (2013).
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Previous field work was carried out, consisting of visiting agriculture farms sown 
with wheat in the study area and identifying each farm by taking a point using a hand-
held GNSS device (Magellan™ Meridian, San Dimas, USA) with an accuracy < 8  m. 
The boundary data of each farm were obtained from the geographic information system 
of agricultural parcels (SIGPAC) of the Spain Ministry of Agriculture, Fisheries and 
Food (URL: http:// wms. mapama. es/ wms/ wms. aspx). A set of 207 polygons was manu-
ally drawn by employing GIS tools and mapped using QGIS software (QGIS Develop-
ment Team, 2018). These polygons were small, with an average surface area of 1314.27 
 m2 and a total of 27.21 ha wheat (Fig. 1b). To determine the spatial distribution of soil 
Al and its effect on wheat development, sampling plots were selected from these poly-
gons on 30 farms according to the following procedure:

First, the information from total Al levels in the soils from the mapping that was 
obtained in a previous study made by Hernández and Francisco-Bethencourt (2017) was 
employed. The mapped polygons contained topsoil (200 mm) data categorized into three 
classes < 3, 3–4 and > 4 g  kg−1. These classes are defined as qualitatively homogeneous 
soil units (Hengl et al., 2003). It is considered that entities conform to the same order 
(alfisols), a uniform climatic environment (nearest weather station, REALE to < 2.5 km) 
and have average altitude variation less than 110 masl (with respect to the weather sta-
tion). Second, data from soils and farm polygons were overlaid and then reclassified 
based on total Al using QGIS. Three Al units were delimited (one per class), hereafter 
referred to as Al levels. Third, a simple stratified sample was used to select farm poly-
gons randomly until 10 farms were obtained from each Al level, for a total of 30 farms. 

Fig. 1  Study area: Location of Icod el Alto in Tenerife (a), Farm polygons with winter wheat and a box 
showing a farm with point distribution over a sampling plot for field observations (b), and completely ran-
dom distribution of sampling plots with the location of the weather station REALE (c)

http://wms.mapama.es/wms/wms.aspx
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Each polygon contained one sampling plot. One of these polygons was extracted ran-
domly again at each Al level and was named the reference farm (Table 1, Fig. 1c).

The sampling plots were larger than 30 m × 30 m (in accordance with the pixel resolu-
tion of Landsat-8 images) with a set of five points in each sampling area and approximately 
located in the center of the farm polygon (Fig.  1b). In this study, sampling was carried 
out prior to sowing only in reference farms (5, 19 and 25), taking approximately 1 kg of 
soil from the composite sample for laboratory analysis after plants and debris covering the 
soil surface were removed. The composite sample from topsoil (0–200 mm) was collected 
using a portable sampler (Eijkelkamp™, Morrisville, USA), taking subsamples and mixing 
collections from five points (corners and center) of each sampling plot. The location of the 
center point was recorded.

Soil analysis

Soil samples were air-dried and passed through a 2 mm mesh sieve. The pH was meas-
ured in a soil–water mixture (ratio 1:2.5), the available cations of Ca, K, Mg and Na were 
extracted with a 1 M solution of ammonium acetate, while available P was extracted by 
the Olsen method. The electrical conductivity (EC) and sulfur (S) from a saturated paste 
extract and the cation exchange capacity (CEC) were determined by extraction with 
ammonium acetate at pH 7. Other total concentrations of Al, B, Cu, Fe, Mn and Zn were 
extracted with ethylenediaminetetraacetic acid (EDTA), and total N was determined by 
the Kjeldahl method. These methods were applied as described by Olsen et al. (1954) and 
MAPA (1994).

Monitoring crop phenology

The canopy reflectance pattern is a relationship of reflectance/absorption of specific wave-
lengths, which is influenced by specific plant traits and has been used for the assessment 
of biomass and environmental stresses using a vegetation index, e.g., NDVI. In fact, Cam-
pos et al. (2018) employed a model based on the relationship of NDVI and biomass. They 
considered that biomass production is conditioned by stress factors. Additionally, they sug-
gested that under stress conditions, the variability affects crop growth at the field scale. To 
estimate the biomass production of wheat, in their model, knowledge of growing degree-
days (GDD) is required. In this study, GDD was used to evaluate the climatic variation in 
wheat development due to the different sowing dates that farmers in the study area used. 
For this purpose, it was calculated according to McMaster and Wilhelm (1997).

Table 1  Selected sampling plots, mean altitude, Al levels, and reference farms

NID identification number of sampling plot, value ± standard deviation
ªReference farm

Al (< 3 g  kg−1) Al (3–4 g  kg−1) Al (> 4 g  kg−1)

NID Altitude (masl) NID Altitude (masl) NID Altitude (masl)

1 to 10 828 ± 101.8 11 to 20 760 ± 117.2 21 to 30 824 ± 141
5a 732 19a 750 25a 764
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The phenological development of wheat was visually observed in each growth stage 
based on the BBCH (Biologische Bundesantalt, Bundessortenamt and Chemische Indus-
trie, Germany) scale proposed by Lancashire et al. (1991). Five main stages were covered: 
stem elongation, booting, flowering, milk grain and ripening (see Supplementary material 
S8). This was complemented by calculating NDVI using multi-temporal optical images 
from Landsat-8 and applying:

where NIR and R indicate the near-infrared B5 and red B4 spectral bands, respectively 
(see Supplementary material S1).

The sampling plots were monitored at least once in the main phenological stages using 
time series of radar images from Sentinel-1. However, the relationship between backscatter 
signal radar and NDVI values from optical images was assessed only at the reference farms 
(5, 19 and 25) to obtain a model.

Remote sensing data

Landsat‑8/OLI optical images preprocessing

Georeferenced multispectral images captured by the operational land imager sensor (OLI) 
of the Landsat-8 (L8) satellite were used, which are freely downloadable (Table 2). They 
were acquired from the United States Geological Survey (USGS) server through the Earth-
explorer (https:// earth explo rer. usgs. gov/). The L8/OLI images have 9 spectral bands, but 
for this study, only 7 bands were considered, with a spatial resolution of 30 m (see Supple-
mentary material S1). The temporal resolution was 16 days for all of these.

Satellite optical images were acquired during the 2015 and 2017 crop growing sea-
sons. There were 13 images in 2015, where the cloudiness affecting 10 of them was high 
(> 70%), rendering them unusable, while it was low in the remaining 3 (< 5%). Thus, 
to complete the key dates of phenological development, the available images with low 
cloud cover in the next season were considered valid. Crop rotation was practiced by 
the farmers in the sampling plots the following year. For this reason, the nearest was 
the 2017 season, and 4 images were acquired with less than 5% cloud cover (Table 2). 
This decision was made because, in the study area, the sowing dates varied little when 

(1)NDVI = (NIR − R)∕(NIR + R)

Table 2  Main characteristics of 
Landsat-8/OLI images used in 
this study

DOY day of year (Julian dates), UTC  coordinated universal time, Date 
mm/dd/yyyy

Acquisition date UTC hour DOY Path/Row Sun eleva-
tion degree 
(°)

03/11/2015 11:35:44 70 207/40 49.5
04/01/2017 11:35:41 91 207/40 57.2
04/17/2017 11:35:32 107 207/40 62.2
05/03/2017 11:35:23 123 207/40 66.1
06/20/2017 11:35:50 171 207/40 68.8
07/01/2015 11:35:30 182 207/40 68.2
07/17/2015 11:35:40 198 207/40 66.9

https://earthexplorer.usgs.gov/
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comparing wheat cropping seasons, the crop management practices were the same, and 
the farmer was not in the habit of successfully neutralizing Al.

In L8 imagery, radiometric, atmospheric, topographical and emissivity corrections 
were made. For this purpose, the iCOR plugin was installed in the sentinel applica-
tion platform (SNAP) software (De Keukelaere et  al., 2018). The plugin (https:// blog. 
vito. be/ remot esens ing/ icor_ avail able) and software (https:// step. esa. int/ main/ downl oad/ 
snap- downl oad) can be freely downloaded. After using the plugin, corrected images 
were obtained in UTM/WGS84 projection with bottom of the atmosphere (BOA) reflec-
tance values.

Sentinel‑1/SAR‑C radar images preprocessing

Sentinel-1 (A/B) provides C-band radar images, single polarization (VV or VH) and 
interferometric wide-swath (IW) mode. The time series imagery of Sentinel-1A dur-
ing the 2015 crop growing season was downloaded free from the ESA-Copernicus open 
access hub (https:// scihub. coper nicus. eu/ dhus/#/ home). These had a spatial resolution 
of 5 × 20 m and temporal resolution of 12 days, but currently, the repeat cycle is 3 days 
in the study area. All images were taken at level 1 with the high resolution and ground 
range detected (GRD) product type (Table 3).

The Sentinel-1Toolbox in SNAP was utilized to preprocess the SAR images, so the 
process went through the following stages: orbit calibration, thermal noise calibra-
tion, radiometric calibration, speckle filtering and geometric correction (Bousbih et al., 
2017). The values obtained were the backscattering coefficient (σ°), and these were con-
verted to decibels (dB) using:

In the speckle filtering stage, the gamma map 3 × 3 option was used, selecting the 
range Doppler terrain correction option in the geometric correction based on an external 
digital elevation model (DEM) of Tenerife Island, which was obtained from the Spain 
National Geographic Institute (IGN) for free download (http:// centr odede scarg as. cnig. 
es/ Centr oDesc argas/ index. jsp). It is an image in raster format that presents a resolution 
of 5 m, which was resampled to 20 m by the bilinear interpolation method using QGIS.

(2)�
◦ (dB) = 10log10(�

◦)

Table 3  Main features of the Sentinel-1A/SAR-C images used in this study

DOY day of year (Julian dates), UTC  coordinated universal time, A ascending, D descending, Date mm/dd/
yyyy

Acquisition date UTC hour DOY Product Mode Polarization Incidenceangle 
degree (°)

Orbit

03/09/2015 19:05:19 68 GRD IW VV/VH 31.9 A
04/02/2015 19:05:19 92 GRD IW VV/VH 31.9 A
04/14/2015 19:05:19 104 GRD IW VV/VH 32.0 A
05/04/2015 07:02:34 124 GRD IW VV/VH 41.9 D
06/25/2015 19:05:24 176 GRD IW VV/VH 32.0 A
07/03/2015 07:02:37 184 GRD IW VV/VH 41.9 D
07/15/2015 07:02:39 196 GRD IW VV/VH 41.9 D

https://blog.vito.be/remotesensing/icor_available
https://blog.vito.be/remotesensing/icor_available
https://step.esa.int/main/download/snap-download
https://step.esa.int/main/download/snap-download
https://scihub.copernicus.eu/dhus/#/home
http://centrodedescargas.cnig.es/CentroDescargas/index.jsp
http://centrodedescargas.cnig.es/CentroDescargas/index.jsp
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Test design and data recorded

A field campaign was conducted in 2015, and 30 sampling plots were chosen for an equal 
number of commercial wheat farms (see “Site description and soil sampling criteria” sec-
tion). The research was performed following a completely random design, so that soil 
strata (three levels of Al) were considered as treatments, each with 10 replications (sam-
pling plots), to evaluate wheat stress by Al on canopy and crop development. It was con-
ducted in the winter season, with the crop cv Barbilla (a local soft wheat, Triticum aesti-
vum L.) sown from February 7 to 11 under rainfed conditions. Field management followed 
usual farm procedures, which included variable seeding rates between farms, without soil 
fertilization (there was a residue of organic manure previously applied to potato in the crop 
rotation), and no pesticides were used. In addition, uniform lime distribution is the conven-
tional method used by farmers as a soil amendment to correct soil acidity.

In this study, wheat phenological stages were visually monitored (see “Monitoring crop 
phenology” section) by visiting the sampling plots at least once in each stage. Additionally, 
during the first visit, farmers were surveyed to determine the seeding rate on their farm (in 
kg), which was then transformed to kg  ha−1 by applying the empirical formula to determine 
the sowing density:

where SOD is the sowing density in seeds  m−2, SER is the seeding rate in kg  ha−1 and 
TGW is the thousand-grain weight in g.

Among the observations of crop development to be carried out were days to heading 
(DTH) when 50% of the spike or panicle of the pod had emerged, days to ripening (DTR) 
when 80% of the grains were hard (difficult to split with the thumbnail) and plant height 
at maturity. The time of harvesting was determined when the grain moisture content was 
approximately 14%, for which periodic measurements were made with a portable moisture 
tester (Pfeuffer™ HE 50, Kitzingen, Germany). To complete the assessment of changes 
during plant growth, multitemporal series of satellite images were used (see “Remote sens-
ing data” section). This included the relationship of a single polarization channel and plant 
height. An overview of this study is given in Fig. 2.

Plant height was measured in each sampling plot at harvest time. This was done in four 
corners and the center of each sampling plot within a flexible frame of 0.5 m × 0.5 m, and 
five random tillers per plot were measured for a total of 25. At the same time, 12 spikes 
were randomly harvested from the reference farms (5, 19 and 25) to finally obtain a total 
of 60 spikes for each plot. These spikes were threshed by hand and cleaned to obtain the 
grains.

In situ data were recorded for the following parameters. Plant height (PHT) was meas-
ured as the average distance from the soil surface to the tip of the spike on the main tiller, 
with awns excluded, in cm. Spike length (SL) was measured in the main tiller from its 
ear base to the tip of the uppermost spikelet (excluding awns), average in cm. Grain per 
spike (GS) was determined by counting and averaging the grain number among 10 ran-
domly selected spikes. These grains were then weighed in g, and the grain weight per spike 
(GWS) was calculated. Thousand-grain weight (TGW) was calculated by weighing 100 
kernels randomly selected from the total sample. This was converted to TGW (g) by mul-
tiplying by 10. Hectoliter weight (HW) was calculated as the quotient between the weight 
(g) and volume (ml) of a 10 g kernel sample taken randomly and then converted from g 
 ml−1 to kg  hl−1 by multiplying by 100.

(3)SOD = (SER*100)∕TGW
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Finally, the form-density factor (FFD) was calculated for a sample of 25 kernels. For 
this purpose, kernel length (KL) and kernel width or diameter (KD) were measured with a 
digital caliper. The formula for calculating FFD is (Giura & Saulescu, 1996):

where FFD is unitless, TGW is thousand-grain weight in g, and KL and KD are in mm.

Grain analysis

Dry samples of impurity-free grains were ground and then weighed to 10  g in a porce-
lain capsule using disposable plastic material to avoid possible contamination. The sample 
was then incinerated in a muffle furnace at 450 ± 25 °C, gradually reaching this tempera-
ture by increasing by no more than 50 °C for 30 min, over a 24 h period. Subsequently, 
the resulting ash was subjected to the established procedure (MAPA, 1994): proteins were 
determined by the Kjeldahl method, N was determined by titration with standardized HCl, 
and macroelement concentrations (Na, P, K, Ca, Mg and S) and microelement concentra-
tions (Cu, Fe, Zn, Mn, Mo, B and Al) were quantified with an ICP-EOS PerkinElmer™ 
spectrometer.

Statistical analysis

The Shapiro–Wilk test was carried out to confirm the assumptions of normality, random-
ness and independence of the data. In addition, two-way repeated measures analysis of 
variance (RM-ANOVA) was used to compare dates (phenological stages) of various plots 
(reference farms) in search of possible differences. However, to remove the variation that 
could not be effectively controlled for by test design, analysis of covariance (ANCOVA) 

(4)FFD = TGW∕(KL*KD)

Fig. 2  Flow chart of the procedure for evaluating phenological development and the collection of remote 
sensing data
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was applied according to Yang and Juskin (2011). Additionally, Tukey´s test was used to 
find significant differences between treatments (α = 0.05). Pearson correlation analysis was 
conducted between the NDVI, plant height and the backscattering coefficient. Then, to 
develop predictions, a regression analysis was conducted, comparing the performance of 
these models and the best model used for mapping wheat canopy stress caused by Al levels 
in soil. Specifically, the root mean square error (RMSE) and the coefficient of determina-
tion  (R2) were calculated to evaluate the prediction. The statistical calculations were made 
using Minitab software.

Results

Soil aluminum and nutrient balance

In this study, the concentration of total Al in soil was analyzed. Although the exchange-
able Al method is the most commonly used by laboratories, total Al was chosen for this 
type of research because it is an agile and less cumbersome measurement procedure. As a 
result, total Al at the 0–200 mm depth was influenced by soil pH, with an inverse relation-
ship. Based on this analysis, total Al varied between 2.86 and 6.7  g   kg−1. Additionally, 
a summary of other results obtained in the reference farms is shown in Table 4. This is 
consistent with results from a previous study that reported a relationship between pH and 
total Al (Hernández & Francisco-Bethencourt, 2017). This relationship clearly shows that 
at pH < 6.5, the Al level increased due to soil acidity.

The total Al concentration in the soil of the reference farms was classified as low 
(3 g   kg−1), medium (3–4 g   kg−1) and high (> 4 g   kg−1). It was then compared with the 
available nutrient content in those soils. A critical reference level was then used to make a 
balance, evaluating the sufficiency of those nutrients for adequate wheat growth (Goulding 
et al., 2008) and the Al effect. As a result, an increase in soil Al level decreases Ca (11.25 
to 1.38  cmolc  kg−1) and Mg (4.65 to 0.71  cmolc  kg−1) concentrations, below the critical 
level, when compared to a low Al level (3 g  kg−1) see Supplementary material S3 and S4. 
This result agrees with that reported by Rahman et al. (2018).

Environmental conditions

During the 2015 season, almost 50% of annual rainfall accumulations occurred throughout 
the wheat development cycle, between February and August (258.5  mm). All sampling 
plots received 17% less rainfall than the 14 year average of 313.2 mm. Nonetheless, the 
accumulated rainfall between February and March (vegetative stage) was 123 mm, which 

Table 4  Soil properties and 
content of selected elements in 
reference farms

NID reference farm, CL clay loam, L loam, CEC cation exchange 
capacity in  cmolc  kg−1, EC electrical conductivity in dS  m−1, Al total 
aluminum in g  kg−1, B total boron in mg  kg−1

NID Texture CEC pH EC Al B

5 CL 25.30 6.5 0.30 2.86 15
19 L 18.00 5.6 0.34 3.65 9
25 CL 25.65 4.8 0.71 6.70 8
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provided adequate soil moisture (there were no droughts) for this developmental stage. 
Instead, between April and June (flowering/milk-grain formation stages), it was somewhat 
lower (64 mm) but sufficient for these critical stages. In contrast, different sowing/harvest 
dates resulted in not dissimilar GDD accumulation among reference farms, with recorded 
values from 2907.7 to 2978.5°Cd (see Supplementary Material S2).

Wheat development and growth

Winter wheat cv Barbilla displayed similar phenological development in the reference 
farms and was not affected by sowing dates or soil Al levels; it was sown between Febru-
ary 7 (DOY 38) and 11 (DOY 42) and harvested between August 18 (DOY 231) and 26 
(DOY 239). The duration of the total growth cycle (from sowing to harvest) was between 
193 and 197 days. Seedling emergence took place seven days after the sowing in winter, 
followed by the phenophases “flag leaf sheath swollen (booting)”, “flowering”, and “seed 
ripening” during spring–summer. Different development stages covered by satellite images 
are shown in Table 5.

Days to heading (DTH) did not show differences regarding the soil Al levels of the ref-
erence farms, which ranged from 67 to 70  days after sowing. Physiological maturity or 
ripening was assumed to be the period when the flag leaf and spikes turned yellow; it was 
not different between the reference farms (soil Al levels). Days to ripening (DTR) were 
between 181 and 184 after sowing. Table 7 shows these data.

For monitoring wheat growth, height is an important parameter. In this study, SOD 
management of wheat growth was observed. SOD ranged from 330 seeds  m−2 to 724 seeds 
 m−2, with a mean of 531.1 ± 87.7 seeds  m−2 (± standard deviation), while in PHT, meas-
urements, varied between 1090 and 1320 mm, average of 1191 ± 54 mm. A linear regres-
sion analysis showed a highly significant result between the two variables. Nevertheless, 
the analysis of variance did not reveal significant differences when PHT was compared 
with different soil Al levels. Therefore, an analysis of covariance (ANCOVA) was used 
to compare PHT means because the covariate (SOD) affected the data. The ANCOVA 
results showed a significant (p < 0.05) effect of soil Al levels on PHT (Table 6). Tukey´s 
test revealed three homogeneous groups, resulting in a mean higher PHT of 1212 mm at 
the lowest soil Al level (Table 7).

Table 5  Wheat phenological developments (BBCH scale) covered by satellite images acquired in the study 
area (Icod el Alto)

DOY day of year (Julian dates), DAS days after sowing, (–) not image

Optical images Radar images

DOY DAS BBCH specific DOY DAS BBCH specific BBCH main Stages

70 32 16 68 26 13 10 Leaf development
91 53 39 92 50 39 30 Stem elongation
– – – 104 62 47 40 Booting
107 69 56 – – – 50 Heading
123 85 61 124 82 61 60 Flowering
171 133 77 176 134 77 70 Milk-grain
182 144 83 184 142 83 80 Ripening
198 160 87 196 154 87 80 Ripening
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Yield components and grain quality under stress conditions

The effect of soil Al levels on yield components such as SL, GS and GWS was not sig-
nificant, but it was observed that these were less than local reference values reported by 
Afonso (2012). However, under high Al stress, TGW was most significantly affected, with 
a decline to 33.9 g, when compared to the reference value of grain weight (37.6 g) cited by 
the same author, as shown in Table 8. For other parameters associated with yield, such as 
FFD and HW, it was observed that they decreased significantly when comparing a low Al 
level and high Al stress. With FFD, the change was from 2.61 to 1.68, while HW varied 
from 64.7 to 57.9 kg  hl−1 (see Supplementary material S6). In addition, it was observed 
that an increase in the soil Al level reduced TGW but did not affect KL. This was also 
reported by Zhang et  al.  (2018), which is associated with poor grain filling under stress 
conditions.

Studies exploring the stress-induced effects on wheat grain composition and quality are 
scarce. In this regard, this study found that grain protein and N and S concentrations varied 

Table 6  Statistical analysis of 
plant height without and with 
sowing density (SOD) when 
evaluating three Al levels in 
reference farms

DF degrees of freedom, p probability of error
ns not significant, *significant, **highly significant

Source of 
variation

Without covariate With covariate

DF F value p DF F value p

SOD 1 49.28  < 0.0001**

Al 2 3.30 0.055 ns 2 5.04 0.014*

Error 27 26
Total 29 29

Table 7  Analysis of wheat 
growth in reference farms 
affected by soil Al levels

The same letter indicates nonsignificant difference (p ≤ 0.05, Tukey’s 
test)
Al total aluminum in g  kg−1, DTH days to heading, DTR days to 
 ripening, PHT plant height in mm

Al level DTH DTR PHT

 < 3 69 183 1212a
3–4 67 181 1194ab
 > 4 70 184 1162b

Table 8  Average spike length 
(SL), grains per spike (GS), grain 
weight per spike (GWS) and 
thousand-grain weight (TGW) 
when evaluating three soil Al 
levels

Al total aluminum in g  kg−1, Values mean ± standard deviation
a Afonso (2012)

Al level SL (mm) GS GWS (g) TGW (g)

 < 3 74 ± 7.1 28.3 ± 3.95 1.38 ± 0.23 48.9 ± 6.02
3–4 69 ± 16.4 23.8 ± 10.8 1.04 ± 0.59 41.7 ± 6.41
 > 4 83 ± 16.2 27.2 ± 8.11 0.94 ± 0.37 33.9 ± 6.41
Referencea 104.30 46.47 1.75 37.60
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as a function of soil Al levels. In protein content, the highest values (13.6% and 17.7%) 
were observed with increasing Al level and were positively associated with increasing N 
from 23.8 to 31.1 mg  g−1 and S from 0.21 to 0.37 mg  g−1. In contrast, elements such as 
Al, Mo and B did not show significant variations (Table 9). Other elements analyzed in 
the grain showed a higher content when compared to a reference value, except Mg, which 
declined at high Al levels (see Supplementary material S7).

Growth patterns derived from satellite imagery compared with soil Al data

Landsat‑8 time series

The measurement of canopy reflectance during the growing season provided informa-
tion using optical data from L8 imagery. Values from DOY 123 (BBCH 61 and DAS 
85) showed a decrease with increasing Al level in the soil, and a significant change was 
observed in the NIR spectral range (750–1300 nm) at the beginning of flowering (anthesis) 
stage. Al stress manifests as a change in the spectral reflectance values of the wheat canopy 
from 0.48 to 0.36 with low and high Al levels, respectively. Instead, significant changes 
in visible (VIS) at 400–700 nm and shortwave infrared (SWIR) at 1300–2500 nm did not 
occur, as shown in Fig. 3a.

In addition, as the growing season progressed, significant differences were observed on 
the dates corroborated by repeated measures analysis of variance (RM-ANOVA) see Sup-
plementary material S10. Therefore, the variation in the observed NDVI occurs in response 

Table 9  Protein content and 
nutrient concentration of wheat 
grains when assessing three 
levels of soil Al

CP crude protein in dry weight, N total nitrogen, S sulfur, Al alu-
minum, Mo molybdenum, B boron, nd no data

Al level CPdw (%) N S Al Mo B
mg  g−1 mg  kg−1

 < 3 11.5 20.2 0.20 9 12 nd
3–4 13.6 23.8 0.21 11 10 nd
 > 4 17.7 31.1 0.37 10 11 nd

Fig. 3  Concentration of total Al in soil and its effects. Reflectance variation at the beginning of flowering 
on DOY 123 (a) and NDVI variation during wheat growth (b). Error bars show standard error
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to different soil Al levels. As is also evident, according to the crop growth stage (DOY 
dates), the curves in Fig. 3b show differences. At the beginning of wheat growth (from leaf 
development to stem elongation), DOY 70 to 91, the differences in the NDVI were clearer. 
This can be attributed to the soil influence because in early crop development stages, plant 
size does not allow full ground cover, and most surfaces in reference farms are bare (see 
Supplementary material S8a).

Additionally, as for the differences found at the end of the crop cycle (after flowering), 
as of DOY 123, can be attributed to differences in the leaf architecture, suggesting a vari-
ation in their internal structure due to the Al effect. Instead, differences in NDVI values 
between DOY 91 and 123, corresponding to stages ranging from stem elongation to flower-
ing, are sufficiently relevant to indicate early effects of canopy stress by Al (Fig. 3b). In this 
regard, it was observed that on DOY 91, the NDVI was 0.76 at a low Al level and 0.62 at a 
high Al level.

Sentinel‑1 time series

Data provided by Sentinel-1 C-band SAR from the backscatter time series correlate signifi-
cantly (r -0.84) in VV polarization (σ°VV) with plant height, which can be estimated by a 
simple model (see Supplementary material S9). For the visual observation of phenological 
stages, σ°VV values varied significantly during the crop growing season (DOY dates), as 
shown in Supplementary material S10 from the RM-ANOVA results. Backscatter variation 
was particularly complex to analyze; nevertheless, it was observed that these values gener-
ally fluctuated between − 1.50 and − 11.94 dB, with differences also observed between soil 
Al levels (Fig. 4).

During the leaf development and stem elongation stages (DOY 68 to 92), σ°VV 
increased, which could be explained by an increase in soil moisture (bare soil affects back-
scatter). Instead, from DOY 92 to 124, σ°VV decreased, possibly influenced by double-
bounce between wheat stems and soil at the advanced stem elongation stage. This was 
slight during the booting stage and stronger at the heading and flowering stages, where the 
flag leaf opened and inflorescences emerged. This is all associated with an increase in can-
opy biomass leading to attenuation of the backscatter signal. Later, from DOY 124 to 171, 
σ°VV increased again during the flowering stage until the onset of the milk grain caused by 
a canopy with a lower moisture content. The σ°VV decreased slightly in the advanced phase 
of milk grain stage at DOY 176. It was assumed to be due to grains having a low moisture 
content. These changes were greater during ripening, e.g., at DOY 184 (Fig. 4).

Fig. 4  Variation in backscatter-
ing values (σ°VV) during wheat 
growth when evaluating three 
levels of soil Al in reference 
farms. Error bars show standard 
error
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The above results, as described, are associated with stress-free conditions for the crop 
(low Al level, < 3  g   kg−1) and correspond with those reported by Harfenmeister et  al. 
(2019), with σ°VV values varying between − 4.47 and − 9.93 dB. However, distortion in the 
backscattering signal was observed at medium and high levels of soil Al at the stem elon-
gation (DOY 92), booting (DOY 104) and milk-grain (DOY 171 to 176) stages, which has 
not been reported in previous studies and is assumed to be due to stress caused by struc-
tural changes in the canopy due to Al.

Estimation models and predicting the NDVI

PHT and σ°VV were evaluated at three growth stages: booting (DOY 104), flowering (DOY 
124) and milk-grain (DOY 176). Regression analysis was applied using linear maximum 
likelihood (ML) according to linear, quadratic and cubic models. At the beginning of the 
flowering stage, PHT was higher. This result was similar to that obtained by Bousbih et al. 
(2017) when they studied plant stress due to soil moisture changes. A linear model was 
highly significant (p < 0.01) and presented a good fit  (R2 0.69), as shown in Table 10.

A multitemporal analysis was conducted for SAR backscattering (VV and VH) over ref-
erence farms with corresponding NDVI values calculated from L8 imagery for both non 
stressed (low Al level) and stressed (medium and high Al level) canopies during the grow-
ing season. The results revealed that σ°VV was positively associated with the NDVI. Curve 
fitting for the regression function of the data was acceptable for low Al levels  (R2 0.84) and 
a lower accuracy for both medium and high Al levels in the soil  (R2 0.35 and 0.12, respec-
tively), as shown in Fig. 5a.

In this study, a good correlation was not obtained at Al levels > 3 g  kg−1, as shown in 
Fig. 5a. It was assumed that this occurred because the dielectric constant was affected by 
the presence of Al in the soil. In this case, σ°VV is sensitive to the contrast between the die-
lectric constant and the mineralogical composition of the soil, according to Sharif (1995). 
Therefore, in soils with higher Al content, the dielectric constant increases, which results 
in attenuation of the backscattering, as reported by Chen et al. (2007) and Nahm (2010). 
This may explain the almost flat shape of the NDVI curves in the graph for medium and 
high Al levels over the wheat crop.

When comparing the NDVI data calculated from multi-temporal optical images of L8 
(observed) with the data obtained by applying the proposed regression model (predicted) 
shown in Table 11, the result gives a good estimate with a significant correlation (Pearson 
r 0.96, p < 0.05) at low Al levels (< 3 g  kg−1), while at medium and high levels, it is not 
significant (r − 0.27 and − 0.17, respectively), as shown in Fig. 5b.

Table 10  Regression analysis in 
three wheat development stages 
between backscattering values 
(σ°VV) and plant height (PHT)

p probability of error, R2 coefficient of determination, DOY day of year
ns not significant, **highly significant

Model DOY 104 DOY 124 DOY 176

F value p F value p F value p

Linear 0.59 0.450 ns 65.34 0.000** 1.26 0.270 ns

Quadratic 2.12 0.157 ns 0.19 0.665 ns 4.93 0.035 ns

Cubic 0.57 0.456 ns 0.25 0.621 ns 0.20 0.659 ns

R2 0.11 0.69 0.20
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Mapping of within‑field variability in the NDVI

Understanding the spatial variability of early-stage stressed wheat plants is important 
for the subsequent implementation of management strategies. Related to this issue, it is 
highlighted that in-season Sentinel-1 imagery performs better at the stem elongation 
stage (DOY 92) when assessing crop development, giving a highly significant correlation 
between the NDVI (from L8 data) and σ°VV (from Sentinel-1). In addition, a third-order 
polynomial model generated by the regression analysis was highly significant (p < 0.01) 
and presented a good fit  (R2 0.70), which could be an interesting option since it can be eas-
ily applied (Table 11).

The method developed in this study for NDVI mapping at the field scale employs free 
and open access data. Previously, optical and radar images were resampled to the same res-
olution (5 m) by the bilinear method in SNAP, as seen in Fig. 6a. To obtain the model, two 
deterministic dates were compared, and 2015 was labeled as the predicted NDVI because 
the model was applied to it. In contrast, the label in 2017 was the observed NDVI because 
it was calculated from L8 data. To examine the ability to predict wheat canopy stress from 
soil Al effects, a Pearson correlation analysis was performed between the observed and 
predicted values with significant results. The descriptive statistics obtained are shown in 
Supplementary Material S5. The regression model tested presented a low RMSE (0.05) 
and good accuracy  (R2 0.68) for non-stressed canopies, confirming their usefulness in 
acidic soils with Al problems (see table in Fig. 6).

Fig. 5  NDVI variation as a function of backscattering values (σ°VV) when evaluating three levels of soil Al 
in reference farms. Curve fitting for the regression function (a) and correlation between the observed NDVI 
and predicted NDVI (b)

Table 11  Regression model to estimate the NDVI based on backscattering values (σ°VV) in the stem elon-
gation stage of wheat development

p probability of error, R2 coefficient of determination, y NDVI, x σ°VV in dB (in the model)
**Highly significant

Model Regression analysis

F value p R2 adj

y = 0.0018x3 + 0.0245x2 + 0.1095x + 0.9008 27.68  < 0.0001** 0.70
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Finally, the resulting maps of the NDVI in three reference farms show the spatial vari-
ability of pixels, where higher values (≥ 0.68) can be classified as non-stressed zones 
(Fig. 6). This indicates the close link between NDVI and stressed wheat plants due to the 
effect of soil Al. The effectiveness of this method allows liming within-field management 
by zone, delineating NDVI pixels with low values (< 0.68). This method is based on pre-
dictable data over time being the best method of diagnosis and could be implemented to 
improve management in precision agriculture.

Discussion

Growth conditions and stress‑induced changes

In this study, a favorable mean temperature from the sowing to flowering stages of 11 °C 
to 11.9 °C was recorded. These climatic conditions are correlated with high-weight grain 
at harvest when the daily minimum mean temperature is higher than 6.9 °C (Villegas et al., 
2016). Their relationship with the accumulation of GDD (mean 2943.1) was positive, 
being higher than other GDDs reported, e.g.,  Salazar-Gutierrez et  al.  (2013). Therefore, 
unfavorable climatic conditions were ruled out for research development. Instead, it was 
observed that wheat is sensitive to the soil Al level with increasing toxicity at pH values 
below 6.5. PHT showed a negative response in our field-scale study, in agreement with the 

Fig. 6  Maps of the NDVI when evaluating three Al levels in reference farms. Image resampled according 
to farm polygon (a). Reference farms (5, 19 and 25) are (b), (c), and (d) respectively. Table of differences 
between the observed and predicted NDVI values: n observation number, R2 coefficient of determination, 
RMSE root mean square error
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findings of Baquy et  al. (2017), who, using greenhouse experiments, reported that PHT 
decreased as the Al concentration increased.

In contrast, Al caused a reduction in TWG and an increase in the protein content of 
grain, which is in agreement with the finding reported by Flagella et al. (2010) when study-
ing drought stress. In addition, grain N and S concentrations were also increased by Al, 
and this response has likewise been observed under drought stress (Gooding et al., 2003). 
Few studies have clearly reported that Al can cause changes in wheat grain composition. 
Indeed, an adverse change was also observed in the Ca and Mg grain contents because 
they declined with increasing Al levels in the soil. Other changes associated with Al stress 
affect yield components such as FFD and HW, with a significant reduction reported in this 
study when the soil Al level was increased, which has not been reported in the references 
reviewed.

Spectral reflectance of wheat canopies through the NDVI is a good indicator of plant 
health. In this study, the crop development stage influenced the correlation between the 
Al stress level and NDVI, which was consistent with the results obtained by Cattani 
et  al.  (2017). In contrast, just as SAR signal variations of Sentinel-1 imagery have been 
analyzed in previous reports, in this study, the backscattering of VV polarization was sig-
nificantly correlated with NDVI at the three soil Al levels, and a model was proposed to 
estimate it  (R2 0.70). Recently, Veloso et al. (2017) found the same relationship when stud-
ying crop growth, but obtained a weaker correlation  (R2 0.58).

Spatial variability of the estimated NDVI

Al toxicity symptoms in plants, including stress, are not easily identifiable because they 
are frequently mixed with other symptoms, e.g., deficiencies in nutrients and drought. 
Depending on the intensity and severity of this stress, the effects may vary. Recognition of 
plant stress and its spatial distribution is possible with the regression model reported in this 
study. Additionally, use of this model could help identify areas of high Al stress at the field 
scale within seasons. The NDVI mapping results revealed good accuracy of the model and 
showed that NDVI pixel values higher than 0.68 represented an area with unstressed plants 
if the evaluation of crop growth at the stem elongation stage was carried out. However, to 
date, no practical studies relating Al stress and changes in canopy properties are available 
to compare these results. Instead, there are some reports relating a non-linear NDVI model 
to wheat canopy biomass, similar to this study; e.g., Mirasi et al. (2019) report a model 
with NDVI data from a hyperspectral sensor located within a field (precision  R2 0.70).

The value of this research is in the use of management zones; for example, the NDVI 
derived map can be used to delineate zones with stressed plants where subsurface soil Al 
level could be a problem and implement variable rate lime application, such that rates can 
be increased in zones with lower NDVI values and/or decreased (or even not applied) in 
areas with high NDVI values.

Conclusions

The current trend in remote sensing is to use radar imagery for crop monitoring, which 
allows data to be obtained under both favorable and adverse weather conditions (e.g., rain, 
fog). In the present study, a model based on time series data from Sentinel-1 C-band satel-
lite imagery is proposed to assess wheat growth in soils with low to high Al levels. Thus, 
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large areas of cultivated land could be remotely monitored, making the model useful for 
the diagnosis of Al, since its presence and effects are difficult to detect visually. The results 
showed patterns of spatial variability of predicted NDVI values as a function of soil Al 
content, allowing the development of a field-scale map, which could be used for the man-
agement of acidic soils through precision agriculture practices. In this regard, the model 
was more accurate for the early detection of crop canopy Al stress at the stem elongation 
stage (BBCH 39) using backscattering VV polarization. The methodology developed is 
generic and could be applied to many more crops or relevant soil properties. In the future, 
a more complex model would consider interactions between Al effects and other factors, 
such as soil type, previous crops or fertilization, as well as assess liming efficiency through 
variable rate application.

Supplementary Information The online version contains supplementary material available at https:// doi. 
org/ 10. 1007/ s11119- 022- 09875-6.
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